
Exception Safety

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, October 19, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

continued

Review

2020-10-19 CS 311 Fall 2020 2

2020-10-19 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3

2020-10-19 CS 311 Fall 2020

Unit Overview
Data Handling & Sequences

Major Topics
§ Data abstraction
§ Introduction to Sequences
§ Interface for a smart array
§ Basic array implementation
§ Exception safety
§ Allocation & efficiency
§ Generic containers
§ Node-based structures
§ More on Linked Lists
§ Sequences in the C++ STL
§ Stacks
§ Queues

P
P

Smart Arrays

Linked Lists

P
P

(part)

4

2020-10-19 CS 311 Fall 2020

Review
Interface for a Smart Array [1/2]

We wish to implement a Sequence in C++ using a smart array. It
will know its size, be able to copy itself, etc. It will also be able
to change its size.

Basic Ideas
§ Use a C++ class. An object of the class

implements a single Sequence.
§ Use iterators, operators, ctors, and the dctor in conventional ways.
§ Every function in the interface should exist in order to implement,

or somehow make possible, an ADT operation.

You will finish this
implementation in

Project 5.

5

2020-10-19 CS 311 Fall 2020

Review
Interface for a Smart Array [2/2]

Ctors & Dctor
§ Default ctor
§ Ctor given size
§ Copy ctor
§ Move ctor
§ Dctor

Member Operators
§ Copy assignment
§ Move assignment
§ Bracket

Global Operators
None

Named Global Functions
None

Named Public Member Functions
§ size
§ empty
§ begin
§ end
§ resize
§ insert
§ erase
§ push_back
§ pop_back
§ swap

All design decisions so far
have been made exactly the
same as in std::vector—

except that vector has
other members, too.

6

Review
Basic Array Implementation

Call our class FSArray (Frightfully Smart Array).
What type should an array item be?

§ Use int for the value type.
§ This is just for now. You will make it generic in Project 5.

How should we implement the iterators?
§ Use pointers for iterators (int *, const int *).

What data members should our array class have?
§ Size of the array: size_type _size;
§ Pointer to the array: value_type * _data;

Can we use automatically generated versions of the Big Five?
§ No. We are directly managing an owned resource.

2020-10-19 CS 311 Fall 2020

As we will see, this
design actually has a

significant flaw—which
may not be obvious.

7

2020-10-19 CS 311 Fall 2020

Review
Exception Safety — Refresher [1/2]

An error condition (often error) is a condition occurring during
runtime that cannot be handled by the normal flow of execution.
§ Not necessarily a bug or a user mistake.
§ Example: Could not read file.

before

during

after

Three ways to deal
with a possible error

condition in a function:

Prevention
Client code must prevent
the error (precondition).

Containment
Fix the problem inside the
function.

We like
these two,
but they
might not
be feasible

Three ways to signal
an error condition to

the client code:

Return an error code

Set a flag, checked by
a separate function

Throw an exceptionSignal the Client Code
Idea: When we cannot
fulfill our postconditions.

8

2020-10-19 CS 311 Fall 2020

Review
Exception Safety — Refresher [2/2]

Three things we can do with exceptions in C++:
§ Catch—when you can handle an error signaled by a function you

call.
§ Throw—when your function is unable to fulfill its postconditions.
§ Catch all & re-throw—when you call a throwing function, and you

cannot handle the error, but your function must clean up before
exiting.

We generally only write one of these three. (Another might be
written by someone else.)

9

2020-10-19 CS 311 Fall 2020

Review
Exception Safety — Introduction

The following issues are collectively called “safety”—in the context
of exceptions, “exception safety”:
§ Does a function ever signal client code that an error has occurred,

and if it does …
§ Are resource leaks avoided?
§ Are data left in a usable state?
§ If so, do we know anything about that state?

A function’s guarantee states the safety assurances it makes.

Each function that is called must do one of two things:
§ Succeed and terminate normally (return), or
§ Fail, throw an exception, and adhere to its safety guarantee.

10

Review
Exception Safety — Three Standard Guarantees

Basic Guarantee. Data remain in a usable state, and
resources are never leaked, even in the presence of exceptions.
§ The minimum standard for all code.

Strong Guarantee. If the operation throws an exception, then it
makes no changes that are visible to the client code.
§ The guarantee we generally prefer.

No-Throw Guarantee. The operation never throws an exception.
§ Required in some special situations.

Each guarantee includes the earlier guarantees.

2020-10-19 CS 311 Fall 2020 11

Review
Exception Safety — Writing Exception-Safe Code [1/2]

To ensure that code is exception-safe, look at every place an
exception might be thrown. For each, make sure that, if an
exception is thrown, then either
§ the exception is caught and handled internally, or
§ the function throws and adheres to its guarantees.

