Recursive Backtracking

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, September 23, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu
© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman
Unit Overview
Recursion & Searching

Major Topics
✓ Introduction to recursion
✓ Search algorithms I
✓ Recursion vs. iteration
✓ Search algorithms II
✓ Eliminating recursion
✓ Search in the C++ STL
 ▪ Recursive backtracking
Review
The **Binary Search** algorithm finds a given key in a sorted list.

- Here, key = thing to search for. Often there is associated data.
- In computing, sorted means in (some specified) order.

Procedure

- Pick an item in the middle of the list: the **pivot**.
- Compare the given key with the pivot.
- Using this, narrow search to top or bottom half of list. Recurse.

Example: Use Binary Search to search for 64 in the following list.

Look for 64 in this list.

5 8 9 13 22 30 34 37 38 41 60 63 65 82 87 90 91

Pivot. Is 64 < 38? No.

Recurse: look for 64 in this list ...
Sequential Search (also called Linear Search) is another algorithm for finding a given key in a list.

Procedure
- Start from the beginning, looking at each item, in order.
- If the desired key is found, then stop, answering YES.
- If the end of the list is reached, then stop, answering NO.
Binary Search is much faster than Sequential Search, so it can process much more data in the same amount of time.

<table>
<thead>
<tr>
<th>Number of Look-Ups We Have Time For</th>
<th>Maximum List Size: Binary Search</th>
<th>Maximum List Size: Sequential Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>524,288</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>549,755,813,888</td>
<td>40</td>
</tr>
<tr>
<td>k</td>
<td>Roughly 2^k</td>
<td>k</td>
</tr>
</tbody>
</table>

“The fundamental law of computer science: As machines become more powerful, the efficiency of algorithms grows more important, not less.” [Lloyd N. Trefethen]
Review
Eliminating Recursion

It can sometimes be helpful to **eliminate recursion**—converting it to iteration.

We can eliminate recursion by mimicking the call stack. This method always works, but it is rarely used; better results are usually gotten by *thinking* about the problem to be solved.

If a recursive call is a **tail call** (the last thing a function does), then we have **tail recursion**.

Eliminating tail recursion is easy and practical.

See binsearch2.cpp, binsearch3.cpp, binsearch4.cpp.

More on this method when we cover *Stacks*.
Review
Search in the C++ STL

The STL includes four function templates that do Binary Search:

- `std::binary_search`
- `std::lower_bound`
- `std::upper_bound`
- `std::equal_range`

All are called the same way, but they return different information. All allow for optional specification of a custom comparison.

The STL also includes Sequential Search:

- `std::find`

Some STL containers, like `std::map`, have their own search-by-key functionality, in the form of a member function `find`.
Recursive Backtracking
Now we discuss a different kind of search.

In most of the programming you have done, you have probably proceeded directly toward our goal. Work never had to be undone. But what if it does?

Sometimes we search for a solution to a problem.

- We might need to undo some work and try something different.
- Restoring to a previous state is called backtracking.

It is often convenient to implement backtracking using recursion. However, such recursive programming can require different ways of thinking from the recursion we have discussed so far.
Recursive solution search works well when we have a notion of a **partial solution**: a step on the way to a finished **full solution**.

- Each recursive call says, “Look for full solutions based on this partial solution.”
- The function attempts to build more complete solutions based on the partial solution it was given.
- For each possible more complete solution, a recursive call is made.
- We usually have a wrapper function, so that the client does not need to deal with partial solutions.

In a recursive solution search, to backtrack, we often simply return from a function.
Recursive Backtracking
Basics — No-Backtracking Diagram

In the recursion we studied earlier:

- A recursive call is a request for information or action.
- The return sends back the information back—if any.

The diagram below shows the information flow in fibo_first.cpp.

Q. What is F_3?
A. $F_3 = 2$.

![Diagram showing recursive calls and return values for $F_0, F_1, F_2,$ and F_3.]
In recursive backtracking:

- A recursive call means “continue with the proposed partial solution”.
- Return means “backtrack”.

