
Thoughts on Project 4
Comparison Sorts I

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, September 28, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

Review
Part 1

2020-09-28 CS 311 Fall 2020 2

Review
Recursive Backtracking [1/4]

A different kind of search: searching for solutions to a problem.

During such a search, we might need to backtrack—undo work in
order to try something different.

Backtracking search works well when we have a notion of a partial
solution. A partial solution that is finished is a full solution.

It is often convenient to implement backtracking using recursion.
§ A recursive call means “Look for full solutions based on this partial

solution.”
§ Return means “backtrack”.

2020-09-28 CS 311 Fall 2020 3

2020-09-28 CS 311 Fall 2020

Review
Recursive Backtracking [2/4]

We wrote code to print solutions to the n-Queens Problem.
§ Place n queens on an n × n chessboard so that none of them can

attack each other.

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q
Q

Good Good BAD

Q
Q

Q
Q

4×4
chessboard

Queen

Can attack
N, S, E, W

& 4 diagonals,
any distance

Q

See nqueen.cpp.

4

2020-09-28 CS 311 Fall 2020

Review
Recursive Backtracking [3/4]

A partial solution is a non-attacking
placement of queens on the first 0
or more rows of the board.

Representing a Partial Solution
§ Number rows and columns 0 .. n–1.
§ Two variables:

§ board (vector of int).
§ n (int).

§ Variable n holds the number of
rows/columns in a full solution.

§ Variable board holds the columns of
queens already placed, one per row.

§ The size of variable board is the
number of rows in which queens
have been placed.

Q
Q

Q
Q

0 1 2 3
0
1
2
3

2
0
3
1

board

Q
Q

0 1 2 3
0
1
2
3

2
0

board

Partial
Solution

Representation

0 1 2 3
0
1
2
3

nboard

empty 4

n

4

n

4

5

2020-09-28 CS 311 Fall 2020

Review
Recursive Backtracking [4/4]

We can also count solutions. Each recursive call returns the
number of full solutions based on a given partial solution.

The Code
§ Nonrecursive wrapper function

§ Create an empty partial solution.
§ Call the workhorse function with this partial solution.
§ Return the return value of the workhorse function.

§ Recursive workhorse function is given a partial solution, returns
the number of full solutions that can be made from it.
§ Do we have a full solution?

§ If so, then return 1.
§ Do we have a clear dead end?

§ If so, then return 0.
§ Otherwise:

§ Set total to zero.
§ For each way of extending the current partial solution, make a recursive call,

and add its return value to total.
§ Return total.

This might be
unnecessary.

See nqueencount.cpp.

6

Thoughts on Project 4

2020-09-28 CS 311 Fall 2020 7

Thoughts on Project 4
Introduction

Now we look at the problem you are to solve in Project 4: counting
“holey spider walks”.

You will write code to solve this problem using recursive
backtracking.

2020-09-28 CS 311 Fall 2020 8

Thoughts on Project 4
Problem Description [1/4]

Consider a rectangle divided into equal-size squares. One square is
labeled start; another square is labeled finish. A third square is
marked as a hole. We call the result a board.

What happens:
§ Place a “spider” on the start square.
§ The spider can step north, south, east, west, or the four diagonal

directions, to an adjacent board square, but not to the hole.
§ We want the spider to walk in this way around the board, stepping

on each square, except the hole, exactly once, and ending on the
finish square.

A path that accomplishes this is a holey spider walk.

Here is an example of a holey spider walk on
the above board.

2020-09-28 CS 311 Fall 2020

Hole

S
F

S
F

4×2
Board

9

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Problem Description [2/4]

How many different holey spider walks does this
board have?

The answer turns out to be 4. Here they are.

Here are some paths that are not holey spider walks for this board.

S
F

S
F

S
F

S
F

S
F

S
F

S
F

S
F

S
F

S
F

S
F

10

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Problem Description [3/4]

Place a coordinate system on a board, starting in the upper-left
corner, as shown. Specify squares as x, y.
§ On our 4×2 board, the hole is at (1, 0).

Your job in Project 4 is to write a function countHSW that takes the
board dimensions, hole location, and start and finish squares,
each specified as x, y, and returns the number of holey spider
walks on that board.

So countHSW(4,2, 1,0, 0,0, 3,1) should return 4.

