
Recursive Backtracking

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, September 23, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman



2020-09-23 CS 311 Fall 2020

Unit Overview
Recursion & Searching

Major Topics
§ Introduction to recursion
§ Search algorithms I
§ Recursion vs. iteration
§ Search algorithms II
§ Eliminating recursion
§ Search in the C++ STL
§ Recursive backtracking

P

P
P
P
P
P

2



Review

2020-09-23 CS 311 Fall 2020 3



2020-09-23 CS 311 Fall 2020

Review
Search Algorithms I/II [1/3]

The Binary Search algorithm finds a given key in a sorted list.
§ Here, key = thing to search for. Often there is associated data. 
§ In computing, sorted means in (some specified) order.

Procedure
§ Pick an item in the middle of the list: the pivot.
§ Compare the given key with the pivot.
§ Using this, narrow search to top or bottom half of list. Recurse.

Example: Use Binary Search to search for 64 in the following list.

5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 91

Look for 64 in this list.

Pivot. Is 64 < 38? No.

38

Recurse: look for 64 in this list …

4



2020-09-23 CS 311 Fall 2020

Review
Search Algorithms I/II [2/3]

Sequential Search (also called Linear Search) is another 
algorithm for finding a given key in a list.

Procedure
§ Start from the beginning, looking at each item, in order.
§ If the desired key is found, then stop, answering YES.
§ If the end of the list is reached, then stop, answering NO.

5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 9138
…

5



2020-09-23 CS 311 Fall 2020

Review
Search Algorithms I/II [3/3]

Binary Search is much faster than Sequential Search, so it can 
process much more data in the same amount of time.

“The fundamental law of computer science: As machines become 
more powerful, the efficiency of algorithms grows more 
important, not less.” [Lloyd N. Trefethen]

Number of Look-Ups
We Have Time For

Maximum List Size:
Binary Search

Maximum List Size:
Sequential Search

1 1 1

2 2 2

3 4 3

4 8 4

10 512 10

20 524,288 20

40 549,755,813,888 40

k Roughly 2k k

6



Review
Eliminating Recursion

It can sometimes be helpful to eliminate recursion—converting it 
to iteration.

We can eliminate recursion by mimicking the call
stack. This method always works, but it is
rarely used; better results are usually gotten
by thinking about the problem to be solved.

If a recursive call is a tail call (the last thing a function does), 
then we have tail recursion.

Eliminating tail recursion is easy and practical.

2020-09-23 CS 311 Fall 2020

See binsearch2.cpp, 
binsearch3.cpp, binsearch4.cpp.

More on this 
method when we 

cover Stacks.

7



2020-09-23 CS 311 Fall 2020

Review
Search in the C++ STL

The STL includes four function templates that do Binary Search:
§ std::binary_search
§ std::lower_bound
§ std::upper_bound
§ std::equal_range

All are called the same way, but they return different information. 
All allow for optional specification of a custom comparison.

The STL also includes Sequential Search:
§ std::find

Some STL containers, like std::map, have their own
search-by-key functionality, in the form of a
member function find.

More on this 
when we 

cover Tables.

8



Recursive Backtracking

2020-09-23 CS 311 Fall 2020 9



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Basics — Backtracking

Now we discuss a different kind of search.

In most of the programming you have done, you have probably 
proceeded directly toward our goal. Work never had to be 
undone. But what if it does?

Sometimes we search for a solution to a problem.
§ We might need to undo some work and try something different.
§ Restoring to a previous state is called backtracking.

It is often convenient to implement backtracking using recursion. 
However, such recursive programming can require different 
ways of thinking from the recursion we have discussed so far.

10



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Basics — Partial Solutions

Recursive solution search works well when we have a notion of a 
partial solution: a step on the way to a finished full solution.
§ Each recursive call says, “Look for full solutions based on this partial 

solution.”
§ The function attempts to build more complete solutions based on 

the partial solution it was given.
§ For each possible more complete solution, a recursive call is made.
§ We usually have a wrapper function, so that the client does not 

need to deal with partial solutions.

In a recursive solution search, to backtrack, we often simply return 
from a function.

11



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Basics — No-Backtracking Diagram

In the recursion we studied earlier:
§ A recursive call is a request for information or action.
§ The return sends back the information back—if any.

The diagram below shows the information flow in fibo_first.cpp.

fibo(3)

fibo(1)

Client

F3=? F3=2

F1=? F1=1

fibo(2)

F2=? F2=1

fibo(0)

F0=? F0=0

fibo(1)

F1=? F1=1

Goal

Q. What is F3?

A. F3 = 2.

12



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Basics — Backtracking Diagram

In recursive backtracking:
§ A recursive call means “continue with the proposed partial solution”.
§ Return means “backtrack”.

The diagram illustrates a search for 3-digit sequences with digits in 
{0, 1}, in which no two consecutive digits are the same.

On finding a solution, stop. Or continue, finding all solutions.

0,0 okay?
No.

<empty> okay?
Yes. Continue.

0,1,0 okay?
Yes. OUTPUT.

0,1 okay?
Yes. Continue.

0 okay?
Yes. Continue.

1 okay?
Yes. Continue.

0,1,1 okay?
No.

1,0 okay?
Yes. Continue.

1,1 okay?
No.

