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Review
Recursive Backtracking [1/4]

A different kind of search: searching for solutions to a problem.

During such a search, we might need to backtrack—undo work in 
order to try something different.

Backtracking search works well when we have a notion of a partial 
solution. A partial solution that is finished is a full solution.

It is often convenient to implement backtracking using recursion.
§ A recursive call means “Look for full solutions based on this partial 

solution.”
§ Return means “backtrack”.
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Review
Recursive Backtracking [2/4]

We wrote code to print solutions to the n-Queens Problem.
§ Place n queens on an n × n chessboard so that none of them can 

attack each other.
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See nqueen.cpp.
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Review
Recursive Backtracking [3/4]

A partial solution is a non-attacking 
placement of queens on the first 0 
or more rows of the board.

Representing a Partial Solution
§ Number rows and columns 0 .. n–1.
§ Two variables:

§ board (vector of int).
§ n (int).

§ Variable n holds the number of 
rows/columns in a full solution.

§ Variable board holds the columns of 
queens already placed, one per row.

§ The size of variable board is the 
number of rows in which queens 
have been placed.
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Review
Recursive Backtracking [4/4]

We can also count solutions. Each recursive call returns the 
number of full solutions based on a given partial solution.

The Code
§ Nonrecursive wrapper function

§ Create an empty partial solution.
§ Call the workhorse function with this partial solution.
§ Return the return value of the workhorse function.

§ Recursive workhorse function is given a partial solution, returns 
the number of full solutions that can be made from it.
§ Do we have a full solution?

§ If so, then return 1.
§ Do we have a clear dead end?

§ If so, then return 0.
§ Otherwise:

§ Set total to zero.
§ For each way of extending the current partial solution, make a recursive call, 

and add its return value to total.
§ Return total.

This might be 
unnecessary.

See nqueencount.cpp.
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Thoughts on Project 4
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Thoughts on Project 4
Introduction

Now we look at the problem you are to solve in Project 4: counting 
“holey spider walks”.

You will write code to solve this problem using recursive 
backtracking.
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Thoughts on Project 4
Problem Description [1/4]

Consider a rectangle divided into equal-size squares. One square is 
labeled start; another square is labeled finish. A third square is 
marked as a hole. We call the result a board.

What happens:
§ Place a “spider” on the start square.
§ The spider can step north, south, east, west, or the four diagonal 

directions, to an adjacent board square, but not to the hole.
§ We want the spider to walk in this way around the board, stepping 

on each square, except the hole, exactly once, and ending on the 
finish square.

A path that accomplishes this is a holey spider walk.

Here is an example of a holey spider walk on
the above board.
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Thoughts on Project 4
Problem Description [2/4]

How many different holey spider walks does this
board have?

The answer turns out to be 4. Here they are.

Here are some paths that are not holey spider walks for this board.
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Thoughts on Project 4
Problem Description [3/4]

Place a coordinate system on a board, starting in the upper-left 
corner, as shown. Specify squares as x, y.
§ On our 4×2 board, the hole is at (1, 0).

Your job in Project 4 is to write a function countHSW that takes the 
board dimensions, hole location, and start and finish squares,
each specified as x, y, and returns the number of holey spider
walks on that board.

So countHSW(4,2, 1,0, 0,0, 3,1) should return 4.
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Thoughts on Project 4
Problem Description [4/4]

Many other boards are possible.

Here is a 3×2 board. It has has exactly 2 holey
spider walks; both are shown.
§ countHSW(3,2, 2,0, 1,0, 2,1) returns 2.

Here is a 4×1 board with no holey spider walks.
§ countHSW(4,1, 1,0, 0,0, 3,0) returns 0.

Here is a 5×4 board. It has 40,887 different
holey spider walks.
§ countHSW(5,4, 4,3, 4,2, 0,0) returns 40887.
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Thoughts on Project 4
Writing It [1/8]

We consider how to write countHSW.

Requirements in a nutshell:
§ Wrapper function countHSW.
§ Recursive workhorse function countHSW_recurse. Prototype this 

however you want, but the following must be true.
§ It is given a partial solution.
§ It returns number of full solutions based on this partial solution.
§ It does recursive backtracking.
§ It does the bulk of the work.