S
0 1 2

1
0

F

3

dimensions hole start finish

11

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Problem Description [4/4]

Many other boards are possible.

Here is a 3×2 board. It has has exactly 2 holey
spider walks; both are shown.
§ countHSW(3,2, 2,0, 1,0, 2,1) returns 2.

Here is a 4×1 board with no holey spider walks.
§ countHSW(4,1, 1,0, 0,0, 3,0) returns 0.

Here is a 5×4 board. It has 40,887 different
holey spider walks.
§ countHSW(5,4, 4,3, 4,2, 0,0) returns 40887.

F
S

0 1 2

1
0

S
0 1

0

F
S

F
2 3

S

0 1

3

F
2 3 4

2
1
0

12

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Writing It [1/8]

We consider how to write countHSW.

Requirements in a nutshell:
§ Wrapper function countHSW.
§ Recursive workhorse function countHSW_recurse. Prototype this

however you want, but the following must be true.
§ It is given a partial solution.
§ It returns number of full solutions based on this partial solution.
§ It does recursive backtracking.
§ It does the bulk of the work.

In the following slides I explain in more detail how I wrote these
functions. You may take these as suggestions for how you can
do it. However, the requirements of the project allow for quite a
bit of variation. You do not need to follow my suggestions.

13

A partial solution is a stage on the way to a holey spider walk.
Here is the definition of partial solution that I used:
§ The walk started on the start square.
§ Moves were only made to adjacent squares (N/S/E/W/diagonal) on

the board, and not to the hole.
§ No square has been visited more than once.
§ However, some squares may not be visited.

Thoughts on Project 4
Writing It [2/8]

2020-09-28 CS 311 Fall 2020

S
F

S
F

S
F

Partial Solutions

S
F

This partial
solution is an

empty partial
solution.

This partial
solution cannot
be extended to
a full solution.

This partial
solution is a

full solution.

This partial
solution can be
extended to a
full solution.

14

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Writing It [3/8]

What data do we need to maintain?

Say a boardArray holds an int for each square on the
board. This is 1 if either the spider has visited the
square or it is the hole; otherwise it is 0. Thus,
0 means the square needs to be visited.

We also need:
§ The board dimensions: x (width) & y (height).
§ The finish square: x & y.
§ The spider’s current position: x & y.

It would be helpful to know:
§ The number of squares left to visit.

Information we do not need to maintain:
§ The start square.
§ The order in which the spider walks through the squares.
§ Distinguishing the hole from visited squares.

Wrap all this
in an object,
if you want.
(I did not.)

Do you see
why not?

15

Thoughts on Project 4
Writing It [4/8]

Conceptually, a boardArray is a 2-D array.
We can implement it as a vector of vector of int.

Construct as follows; each item is initialized to zero:

vector<vector<int>> board(dim_x, vector<int>(dim_y, 0));

To look up item i,j:

board[i][j]

If we do things as above, then keeping track of dim_x, dim_y
separately is not required, but it is convenient to do so.

2020-09-28 CS 311 Fall 2020 16

Thoughts on Project 4
Writing It [5/8]

We represent a partial solution with:
§ board: vector<vector<int>>
§ dim_x, dim_y: both int
§ finish_x, finish_y: both int
§ curr_x, curr_y: both int
§ squaresLeft: int

In an empty partial solution:
§ board items are all 0, except the start square and the hole.
§ dim_x, dim_y are the dimensions.
§ finish_x, finish_y are the

coordinates of the finish square.
§ curr_x, curr_y are the

coordinates of the start square.
§ squaresLeft is the number of

squares on the board minus 2.

2020-09-28 CS 311 Fall 2020

0 0
S

F

Partial Solution Representation

1 1
1
1

dim_x/y: 3, 2
finish_x/y: 2, 1
curr_x/y: 1, 1
squaresLeft: 2

0 0
S

F

Partial Solution Representation

1 1
0
0

dim_x/y: 3, 2
finish_x/y: 2, 1
curr_x/y: 0, 0
squaresLeft: 4

17

In a full solution:
§ dim_x, dim_y, finish_x, and

finish_y are as before.
§ board items are all 1.
§ squaresLeft is 0.
§ curr_x, curr_y are the finish square coord’s.