1,0,0 okay?
No.

1,0,1 okay?
Yes. OUTPUT.

Add 0 Add 1

Add 0 Add 1 Add 0 Add 1

Add 0 Add 1Add 0 Add 1

Goal

Each recursive 
call handles a 

partial solution

13



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
n-Queens — Description

We now look at how to solve the n-Queens Problem.
§ Place n queens on an n×n chessboard so that none of them can 

attack each other.

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q
Q

Good Good BAD

Q
Q

Q
Q

4×4 
chessboard

Queen

Can attack
N, S, E, W

& 4 diagonals,
any distance

Q

14



Recursive Backtracking
n-Queens — How to Do It [1/4]

To Figure Out
§ What is a partial solution for the problem we wish to solve? How 

should we represent a partial solution?
§ If possible, we should represent a partial solution in a way that makes it 

convenient to determine whether we have a full solution.
§ It is also nice if we can quickly determine whether we have a dead end.

§ How should we output a full solution?

2020-09-23 CS 311 Fall 2020 15



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
n-Queens — How to Do It [2/4]

Representing a Partial Solution
§ Number rows and columns 0 .. n–1.
§ Two variables:

§ board (vector of int).
§ n (int).

§ Variable n holds the number of 
rows/columns in a full solution.

§ Variable board holds the columns of 
queens already placed, one per row.

§ The size of variable board is the 
number of rows in which queens
have been placed.

Q
Q

Q
Q

0 1 2 3
0
1
2
3

2
0
3
1

board

Q
Q

0 1 2 3
0
1
2
3

2
0

board

Partial 
Solution

Representation

0 1 2 3
0
1
2
3

nboard

empty 4

n

4

n

4

16



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
n-Queens — How to Do It [3/4]

The Code
§ Nonrecursive wrapper function

§ Create an empty partial solution.
§ Call the workhorse function with this partial solution.

§ Recursive workhorse function is given a partial solution, prints 
all full solutions that can be made from it.
§ Do we have a full solution?

§ If so, output it.
§ Do we have a clear dead end?

§ If so, simply return.
§ Otherwise:

§ Make a recursive call for each way of
extending the partial solution.

This part might not be 
necessary. Another way 
to handle dead ends is 
simply not to make any 
recursive calls when we 
get to this part.

17



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
n-Queens — How to Do It [4/4]

Notes
§ We often need to check the validity of a proposed way to extend a 

partial solution. It can be convenient to have a separate function 
that does this checking.

§ When backtracking, we need to make sure we go back to the 
previous partial solution. Two ways to do this:
§ Each recursive call has its own copy of the current partial solution.
§ All use the same data. When backtracking, undo any changes made.

18



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
n-Queens — CODE

TO DO
§ Write a function that uses recursive backtracking to print solutions 

to the n-Queens Problem.
Done. See nqueen.cpp.

19



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Counting Solutions — Diagram

We can also count solutions. Each recursive call returns the 
number of full solutions based on a given partial solution.
§ Base Cases

§ “Found a solution” returns 1.
§ “Dead end” returns 0.

§ Recursive Case
§ Make recursive calls, add their return values, and return the total.

Add 0 Add 1

Add 0 Add 1 Add 0 Add 1

Add 0 Add 1Add 0 Add 1

1 1

1

1
1

1

0 0

00

2
<empty> okay?
Yes. Continue.

0 okay?
Yes. Continue.

1 okay?
Yes. Continue.

0,0 okay?
No.

0,1 okay?
Yes. Continue.

1,0 okay?
Yes. Continue.

1,1 okay?
No.

0,1,0 okay?
Yes.

1,0,0 okay?
No.

1,0,1 okay?
Yes.

Client

0,1,1 okay?
No.

20



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Counting Solutions — How to Do It

The Code
§ Nonrecursive wrapper function

§ Create an empty partial solution.
§ Call the workhorse function with this partial solution.
§ Return the return value of the workhorse function.

§ Recursive workhorse function is given a partial solution, returns 
the number of full solutions that can be made from it.
§ Do we have a full solution?

§ If so, then return 1.
§ Do we have a clear dead end?

§ If so, then return 0.
§ Otherwise:

§ Set total to zero.
§ For each way of extending the current partial solution, make a recursive call, 

and add its return value to total.
§ Return total.

As before, 
this might be 
unnecessary.

21



2020-09-23 CS 311 Fall 2020

Recursive Backtracking
Counting Solutions — CODE

TO DO
§ Modify our n-Queens code to count the number of non-attacking 

arrangements of n queens, instead of printing them all.

This n-Queens counting code is similar to what you will write in 
Project 4.

Done. See nqueencount.cpp.

22



2020-09-23 CS 311 Fall 2020

Unit Overview
Algorithmic Efficiency & Sorting

Our next unit covers analyzing the efficiency of algorithms, along 
with a number of algorithms for sorting.

Major Topics
§ Analysis of Algorithms
§ Introduction to Sorting
§ Comparison Sorts I
§ Asymptotic Notation
§ Divide and Conquer
§ Comparison Sorts II
§ The Limits of Sorting
§ Comparison Sorts III
§ Non-Comparison Sorts
§ Sorting in the C++ STL

The Midterm Exam will be given near the end of this unit.

23


