
Exception Safety

CS 311 Data Structures and Algorithms
Lecture Slides
Friday, October 16, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman



Review

2020-10-16 CS 311 Fall 2020 2



2020-10-16 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3



2020-10-16 CS 311 Fall 2020

Unit Overview
Data Handling & Sequences

Major Topics
§ Data abstraction
§ Introduction to Sequences
§ Interface for a smart array
§ Basic array implementation
§ Exception safety
§ Allocation & efficiency
§ Generic containers
§ Node-based structures
§ More on Linked Lists
§ Sequences in the C++ STL
§ Stacks
§ Queues

P
P

Smart Arrays

Linked Lists

P
P

4



2020-10-16 CS 311 Fall 2020

Review
Data Abstraction

Abstract data type (ADT):
§ A collection of data, along with a set of operations on that data.
§ Independent of implementation and programming language.
§ Examples: Sequence, SortedSequence.

Data structure
§ A construct within a programming language that stores a collection 

of data.
§ Examples: Array, Linked List.

Class
§ A feature in C++ and some other programming languages, aimed at 

facilitating OOP.
§ In C++, we often implement a data structure using a class. 

However, we are not required to.
§ Examples: std::vector<int>, std::list<double>.

5



2020-10-16 CS 311 Fall 2020

Review
Introduction to Sequences

A Sequence is a collection of items that are in some order.
§ We will restrict our attention to finite Sequences in which all items 

have the same type.

We defined an ADT Sequence.
§ Data. An ordered list, all items the same type, indexed by 0, …, 

size–1.
§ Operations. CreateEmpty, CreateSized, Destroy, Copy, 

LookUpByIndex, Size, Empty, Sort, Resize, InsertByPos, 
RemoveByPos, InsertBeg, RemoveBeg, InsertEnd, RemoveEnd, 
Splice, Traverse, Swap.

5 3 4 74 82 2 7 1 25

6



2020-10-16 CS 311 Fall 2020

Review
Interface for a Smart Array [1/2]

We wish to implement a Sequence in C++ using a smart array. It 
will know its size, be able to copy itself, etc. It will also be able 
to change its size.

Basic Ideas
§ Use a C++ class. An object of the class

implements a single Sequence.
§ Use iterators, operators, ctors, and the dctor in conventional ways.
§ Every function in the interface should exist in order to implement, 

or somehow make possible, an ADT operation.

You will finish this 
implementation in 

Project 5.

7



2020-10-16 CS 311 Fall 2020

Review
Interface for a Smart Array [2/2]

Ctors & Dctor
§ Default ctor
§ Ctor given size
§ Copy ctor
§ Move ctor
§ Dctor

Member Operators
§ Copy assignment
§ Move assignment
§ Bracket

Global Operators
None

Named Global Functions
None

Named Public Member Functions
§ size
§ empty
§ begin
§ end
§ resize
§ insert
§ erase
§ push_back
§ pop_back
§ swap

All design decisions so far
have been made exactly the
same as in std::vector—

except that vector has 
other members, too.

8



Review
Basic Array Implementation — Design Decisions

Call our class FSArray (Frightfully Smart Array).
What type should an array item be?

§ Use int for the value type.
§ This is just for now. You will make it generic in Project 5.

How should we implement the iterators?
§ Use pointers for iterators (int *, const int *).

What data members should our array class have?
§ Size of the array: size_type _size;
§ Pointer to the array: value_type * _data;

Can we use automatically generated versions of the Big Five?
§ No. We are directly managing an owned resource.

2020-10-16 CS 311 Fall 2020

As we will see, this 
design actually has a 

significant flaw—which 
may not be obvious.

9



Review
Basic Array Implementation — CODE

TO DO
§ Write a skeleton form of class FSArray.

§ The package header & source files: #ifndef, #include, etc.
§ The class definition.
§ Definitions of all public types.
§ Prototypes and dummy definitions for all public functions.

§ As time permits, begin implementing functionality.
§ Declarations of data members and comments indicating class invariants.
§ Definitions for functions that do not copy/move/swap or resize the array.
§ Definitions for member functions push_back & pop_back.

We will improve FSArray over the next few days. In Project 5 you 
will turn it into a generic container and finish it.