To test for a full solution, check the last two points above.

int countHSW_recurse(vector<vector<int>> board,
int dim_x, int dim_y, int finish_x, int finish_y,
int curr_x, int curr_y, int squaresLeft)

{
if (squaresLeft == 0
&& curr_x == finish_x && curr_y == finish_y)

return 1; // We have a full solution
…

1 1

Thoughts on Project 4
Writing It [6/8]

2020-09-28 CS 311 Fall 2020

S
F

Partial Solution Representation

1 1
1
1

dim_x/y: 3, 2
finish_x/y: 2, 1
curr_x/y: 2, 1
squaresLeft: 0

18

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Writing It [7/8]

Procedure for workhorse function:
§ If we have a full solution, return 1.
§ Set total to 0.
§ For each of the eight squares adjacent

to the spider’s current position:
§ If this square (1) lies on the board and

(2) is not-yet-visited:
§ Move current spider position.
§ Mark new square as visited.
§ Decrement number of squares left.
§ Make recursive call.
§ Add return value to total.
§ Restore all changes, except change to
total.

§ Return total.

S
F

S
F

S
F

1 0
dim_x/y: 3, 2
finish_x/y: 2, 1
curr_x/y: 0, 1
squaresLeft: 3

1 1
0
0

dim_x/y: 3, 2
finish_x/y: 2, 1
curr_x/y: 0, 1
squaresLeft: 3

1
0

dim_x/y: 3, 2
finish_x/y: 2, 1
curr_x/y: 0, 1
squaresLeft: 3

1
01
1 0

0
1
11
1

Partial Solutions

Representations

First
check
this.

Then
check
this.

19

Thoughts on Project 4
Writing It [8/8]

More Suggestions
§ Before accessing the data for a square, always check whether the x

and y indices of that square are in range!

§ If you are careful to leave the board in the same state when
countHSW_recurse ends as when it began, then you can pass the
board by reference, avoiding a time-consuming copy.

int countHSW_recurse(vector<vector<int>> & board, …

§ There are simple ways to check for some dead ends. Implement
one or more and get shorter execution times.

2020-09-28 CS 311 Fall 2020 20

2020-09-28 CS 311 Fall 2020

Thoughts on Project 4
Final Notes

Again, you do not have to write your code the way I have outlined.
Any code that meets the requirements of the project is
acceptable. Once more, in a nutshell:
§ Function countHSW: prototyped as required.
§ Function countHSW_recurse: recursive backtracking, takes partial

solution and counts full solutions, does the bulk of the work.
But if you have trouble with this kind of thing, then follow my

suggestions.

Think first! This project generally requires less writing than other
projects, but more thought.

If your code passes all tests, then I will time it, using a special test
program that I will not give you. This is not for a grade. The
names of top performers will be announced in class.

21

2020-09-28 CS 311 Fall 2020

Unit Overview
Algorithmic Efficiency & Sorting

Major Topics
§ Analysis of Algorithms
§ Introduction to Sorting
§ Comparison Sorts I
§ Asymptotic Notation
§ Divide and Conquer
§ Comparison Sorts II
§ The Limits of Sorting
§ Comparison Sorts III
§ Non-Comparison Sorts
§ Sorting in the C++ STL

P
P

22

Review
Part 2

2020-09-28 CS 311 Fall 2020 23

2020-09-28 CS 311 Fall 2020

Review
Analysis of Algorithms [1/3]

Efficient [noun form: efficiency]
§ General meaning. Using few resources: time, space, etc.
§ Specific meaning. Fast—not using much time.
§ Other specific meanings when qualified. Space efficient, etc.
§ Unless we say otherwise, we are talking about the worst case—the

maximum resource usage for a given input size.

Our usual model of computation:
§ Legal operations: no data access except thru provided channels.
§ Basic operations (the operations we count):

§ A built-in operation on a fundamental type.
§ A call to a client-provided function.

§ We are given a list as input. Its size is the number of items in it.

Scalable: works well with large problems. (Or, it scales well.)

It matters
what we count!

24

2020-09-28 CS 311 Fall 2020

Review
Analysis of Algorithms [2/3]

Algorithm A is order f(n) [written O(f(n))] if
there exist constants k and n0 such that
algorithm A performs no more than k×f(n)
basic operations when given input of size n ≥ n0.

We are interested in the fastest category that an algorithm fits in:

I will also allow O(n3), O(n4), etc.