In the following slides I explain in more detail how I wrote these 
functions. You may take these as suggestions for how you can 
do it. However, the requirements of the project allow for quite a 
bit of variation. You do not need to follow my suggestions.
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A partial solution is a stage on the way to a holey spider walk. 
Here is the definition of partial solution that I used:
§ The walk started on the start square.
§ Moves were only made to adjacent squares (N/S/E/W/diagonal) on 

the board, and not to the hole.
§ No square has been visited more than once.
§ However, some squares may not be visited.

Thoughts on Project 4
Writing It [2/8]
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Thoughts on Project 4
Writing It [3/8]

What data do we need to maintain?

Say a boardArray holds an int for each square on the
board. This is 1 if either the spider has visited the
square or it is the hole; otherwise it is 0. Thus,
0 means the square needs to be visited.

We also need:
§ The board dimensions: x (width) & y (height).
§ The finish square: x & y.
§ The spider’s current position: x & y.

It would be helpful to know:
§ The number of squares left to visit.

Information we do not need to maintain:
§ The start square.
§ The order in which the spider walks through the squares.
§ Distinguishing the hole from visited squares.

Wrap all this 
in an object, 
if you want. 
(I did not.)

Do you see 
why not?
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Thoughts on Project 4
Writing It [4/8]

Conceptually, a boardArray is a 2-D array.
We can implement it as a vector of vector of int.

Construct as follows; each item is initialized to zero:

vector<vector<int>> board(dim_x, vector<int>(dim_y, 0));

To look up item i,j:

board[i][j]

If we do things as above, then keeping track of dim_x, dim_y
separately is not required, but it is convenient to do so.
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Thoughts on Project 4
Writing It [5/8]

We represent a partial solution with:
§ board: vector<vector<int>>
§ dim_x, dim_y: both int
§ finish_x, finish_y: both int
§ curr_x, curr_y: both int
§ squaresLeft: int

In an empty partial solution:
§ board items are all 0, except the start square and the hole.
§ dim_x, dim_y are the dimensions.
§ finish_x, finish_y are the

coordinates of the finish square.
§ curr_x, curr_y are the

coordinates of the start square.
§ squaresLeft is the number of

squares on the board minus 2.
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In a full solution:
§ dim_x, dim_y, finish_x, and

finish_y are as before.
§ board items are all 1.
§ squaresLeft is 0.
§ curr_x, curr_y are the finish square coord’s.

To test for a full solution, check the last two points above.

int countHSW_recurse(vector<vector<int>> board,
int dim_x, int dim_y, int finish_x, int finish_y,
int curr_x, int curr_y, int squaresLeft)

{
if (squaresLeft == 0
&& curr_x == finish_x && curr_y == finish_y)

return 1;  // We have a full solution
…

1 1

Thoughts on Project 4
Writing It [6/8]
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Thoughts on Project 4
Writing It [7/8]

Procedure for workhorse function:
§ If we have a full solution, return 1.
§ Set total to 0.
§ For each of the eight squares adjacent

to the spider’s current position:
§ If this square (1) lies on the board and 

(2) is not-yet-visited:
§ Move current spider position.
§ Mark new square as visited.
§ Decrement number of squares left.
§ Make recursive call.
§ Add return value to total.
§ Restore all changes, except change to 
total.

§ Return total.
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Thoughts on Project 4
Writing It [8/8]

More Suggestions
§ Before accessing the data for a square, always check whether the x

and y indices of that square are in range!

§ If you are careful to leave the board in the same state when
countHSW_recurse ends as when it began, then you can pass the 
board by reference, avoiding a time-consuming copy.

int countHSW_recurse(vector<vector<int>> & board, …

§ There are simple ways to check for some dead ends. Implement 
one or more and get shorter execution times.
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Thoughts on Project 4
Final Notes

Again, you do not have to write your code the way I have outlined. 
Any code that meets the requirements of the project is 
acceptable. Once more, in a nutshell:
§ Function countHSW: prototyped as required.
§ Function countHSW_recurse: recursive backtracking, takes partial 

solution and counts full solutions, does the bulk of the work.
But if you have trouble with this kind of thing, then follow my 

suggestions.

Think first! This project generally requires less writing than other 
projects, but more thought.