A bad design may make exception safety impossible.
§ Good design is part of exception safety.
§ The Single Responsibility Principle (SRP)—every software

component should have exactly one well defined responsibility—can
be helpful here.

Rule. A non-const member function should not return an
object by value.

2020-10-19 CS 311 Fall 2020 12

Review
Exception Safety — Writing Exception-Safe Code [2/2]

TO DO
§ Do any improvements in class FSArray come to mind, now or in the

process of doing the following steps? If so, consider making them.
§ Figure out and document the exception-safety guarantees made by

all functions implemented so far in class FSArray.
§ Should any of these guarantees be changed? Perhaps a higher

safety level can be achieved via a redesign/rewrite?
§ No, all documented guarantees are as high as they can reasonably be.
§ The ctor from size offers the Strong Guarantee. We cannot raise its level

of safety, because it does dynamic allocation, and so may fail.
§ All other functions written so far offer the No-Throw Guarantee.

§ Write an exception-safe copy ctor for class FSArray, and document
its safety guarantee.
§ The copy ctor offers the Strong Guarantee. Again, we cannot raise its

level, as it does dynamic allocation.

2020-10-19 CS 311 Fall 2020

Done. See the latest versions
of fsarray.h & fsarray.cpp.

13

Exception Safety

2020-10-19 CS 311 Fall 2020

continued

14

Exception Safety
noexcept — Noexcept Specification

C++11 introduced the keyword noexcept, to enable the following:
§ We can declare that a function will not throw—or will not throw

except in certain circumstances.
§ Code can test at runtime whether an expression is non-throwing.

Placing noexcept after a parameter list declares a function as
throwing no exceptions. This is a noexcept specification.

void foo() noexcept;

A destructor is implicitly marked noexcept, if the destructors of all
data members—and base classes, if any—are noexcept, and you
do not mark it otherwise.

If a noexcept function throws, then the program terminates.

2020-10-19 CS 311 Fall 2020

Destructors will be noexcept, unless there
is EVIL code lurking somewhere about.

15

Exception Safety
noexcept — When to Use It

Which functions should be noexcept?
§ Destructor—but that is done for

you, unless there is EVIL code.

§ Move ctor and move assignment operator.
§ This enables a number of optimizations. For example, when a vector

runs out of space, it does a reallocate-and-copy. If the value type has a
noexcept move constructor, then the vector will move each data item;
otherwise, it will copy them. (Do you see why it does this?)

§ Any function called by a noexcept function outside a try-block.
§ This is why we insisted on the swap member function being noexcept in

Project 2—and will insist again in Project 5. The move assignment
operator calls it, so it must be noexcept.

§ Optionally, any function you are sure will never throw—even if that
function is later rewritten.
§ Think of noexcept status as a permanent property of a function.

2020-10-19 CS 311 Fall 2020

Should I
write EVIL

code?
No!

16

Exception Safety
noexcept — More Usage

noexcept is also an operator. Put a parenthesized expression after
it. The result is true if the expression is noexcept.

if (noexcept(bar()))
{ … } // Do this if bar() never throws

A noexcept specification optionally includes a parenthesized
constant boolean expression. The function is noexcept if the
expression is true.

void foo2() noexcept(noexcept(bar()))
{

bar();
}

2020-10-19 CS 311 Fall 2020

This slide is included for
completeness, but you will

probably not use the
information on it very often.

foo2 is noexcept
if bar is noexcept.

Code something like this is how vector is
able to check for a noexcept move ctor.

17

Exception Safety
noexcept — CODE

TO DO
§ Write a noexcept move ctor for FSArray. If modifications to the

class would help, then make those modifications.
§ Member _data is now allowed to be a null pointer if _size is zero. We

considered all the member functions, to make sure that they would
operate properly with this change in the class invariants. The ctor from
size and the copy ctor were rewritten slightly to take advantage of the
new class invariants.

§ Now the move ctor can copy the data members of its parameter, and
then set the parameter’s _size to 0 and _data to nullptr.

§ Document the exception-safety properties of the move ctor.
§ If any other functions should be noexcept, then mark them as such.

§ The move assignment operator and member function swap, neither
written yet, have already been marked noexcept. We also marked as
noexcept some simple functions that should never have to do any
operation that might throw: operator[], size, empty, begin, end.

2020-10-19 CS 311 Fall 2020

Done. See the latest versions
of fsarray.h & fsarray.cpp.