Using Big-O In Words

O(1) Constant time

O(log n)* Logarithmic time

O(n) Linear time

O(n log n)* Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read
all of input

Probably
not scalable

Faster

Slower

*As we will see,
the base of the
logarithms does

not matter.

We will use big-O
every single day
for the rest of
the semester.

25

Review
Analysis of Algorithms [3/3]

When determining big-O, we can collapse any constant number of
steps into a single step without altering the order.
Rule of Thumb. In nested loops, if each is executed n times, or
executed i times, where i goes up to n (plus a constant?), then the
order is O(nt) where t is the number of nested loops.

for (int i = 0; i < n-4; ++i)
for (int j = 0; j < i; ++j)

for (int k = j; k < i+4; ++k)
++a[k];

for (int i = 0; i < n; ++i)
for (int j = 0; j < i-5; ++j)

for (int k = 0; k < 5; ++k)
++arr[j+k];

2020-09-28 CS 311 Fall 2020

O(n3)

O(n2)

26

2020-09-28 CS 311 Fall 2020

Review
Introduction to Sorting — Basics, Analyzing

Sort: Place a list in order.
Key: The part of the item we sort by.
Comparison sort: Sorting algorithm

that only gets information about item
by comparing them in pairs.

A general-purpose comparison sort
places no restrictions on the size of
the list or the values in it.

Analyzing a general-purpose comparison sort:
§ (Time) Efficiency
§ Requirements on Data
§ Space Efficiency
§ Stability
§ Performance on Nearly Sorted Data

3 1 3 5 25

1 2 3 5 53

x
y

x<y ?compare

In-place = no large additional
space required.

Stable = never reverses the
relative order of equivalent items.

1. All items close to proper places,
OR

2. few items out of order.
27

2020-09-28 CS 311 Fall 2020

Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered
§ Quadratic-Time [O(n2)] Comparison Sorts

§ Bubble Sort
§ Insertion Sort
§ Quicksort

§ Log-Linear-Time [O(n log n)] Comparison Sorts
§ Merge Sort
§ Heap Sort (mostly later in semester)
§ Introsort

§ Special Purpose—Not Comparison Sorts
§ Pigeonhole Sort
§ Radix Sort

28

Comparison Sorts I

2020-09-28 CS 311 Fall 2020 29

Comparison Sorts I
Bubble Sort — Description

We begin with a very simple sort: Bubble Sort.
§ It is easy to understand and analyze. But we

do not use it for anything practical.

Bubble Sort proceeds in a number of passes.
§ In each pass, we compare consecutive pairs

of items. An out-of-order pair is swapped.
§ Think of a vertical list, bottom to top. Large items rise like bubbles.
§ After the first pass, the last item is the largest.
§ So later passes need not go through all the data.

We can improve Bubble Sort’s performance on some nearly sorted
data—specifically, Type 1 (all items close to proper place):
§ In each pass, track whether we have done swaps during that pass.
§ If not, then the data were sorted when the pass began. Quit.

2020-09-28 CS 311 Fall 2020

6
2
5

4
1
7

3

Swap?
Yes.

This pair
is next
(as 6 & 5).

30

2020-09-28 CS 311 Fall 2020

Comparison Sorts I
Bubble Sort — CODE

TO DO
§ Examine an implementation of Bubble Sort.
§ Analyze it.

§ Coming up.
See bubble_sort.cpp.

31

2020-09-28 CS 311 Fall 2020

Comparison Sorts I
Bubble Sort — Analysis

(Time) Efficiency L
§ Bubble Sort is O(n2).
§ Bubble Sort also has an average-case time of O(n2). L

Requirements on Data J
§ Bubble Sort does not require random-access data.
§ It works on Linked Lists.

Space Efficiency J
§ Bubble Sort can be done in-place.

Stability J
§ Bubble Sort is stable.

Performance on Nearly Sorted Data J/L
§ Type 1. An optimized Bubble Sort is O(n) for all items close to their

proper spots. J
§ Type 2. Bubble Sort can be O(n2) for only one item out of order. L

There are several
smileys here, but these
are more important.

32

2020-09-28 CS 311 Fall 2020

Comparison Sorts I
Bubble Sort — In Practice

Bubble Sort is virtually never used in practice. Its primary purpose
is to be an example of an easy-to-understand sorting algorithm.

The other sorts we cover will all be at least a little bit practical—
and some will be very practical.

