
Basic Array Implementation

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, October 14, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman



Review

2020-10-14 CS 311 Fall 2020 2



2020-10-14 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3



2020-10-14 CS 311 Fall 2020

Unit Overview
Data Handling & Sequences

Major Topics
§ Data abstraction
§ Introduction to Sequences
§ Interface for a smart array
§ Basic array implementation
§ Exception safety
§ Allocation & efficiency
§ Generic containers
§ Node-based structures
§ More on Linked Lists
§ Sequences in the C++ STL
§ Stacks
§ Queues

P
P

Smart Arrays

Linked Lists

P

4



2020-10-14 CS 311 Fall 2020

Review
Data Abstraction

Abstract data type (ADT):
§ A collection of data, along with a set of operations on that data.
§ Independent of implementation and programming language.
§ Examples: Sequence, SortedSequence.

Data structure
§ A construct within a programming language that stores a collection 

of data.
§ Examples: Array, Linked List.

Class
§ A feature in C++ and some other programming languages, aimed at 

facilitating OOP.
§ In C++, we often implement a data structure using a class. 

However, we are not required to.
§ Examples: std::vector<int>, std::list<double>.

5



2020-10-14 CS 311 Fall 2020

Review
Introduction to Sequences

A Sequence is a collection of items that are in some order.
§ We will restrict our attention to finite Sequences in which all items 

have the same type.

We defined an ADT Sequence.
§ Data. An ordered list, all items the same type, indexed by 0, …, 
size–1.

§ Operations. CreateEmpty, CreateSized, Destroy, Copy, 
LookUpByIndex, Size, Empty, Sort, Resize, InsertByPos, 
RemoveByPos, InsertBeg, RemoveBeg, InsertEnd, RemoveEnd, 
Splice, Traverse, Swap.

5 3 4 74 82 2 7 1 25

6



2020-10-14 CS 311 Fall 2020

Review
Interface for a Smart Array — Introduction

We wish to implement a Sequence in C++ using a smart array. It 
will know its size, be able to copy itself, etc. It will also be able 
to change its size.

Basic Ideas
§ Use a C++ class. An object of the class

implements a single Sequence.
§ Use iterators, operators, ctors, and the dctor in conventional ways.
§ Every function in the interface should exist in order to implement, 

or somehow make possible, an ADT operation.

You will finish this 
implementation in 

Project 5.

7



Review
Interface for a Smart Array — By ADT Operation

ADT Operations
§ CreateEmpty

§ Default ctor.
§ CreateSized

§ Ctor given size.
§ Destroy

§ Dctor.
§ Copy

§ Copy ctor, copy assignment.
§ Also optimizations: move ctor, move 

assignment.
§ LookUpByIndex

§ Bracket operator.
§ Size

§ Member function size.

§ Empty
§ Member function empty.

§ Sort
§ Handle externally, with iterators. Use

member functions begin & end and 
std::sort or std::stable_sort.

§ Resize
§ Member function resize.

§ InsertByPos
§ Member function insert.

§ RemoveByPos
§ Member function erase.

§ InsertBeg
§ insert with begin.

§ RemoveBeg
§ erase with begin.

§ InsertEnd
§ Member function push_back.

§ RemoveEnd
§ Member function pop_back.

§ Splice
§ Call resize, then copy data with op[]

or std::copy.

§ Traverse
§ Use member functions begin & end.
§ This enables range-based for-loops.

§ Swap
§ Member function swap.

2020-10-14 CS 311 Fall 2020

std::remove exists and 
does something different.
We could name this
member “remove”, but 
that might lead to
confusion.

8



2020-10-14 CS 311 Fall 2020

Review
Interface for a Smart Array — Summary

Ctors & Dctor
§ Default ctor
§ Ctor given size
§ Copy ctor
§ Move ctor
§ Dctor

Member Operators
§ Copy assignment
§ Move assignment
§ Bracket

Global Operators
None

Named Global Functions
None

Named Public Member Functions
§ size
§ empty
§ begin
§ end
§ resize
§ insert
§ erase
§ push_back
§ pop_back
§ swap

All design decisions so far
have been made exactly the
same as in std::vector—

except that vector has 
other members, too.

9



Basic Array Implementation

2020-10-14 CS 311 Fall 2020 10



2020-10-14 CS 311 Fall 2020

Basic Array Implementation
Introduction

We will implement our data structure as a C++ class. Its interface 
will consist of the public members of the class.

Note. There is nothing wrong with global functions—friends of the 
class, perhaps—being part of the interface; but our interface 
happens not to involve any.
§ Example. A string class might implement concatenation via a global

operator+.

The public interface is all that client code sees.
§ Every operation must be doable through this interface.
§ Every function available to client code exists in order to implement 

one or more publicly available operations.
§ We can write any private functions we might feel like writing.
§ As a convenience, we can define public member types, to help client 

code deal with the data.

11



Basic Array Implementation
Design Decisions [1/2]

Call our class FSArray (Frightfully Smart Array).
What type should an array item be?

§ Use int for the value type.
§ This is just for now. You will make it generic in Project 5.

What type should the size of an array be?
§ Use std::size_t for the size type.

How should we store the data?
§ Store the data in a dynamically allocated array of int.
§ Note. We could have used a separate RAII class, like IntArray.

How should we implement the iterators?
§ Use pointers for iterators (int *, const int *).

What member types should we define?
§ value_type, size_type, iterator, const_iterator.

2020-10-14 CS 311 Fall 2020 12



Basic Array Implementation
Design Decisions [2/2]

What data members should our array class have?
§ Size of the array: size_type _size;
§ Pointer to the array: value_type * _data;

What class invariants should it have?
§ Member _size is nonnegative.
§ Member _data points to an int array, allocated with new [], owned 

by *this, holding _size ints.
What should operator[] return? Should it be const or not?

§ We need two versions: non-const and const.
§ These return value_type &, const value_type &, respectively.

What should begin, end return? Should they be const or not?
§ As with operator[], we need two versions: non-const and const.
§ These return iterator, const_iterator, respectively.

Can we use automatically generated versions of the Big Five?
§ No. We are directly managing an owned resource.

2020-10-14 CS 311 Fall 2020

As we will see, this 
design actually has a 

significant flaw—which 
may not be obvious.

13



Basic Array Implementation
CODE

TO DO
§ Write a skeleton form of class FSArray.

§ The package header & source files: #ifndef, #include, etc.
§ The class definition.
§ Definitions of all public types.
§ Prototypes and dummy definitions for all public functions.

§ As time permits, begin implementing functionality.
§ Declarations of data members and comments indicating class invariants.
§ Definitions for functions that do not copy/move/swap or resize the array.
§ Definitions for member functions push_back & pop_back.

We will improve FSArray over the next few days. In Project 5 you 
will turn it into a generic container and finish it.

2020-10-14 CS 311 Fall 2020

Done. See fsarray.h & fsarray.cpp.
Also see fsarray_main.cpp for a 

program to compile the package with.

14