2020-10-16 CS 311 Fall 2020

Done. See fsarray.h & fsarray.cpp.
Also see fsarray_main.cpp for a 

program to compile the package with.

10



Exception Safety

2020-10-16 CS 311 Fall 2020 11



2020-10-16 CS 311 Fall 2020

Exception Safety
Refresher — Error Handling

An error condition (often error) is a condition occurring during 
runtime that cannot be handled by the normal flow of execution.
§ Not necessarily a bug or a user mistake.
§ Example: Could not read file.

before

during

after

Three ways to deal 
with a possible error 

condition in a function:

Prevention
Client code must prevent 
the error (precondition).

Containment
Fix the problem inside the 
function.

We like
these two, 
but they 
might not 
be feasible

Three ways to signal 
an error condition to 

the client code:

Return an error code

Set a flag, checked by 
a separate function

Throw an exceptionSignal the Client Code
Idea: When we cannot 
fulfill our postconditions.

12



Exception Safety
Refresher — Using Exceptions [1/3]

Catch—when you can handle an error signaled by a function you call.

try { … }
catch (std::out_of_range & e) {

Throw—when your function is unable to fulfill its postconditions.

if (ix >= arrsize) throw std::out_of_range("bad index");

Catch all & re-throw—when you call a throwing function, and you cannot 
handle the error, but your function must clean up before exiting.

try { … }
catch (...) {

[Clean up here]
throw; }

2020-10-16 CS 311 Fall 2020

We generally only write one of the three:
catch, throw, or catch all & re-throw.

Another might be written by someone else.

Catch exceptions 
by reference.

The code contains 
three dots.

13



2020-10-16 CS 311 Fall 2020

Exception Safety
Refresher — Using Exceptions [2/3]

The following can throw:
§ throw throws.
§ new may throw std::bad_alloc or a derived class (default 

behavior).
§ A function that (1) calls a function that throws, and (2) does not 

catch the exception, will throw.
§ Functions written by others may throw. See their documentation.

The following do not throw:
§ Built-in operations, other than new, on built-in types.

§ Including operator[].
§ Deallocation done by the built-in version of delete.
§ C++ Standard I/O Libraries (default behavior).

14



Exception Safety
Refresher — Using Exceptions [3/3]

Marking a function noexcept is a promise that it will not throw.

void foo() noexcept
{ … }

If a noexcept function throws, then the program terminates.

If a destructor called during exception handling throws, then the 
program terminates. So destructors should not throw.

Because of this, generally the destructors in your classes are 
implicitly marked noexcept, unless you specify otherwise.

2020-10-16 CS 311 Fall 2020 15



2020-10-16 CS 311 Fall 2020

Exception Safety
Introduction [1/2]

The following issues are collectively called “safety”:
§ Does a function ever signal client code that an error has occurred, 

and if it does …
§ Are resource leaks avoided?
§ Are data left in a usable state?
§ If so, do we know anything about that state?

In the context of exceptions, we use the term “exception safety”.

A function’s guarantee states the safety assurances it makes.

16



2020-10-16 CS 311 Fall 2020

Exception Safety
Introduction [2/2]

When a function exits, having satisfied its postconditions, we say it 
has succeeded.

When a function exits without having satisfied its postconditions, 
we say it has failed.

We will follow the convention that a function throws an exception 
when it is unable to succeed.

So each function we call must do one of two things:
§ Succeed and terminate normally (return), or
§ Fail, throw an exception, and adhere to its safety guarantee.

Next we look at three standard safety guarantees. Then we discuss 
methods for writing functions that make helpful guarantees.

17



Exception Safety
Three Standard Guarantees — Overview

Basic Guarantee
§ Data remain in a usable state, and

resources are never leaked, even in
the presence of exceptions.

Strong Guarantee
§ If the operation throws an exception, then it makes no changes that 

are visible to the client code.
No-Throw Guarantee

§ The operation never throws an exception.

Notes
§ Each guarantee includes the earlier guarantees.
§ The Basic Guarantee is the minimum standard for all code.
§ The Strong Guarantee is the one we generally prefer.
§ The No-Throw Guarantee is required in some special situations.