33

2020-09-28 CS 311 Fall 2020

Comparison Sorts I
Insertion Sort — Description

We can think of Bubble Sort as constructing a sorted sequence in
backwards order:
§ Find the greatest item (by “bubbling”), then the next greatest, etc.
§ So for each position, starting with the last, it finds the item that

belongs there.

Suppose we flip this around.
§ Instead of looking through the positions and determining what item

belongs in each, look through the given items, determine in which
position each belongs, and then insert it in that position.

This idea leads to an algorithm called Insertion Sort.
§ Iterate through the items in the sequence.
§ For each, insert it in the proper place among the preceding items.
§ Thus, when we are processing item k, we have items 0 .. k–1

already in sorted order.

34

Comparison Sorts I
Insertion Sort — Illustration

Items to the left of the bar are sorted.

2020-09-28 CS 311 Fall 2020

5 8 2 5 26

6 8 2 5 25

6 8 2 5 25

Insert 5

Insert 8

5 6 8 5 22

5 5 6 8 22

2 5 5 6 82

Insert 5

Insert 2

Two 5s

Two 2s

5 6 8 5 22

Insert 2

5

5

5

5

5

5

2 5 5 5 62

Insert 5

Sorted

Another 5

8

5

A list of size 1 is
always sorted

Bold item: to be inserted
into sorted section

unsortedsorted

Insert item into
the sorted section

35

Comparison Sorts I
Insertion Sort — How to Search

How do we find the insertion location—that is, the spot in the
sorted part of the list where an item should be inserted?
§ Sequential Search?
§ Binary Search?

We usually use a third option: backward Sequential Search—
Sequential Search proceeding from back to front.

Why?
§ First, Insertion Sort is most useful when the dataset is already

nearly sorted. For such data, a backward Sequential Search tends to
find the insertion location quickly.

§ Second, using Binary Search would not make the algorithm any
faster. For an array, we need to go backwards sequentially through
the data anyway, since each data item after the insertion location
must be moved up. And for a Linked List—or other non-random-
access structure—Binary Search is not very fast anyway.

2020-09-28 CS 311 Fall 2020 36

2020-09-28 CS 311 Fall 2020

Comparison Sorts I
Insertion Sort — CODE

TO DO
§ Implement Insertion Sort.
§ Analyze, as before.

§ Coming up.

Done. See insertion_sort.cpp.

37

Comparison Sorts I
Insertion Sort — On std::move

std::move (<utility>) takes one argument, which it casts to an
Rvalue. Use it to force move construction/assignment.

a = b; // Does a copy
a = move(b); // Does a move

The second line of code above is often faster. However, when we
do it, we are making an implicit promise: we will not use the
current value of b again.

cout << b; // BAD!

b = c;
cout << b; // Okay

2020-09-28 CS 311 Fall 2020

std::move does not move anything!
It casts to an Rvalue, which makes

its argument movable.

There is another std::move, in
<algorithm>, taking 3 arguments.

It is the move version of std::copy.

38

Comparison Sorts I
Insertion Sort — Analysis

(Time) Efficiency L
§ Insertion Sort is O(n2).
§ Insertion Sort also has an average-case time of O(n2). L

Requirements on Data J
§ Insertion Sort does not require random-access data.
§ It works on Linked Lists.*

Space Efficiency J
§ Insertion Sort can be done in-place.

Stability J
§ Insertion Sort is stable.

Performance on Nearly Sorted Data J
§ The usual implementation is O(n) for both Type 1* (all items close

to proper spots) and Type 2 (few items out of order).

*For one-way sequential-access data, significant extra space usage is
required to allow for linear-time sorting of all nearly sorted datasets.
2020-09-28 CS 311 Fall 2020 39

2020-09-28 CS 311 Fall 2020

Comparison Sorts I
Insertion Sort — In Practice

Insertion Sort is too slow for general-purpose use.

However, Insertion Sort is useful in certain special cases.
§ Insertion Sort is fast (linear time) for nearly sorted data.
§ Insertion Sort is also considered fast for small lists.

Insertion Sort often appears as part of another algorithm.
§ Optimized sorting code typically does Insertion Sort on small lists.
§ Some sorting methods get the data nearly sorted, and then finish

with a call to Insertion Sort. More on this when we cover Quicksort.

40