If your code passes all tests, then I will time it, using a special test 
program that I will not give you. This is not for a grade. The 
names of top performers will be announced in class.
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Unit Overview
Algorithmic Efficiency & Sorting

Major Topics
§ Analysis of Algorithms
§ Introduction to Sorting
§ Comparison Sorts I
§ Asymptotic Notation
§ Divide and Conquer
§ Comparison Sorts II
§ The Limits of Sorting
§ Comparison Sorts III
§ Non-Comparison Sorts
§ Sorting in the C++ STL

P
P
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Review
Part 2
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Review
Analysis of Algorithms [1/3]

Efficient [noun form: efficiency]
§ General meaning. Using few resources: time, space, etc.
§ Specific meaning. Fast—not using much time.
§ Other specific meanings when qualified. Space efficient, etc.
§ Unless we say otherwise, we are talking about the worst case—the 

maximum resource usage for a given input size.

Our usual model of computation:
§ Legal operations: no data access except thru provided channels.
§ Basic operations (the operations we count):

§ A built-in operation on a fundamental type.
§ A call to a client-provided function.

§ We are given a list as input. Its size is the number of items in it.

Scalable: works well with large problems. (Or, it scales well.)

It matters
what we count!
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Review
Analysis of Algorithms [2/3]

Algorithm A is order f(n) [written O(f(n))] if
there exist constants k and n0 such that
algorithm A performs no more than k×f(n)
basic operations when given input of size n ≥ n0.

We are interested in the fastest category that an algorithm fits in:

I will also allow O(n3), O(n4), etc. 

Using Big-O In Words

O(1) Constant time

O(log n)* Logarithmic time

O(n) Linear time

O(n log n)* Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read 
all of input

Probably 
not scalable

Faster

Slower

*As we will see, 
the base of the 
logarithms does 

not matter.

We will use big-O
every single day 
for the rest of 
the semester.
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Review
Analysis of Algorithms [3/3]

When determining big-O, we can collapse any constant number of 
steps into a single step without altering the order.
Rule of Thumb. In nested loops, if each is executed n times, or 
executed i times, where i goes up to n (plus a constant?), then the 
order is O(nt) where t is the number of nested loops.

for (int i = 0; i < n-4; ++i)
for (int j = 0; j < i; ++j)

for (int k = j; k < i+4; ++k)
++a[k];

for (int i = 0; i < n; ++i)
for (int j = 0; j < i-5; ++j)

for (int k = 0; k < 5; ++k)
++arr[j+k];
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O(n3)

O(n2)
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Review
Introduction to Sorting — Basics, Analyzing

Sort: Place a list in order.
Key: The part of the item we sort by.
Comparison sort: Sorting algorithm

that only gets information about item
by comparing them in pairs.

A general-purpose comparison sort
places no restrictions on the size of
the list or the values in it.

Analyzing a general-purpose comparison sort:
§ (Time) Efficiency
§ Requirements on Data
§ Space Efficiency
§ Stability
§ Performance on Nearly Sorted Data

3 1 3 5 25

1 2 3 5 53

x
y

x<y ?compare

In-place = no large additional 
space required. 

Stable = never reverses the 
relative order of equivalent items. 

1. All items close to proper places,
OR

2. few items out of order.
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Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered
§ Quadratic-Time [O(n2)] Comparison Sorts

§ Bubble Sort
§ Insertion Sort
§ Quicksort

§ Log-Linear-Time [O(n log n)] Comparison Sorts
§ Merge Sort
§ Heap Sort (mostly later in semester)
§ Introsort

§ Special Purpose—Not Comparison Sorts
§ Pigeonhole Sort
§ Radix Sort
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Comparison Sorts I
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Comparison Sorts I
Bubble Sort — Description

We begin with a very simple sort: Bubble Sort.
§ It is easy to understand and analyze. But we

do not use it for anything practical.

Bubble Sort proceeds in a number of passes.
§ In each pass, we compare consecutive pairs

of items. An out-of-order pair is swapped.
§ Think of a vertical list, bottom to top. Large items rise like bubbles.
§ After the first pass, the last item is the largest.
§ So later passes need not go through all the data.

We can improve Bubble Sort’s performance on some nearly sorted 
data—specifically, Type 1 (all items close to proper place):
§ In each pass, track whether we have done swaps during that pass.
§ If not, then the data were sorted when the pass began. Quit.
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Comparison Sorts I
Bubble Sort — CODE

TO DO
§ Examine an implementation of Bubble Sort.
§ Analyze it.