The diagram illustrates a search for 3-digit sequences with digits in \{0, 1\}, in which no two consecutive digits are the same.

On finding a solution, stop. Or continue, finding all solutions.
Recursive Backtracking

n-Queens — Description

We now look at how to solve the n-Queens Problem.

- Place n queens on an $n \times n$ chessboard so that none of them can attack each other.

![Diagram showing the n-Queens Problem]

Queen
Can attack N, S, E, W & 4 diagonals, any distance

4 × 4 chessboard

Good

Good

BAD
To Figure Out

- What is a **partial solution** for the problem we wish to solve? How should we represent a partial solution?
 - If possible, we should represent a partial solution in a way that makes it convenient to determine whether we have a full solution.
 - It is also nice if we can quickly determine whether we have a dead end.
- How should we output a full solution?
Representing a Partial Solution

- Number rows and columns 0 .. \(n-1 \).
- Two variables:
 - `board` (vector of int).
 - `n` (int).
- Variable `n` holds the number of rows/columns in a full solution.
- Variable `board` holds the columns of queens already placed, one per row.
- The size of variable `board` is the number of rows in which queens have been placed.
Recursive Backtracking

\(n\)-Queens — How to Do It [3/4]

The Code

- **Nonrecursive wrapper function**
 - Create an empty partial solution.
 - Call the workhorse function with this partial solution.

- **Recursive workhorse function** is given a partial solution, prints all full solutions that can be made from it.
 - Do we have a full solution?
 - If so, output it.
 - Do we have a clear dead end?
 - If so, simply return.
 - Otherwise:
 - Make a recursive call for each way of extending the partial solution.

This part *might* not be necessary. Another way to handle dead ends is simply not to make any recursive calls when we get to this part.
Recursive Backtracking

n-Queens — How to Do It [4/4]

Notes

- We often need to check the validity of a proposed way to extend a partial solution. It can be convenient to have a separate function that does this checking.

- When backtracking, we need to make sure we go back to the previous partial solution. Two ways to do this:
 - Each recursive call has its own copy of the current partial solution.
 - All use the same data. When backtracking, undo any changes made.
Recursive Backtracking

n-Queens — CODE

TO DO

- Write a function that uses recursive backtracking to print solutions to the n-Queens Problem.

Done. See nqueen.cpp.
We can also **count solutions**. Each recursive call returns the number of full solutions based on a given partial solution.

- **Base Cases**
 - “Found a solution” returns 1.
 - “Dead end” returns 0.

- **Recursive Case**
 - Make recursive calls, add their return values, and return the total.
Recursive Backtracking
Counting Solutions — How to Do It

The Code

- **Nonrecursive wrapper function**
 - Create an empty partial solution.
 - Call the workhorse function with this partial solution.
 - Return the return value of the workhorse function.

- **Recursive workhorse function** is given a partial solution, returns the number of full solutions that can be made from it.
 - Do we have a full solution?
 - If so, then return 1.
 - Do we have a clear dead end?
 - If so, then return 0.
 - Otherwise:
 - Set total to zero.
 - For each way of extending the current partial solution, make a recursive call, and add its return value to total.
 - Return total.

As before, this might be unnecessary.
Recursive Backtracking
Counting Solutions — CODE

TO DO

- Modify our \(n \)-Queens code to count the number of non-attacking arrangements of \(n \) queens, instead of printing them all.

\[\text{Done. See nqueencount.cpp.} \]

This \(n \)-Queens counting code is similar to what you will write in \textit{Project 4}.
Unit Overview
Algorithmic Efficiency & Sorting

Our next unit covers analyzing the efficiency of algorithms, along with a number of algorithms for sorting.

Major Topics

- Analysis of Algorithms
- Introduction to Sorting
- Comparison Sorts I
- Asymptotic Notation
- Divide and Conquer
- Comparison Sorts II
- The Limits of Sorting
- Comparison Sorts III
- Non-Comparison Sorts
- Sorting in the C++ STL

The Midterm Exam will be given near the end of this unit.