18

2020-10-19 CS 311 Fall 2020

Exception Safety
Commit Functions — The Need

It can be tricky to offer the Strong Guarantee when a single
function modifies multiple parts of a large object.
§ If we make several changes, and then we get an error, it can be

difficult to undo the changes.
§ In fact, it may be impossible, if the undo operation itself may result

in an error.

Solution
§ Create an entirely new object with the new value.
§ If there is an error, destroy the new object. The old object has not

changed, so there are no changes that are visible to the client.
§ If there is no error, commit to our changes using a non-throwing

operation.

Commit function: a non-throwing function used to finalize the
result of a computation. Swap can be a useful commit function.

19

Exception Safety
Commit Functions — Swap [1/2]

A swap member function usually looks like this:

class MyClass {
…
void swap(MyClass & other) noexcept
{ … }

This should exchange the values of *this and other.

A swap member function can usually be written very easily: just
swap the data members. Ownership issues are easy to handle
properly (right?).

If we do it right, then we get a swap function that never throws
and is very fast.

2020-10-19 CS 311 Fall 2020 20

Exception Safety
Commit Functions — Swap [2/2]

class MyClass {
private:

int x;
double y;

public:
void swap(MyClass & other) noexcept;

We can implement MyClass::swap like this:

void MyClass::swap(MyClass & other) noexcept
{

swap(x, other.x);
swap(y, other.y);

}

2020-10-19 CS 311 Fall 2020

This is the same as the mswap we
discussed a few weeks ago.

When we make such a member
function public, we generally

name it “swap”. But it is not the
same as std::swap!

21

Exception Safety
Commit Functions — Usage [1/3]

Use a non-throwing swap function
to get the Strong Guarantee.

To give our object a new value:
§ Try to construct a temporary

object holding this new value.
§ If this fails, exit. No change.

§ Exiting is automatic, if the
failing operation throws.

§ If the construction succeeds,
then swap our object with the
temporary object holding the
new value.

§ Exit. The destructor of the
temporary object cleans up the
old value of our object.
§ Destruction is automatic.
§ And it should never fail.

Above, boldface = code we write.

2020-10-19 CS 311 Fall 2020

*this

old value

temp

new value

*this

old value new value

*this

new value

*this

old value

*this

old value

Swap *this
& temp object

Exit. Temp is
destroyed.

Should
never fail!

The arrow means
“has this value”. In
practice, it might
represent a pointer.

Try to construct
new value

Exception is thrown

temp

Should
never fail!

Might fail

Strong
Guarantee!

FAILURE SUCCESS

22

2020-10-19 CS 311 Fall 2020

Exception Safety
Commit Functions — Usage [2/3]

We can set an object to a new value, while offering the Strong
Guarantee, if we can construct the new value with the Strong
Guarantee, and we have a No-Throw dctor and swap.

Procedure
§ Try to construct a temporary object holding the new value.
§ Swap with this temporary object.

Example: “clear” by swapping with a default-constructed
temporary object.

void MyClass::clear() // Strong Guarantee
{

MyClass temp;
swap(temp);

}

If there is a problem creating temp, then an exception is
thrown, and “nothing” happens (Strong Guarantee).

Otherwise, the values are swapped. *this gets its new value.
The old value of *this is cleaned up by temp’s destructor.

23

2020-10-19 CS 311 Fall 2020

Exception Safety
Commit Functions — Usage [3/3]

Now we can write a copy assignment operator that makes the
Strong Guarantee. We need:
§ A copy ctor that makes the Strong Guarantee (usually possible).
§ A swap member function that makes the No-Throw Guarantee

(usually easy).
§ A dctor that makes the No-Throw Guarantee (of course).

// Strong Guarantee
MyClass & MyClass::operator=(const MyClass & rhs)
{

MyClass temp(rhs);
swap(temp);
return *this;

} Always end an assignment operator this way.

Do the actual assignment:

1. Try to construct a temporary copy of rhs.
2. Swap with the temporary copy.

The old value is cleaned up by the destructor of
temp, which should never throw.

This is the same way we wrote copy
assignment back in Invisible Functions II.

And now we know why it was written that way.

24

Exception Safety
Commit Functions — Other Possibilities

Just about any noexcept function that sets a value may be a
suitable commit function in some circumstances.

In particular, the move operations, if they are noexcept, may be
useful as commit functions.

To force a call to a move operation, use std::move (<utility>),
which casts a value to an Rvalue. This forces a move when the
value is non-const.

a1 = b1;

a2 = move(b2);

2020-10-19 CS 311 Fall 2020

Calls move assignment, if:

1. Move assignment is defined, and
2. b2 is non-const

Remember: move assignment is allowed to mess up its
argument. Do not use the current value of b2 after this.

Calls copy assignment (since b1 is an Lvalue)

25