2020-10-16 CS 311 Fall 2020

These are the Abrahams 
Guarantees, formulated by C++ 
Standards Committee member

Dave Abrahams in the 1990s. They 
can be applied to code in other 

programming languages as well.

18



2020-10-16 CS 311 Fall 2020

Exception Safety
Three Standard Guarantees — Basic Guarantee

Data remain in a usable state, and resources are never 
leaked, even in the presence of exceptions.
§ When a member function throws, an object may end up in an 

unknown state, but it must be a valid state, with invariants 
maintained.

This is minimum standard that we expect all code to meet.

What happens if this standard is not met, and an exception is 
thrown?

19



2020-10-16 CS 311 Fall 2020

Exception Safety
Three Standard Guarantees — Strong Guarantee

If the operation throws an exception, then it makes no 
changes that are visible to the client code.
§ Changes can be made, but the client must not see them.
§ Generally, any work that has been done, must be undone.
§ This guarantee gives us commit-or-roll-back semantics.
§ In practice, we exempt things like logging from these requirements.

We like this level of safety, and we write code that meets it 
whenever it is reasonable to do so.

Sometimes it is not reasonable, typically due to efficiency issues.

20



2020-10-16 CS 311 Fall 2020

Exception Safety
Three Standard Guarantees — No-Throw Guarantee

The operation never throws an exception.
§ In the context of error-handling methods other than exceptions, this 

may become the No-Fail Guarantee.

This is the highest level of safety, but not always the best level.
§ Exceptions are not bad. They are a tool for dealing with problematic 

situations. The No-Throw Guarantee prohibits the use of this tool.
§ This guarantee does not say “error conditions never occur”; it says 

that we handle them internally, never throwing to signal client code. 
Some kinds of errors make it difficult to offer this guarantee.

Sometimes it is necessary to make the No-Throw Guarantee—
typically in situations in which we are finishing something.
§ One such situation: destructors.
§ We will cover another situation soon: commit functions.

21



Exception Safety
Writing Exception-Safe Code — How

To ensure that code is exception-safe, look at every place an 
exception might be thrown. For each, make sure that, if an 
exception is thrown, then either
§ the exception is caught and handled internally, or
§ the function throws and adheres to its guarantees.

That can be a lot of work, but there are ideas that make it easier:
§ Modularity—Once we certify a function as exception-safe, we can 

use it as such without re-examining it—as long as we do not alter it. 
A modular design, with lots of little functions, is one in which a 
previously certified function will rarely need to be rewritten.

§ RAII—If a resource is owned by an object whose destructor is sure 
to be called, then we do not have to worry about leaking that 
resource.

2020-10-16 CS 311 Fall 2020 22



Exception Safety
Writing Exception-Safe Code — Design

A bad design may make exception safety impossible.
§ Good design is part of exception safety.
§ The Single Responsibility Principle (SRP)—every software 

component should have exactly one well defined responsibility—can 
be helpful here.

Consider:
§ Suppose a function has two things to do, and the second thing fails.
§ Suppose the second thing is returning a value.

Rule. A non-const member function should not return an 
object by value.

Story time …

2020-10-16 CS 311 Fall 2020

See “Exception Handling: A False Sense of Security”, 
linked on the class webpage.

23



Exception Safety
Writing Exception-Safe Code — CODE

TO DO
§ Do any improvements in class FSArray come to mind, now or in the 

process of doing the following steps? If so, consider making them.
§ Figure out and document the exception-safety guarantees made by

all functions implemented so far in class FSArray.
§ Should any of these guarantees be changed? Perhaps a higher 

safety level can be achieved via a redesign/rewrite?
§ No, all documented guarantees are as high as they can reasonably be.
§ The ctor from size offers the Strong Guarantee. We cannot raise its level 

of safety, because it does dynamic allocation, and so may fail.
§ All other functions written so far offer the No-Throw Guarantee.

§ Write an exception-safe copy ctor for class FSArray, and document 
its safety guarantee.
§ The copy ctor offers the Strong Guarantee. Again, we cannot raise its 

level, as it does dynamic allocation.

2020-10-16 CS 311 Fall 2020

Done. See the latest versions
of fsarray.h & fsarray.cpp.

24



Exception Safety
TO BE CONTINUED …

Exception Safety will be continued next time.

2020-10-16 CS 311 Fall 2020 25