§ Coming up.
See bubble_sort.cpp.
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Comparison Sorts I
Bubble Sort — Analysis

(Time) Efficiency L
§ Bubble Sort is O(n2).
§ Bubble Sort also has an average-case time of O(n2). L

Requirements on Data J
§ Bubble Sort does not require random-access data.
§ It works on Linked Lists.

Space Efficiency J
§ Bubble Sort can be done in-place.

Stability J
§ Bubble Sort is stable.

Performance on Nearly Sorted Data J/L
§ Type 1. An optimized Bubble Sort is O(n) for all items close to their 

proper spots. J
§ Type 2. Bubble Sort can be O(n2) for only one item out of order. L

There are several 
smileys here, but these
are more important.
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Comparison Sorts I
Bubble Sort — In Practice

Bubble Sort is virtually never used in practice. Its primary purpose 
is to be an example of an easy-to-understand sorting algorithm.

The other sorts we cover will all be at least a little bit practical—
and some will be very practical.
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Comparison Sorts I
Insertion Sort — Description

We can think of Bubble Sort as constructing a sorted sequence in 
backwards order:
§ Find the greatest item (by “bubbling”), then the next greatest, etc.
§ So for each position, starting with the last, it finds the item that 

belongs there.

Suppose we flip this around.
§ Instead of looking through the positions and determining what item 

belongs in each, look through the given items, determine in which 
position each belongs, and then insert it in that position.

This idea leads to an algorithm called Insertion Sort.
§ Iterate through the items in the sequence.
§ For each, insert it in the proper place among the preceding items.
§ Thus, when we are processing item k, we have items 0 .. k–1 

already in sorted order.
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Comparison Sorts I
Insertion Sort — Illustration

Items to the left of the bar are sorted.
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Comparison Sorts I
Insertion Sort — How to Search

How do we find the insertion location—that is, the spot in the 
sorted part of the list where an item should be inserted?
§ Sequential Search?
§ Binary Search?

We usually use a third option: backward Sequential Search—
Sequential Search proceeding from back to front.

Why?
§ First, Insertion Sort is most useful when the dataset is already 

nearly sorted. For such data, a backward Sequential Search tends to 
find the insertion location quickly.

§ Second, using Binary Search would not make the algorithm any 
faster. For an array, we need to go backwards sequentially through 
the data anyway, since each data item after the insertion location 
must be moved up. And for a Linked List—or other non-random-
access structure—Binary Search is not very fast anyway.
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Comparison Sorts I
Insertion Sort — CODE

TO DO
§ Implement Insertion Sort.
§ Analyze, as before.

§ Coming up.

Done. See insertion_sort.cpp.
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Comparison Sorts I
Insertion Sort — On std::move

std::move (<utility>) takes one argument, which it casts to an 
Rvalue. Use it to force move construction/assignment.

a = b;        // Does a copy
a = move(b);  // Does a move

The second line of code above is often faster. However, when we 
do it, we are making an implicit promise: we will not use the 
current value of b again.

cout << b;    // BAD!

b = c;
cout << b;    // Okay
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std::move does not move anything!
It casts to an Rvalue, which makes

its argument movable.

There is another std::move, in 
<algorithm>, taking 3 arguments.

It is the move version of std::copy.
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Comparison Sorts I
Insertion Sort — Analysis

(Time) Efficiency L
§ Insertion Sort is O(n2).
§ Insertion Sort also has an average-case time of O(n2). L

Requirements on Data J
§ Insertion Sort does not require random-access data.
§ It works on Linked Lists.*

Space Efficiency J
§ Insertion Sort can be done in-place.

Stability J
§ Insertion Sort is stable.

Performance on Nearly Sorted Data J
§ The usual implementation is O(n) for both Type 1* (all items close 

to proper spots) and Type 2 (few items out of order).

*For one-way sequential-access data, significant extra space usage is 
required to allow for linear-time sorting of all nearly sorted datasets.
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Comparison Sorts I
Insertion Sort — In Practice

Insertion Sort is too slow for general-purpose use.

However, Insertion Sort is useful in certain special cases.
§ Insertion Sort is fast (linear time) for nearly sorted data.
§ Insertion Sort is also considered fast for small lists.

Insertion Sort often appears as part of another algorithm.
§ Optimized sorting code typically does Insertion Sort on small lists.
§ Some sorting methods get the data nearly sorted, and then finish 

with a call to Insertion Sort. More on this when we cover Quicksort.
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