
Search Algorithms I

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, September 16, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman



Unit Overview
Advanced C++ & Software Engineering Concepts

Major Topics: Advanced C++
§ Expressions
§ Parameter passing I
§ Operator overloading
§ Parameter passing II
§ Invisible functions I
§ Integer types
§ Managing resources in a class
§ Containers & iterators
§ Invisible functions II
§ Error handling
§ Using exceptions
§ A little about Linked Lists

Major Topics: S.E. Concepts
§ Invariants
§ Testing
§ Abstraction

P

2020-09-16 CS 311 Fall 2020

P
P
P
P

P
P

P
P
P
P
P
P

P

P

DON
E

2



Review

2020-09-16 CS 311 Fall 2020 3



2020-09-16 CS 311 Fall 2020

Review
A Little about Linked Lists [1/2]

We looked briefly at a container called a Linked List.
§ Like an array, a Linked List stores a sequence of data items.

§ A Linked List is made of nodes. Each has a single data item and a 
pointer to the next node, or a null pointer at the end of the list.

§ These pointers are the only way to find the next item. A Linked List 
is a one-way sequential-access structure.

513 3 5 2

Head
Null pointer

3 1 3 5 2Array

Linked 
List

5

Nodes

See llnode.h for a definition of a Linked List node. 
See list_size.cpp for a program that uses this node.

4



2020-09-16 CS 311 Fall 2020

Review
A Little about Linked Lists [2/2]

In a Doubly Linked List, each node has two pointers: next-node 
(null at the end) and previous-node (null at the beginning).

To make it clear what we are talking about, the one-pointer-per-
node Linked List has a longer name: Singly Linked List.

3

(Singly) 
Linked List

Doubly 
Linked List

1 5 4 5

3 1 5 4 5

End-of-list 
pointer

5



2020-09-16 CS 311 Fall 2020

Unit Overview
Recursion & Searching

Major Topics
§ Introduction to recursion
§ Search algorithms I
§ Recursion vs. iteration
§ Search algorithms II
§ Eliminating recursion
§ Search in the C++ STL
§ Recursive backtracking

P

6



Review
Introduction to Recursion [1/2]

A recursive algorithm is one that 
makes use of itself.
§ An algorithm solves a problem. 

If we can write the solution of a 
problem in terms of the solutions 
to smaller problems of the 
same kind, then recursion may 
be called for.

§ There must be a smallest 
problem, which we solve 
directly. This is a base case. 
(Others are recursive cases.)

Similarly, a recursive function is 
one that calls itself.

int mult(int a, int b)
{

if (a <= 1)
return a == 1 ? b : 0;

int ax = (a >> 1);
int m1 = mult(ax, b);
return m1 + m2(a, ax, b);

}

int m2(int a, int ax, int b)
{

return mult(a-ax, b);
}

2020-09-16 CS 311 Fall 2020

Base case

Direct recursion

Indirect recursion

Recursive 
case

7



2020-09-16 CS 311 Fall 2020

Review
Introduction to Recursion [2/2]

The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 
144, 233, 377, 610, 987, 1597, 2584, 4181, …) can be defined 
by the following recurrence relation with initial conditions:

§ F0 = 0.
§ F1 = 1.
§ For n ≥ 2, Fn = Fn–2 + Fn–1.

Based on this, we wrote a recursive function fibo that computes 
Fibonacci numbers.

Function fibo turned out to be extremely slow for anything other 
than small parameters. But do not conclude that recursion is
slow! We will revisit fibo, rewriting it in various ways—including 
fast recursive versions.

See fibo_first.cpp.

8



Search Algorithms I

2020-09-16 CS 311 Fall 2020 9



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Binary Search — Description [1/3]

The Binary Search algorithm finds a given key in a sorted list.
§ Here, key = thing to search for. Often there is associated data. 
§ In computing, sorted means in (some specified) order.

Procedure
§ Pick an item in the middle of the list: the pivot.
§ Compare the given key with the pivot.
§ Using this, narrow search to top or bottom half of list. Recurse.

Example: Use Binary Search to search for 64 in the following list.

5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 91

Look for 64 in this list.

Pivot. Is 64 < 38? No.

38

Recurse: look for 64 in this list …

10



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Binary Search — Description [2/3]

Remember that the algorithm does not see the value of any item in 
the list until it specifically retrieves that item.

So we might think of Binary Search as follows:

Look for 64 in this list:

38

Is 64 < 38? No.

Recurse—look for 64 
in this list:

Etc.

All values unknown

38 is not passed to the recursive call except as 
part of the list. All values unknown once again.

Choose the pivot item, 
and get its value:

11



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Binary Search — Description [3/3]

In most of my illustrations, the keys are integers. However:
§ Keys for Binary Search can be almost anything that can be sorted.
§ In practice, the key is often not the entire data item.

For example, consider a list of the customers of some business. 
Each customer is identified by a unique string, which is used as 
the key. The data item for each customer also includes the 
customer’s name, address, and order history.

Since the keys are sorted, we can do
Binary Search to find a particular key.

ID: bakt023
Name: Tim Baker
Addr: …
OrderHist: …

ID: fuda002
Name: Alice Fudd
Addr: …
OrderHist: …

ID: smij344
Name: John Smith
Addr: …
OrderHist: …

This idea will also apply 
to other algorithms and 

data structures we cover.

12



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Binary Search — Four Questions

1. How can we solve the problem using solutions to one or more 
smaller problems of the same kind?
§ Choose a pivot in the middle of the list. Compare, and then apply 

Binary Search to the top or bottom half of the list, as appropriate.

2. How much does each recursive call reduce the size of the 
problem?
§ It cuts the size of the list roughly in half.

3. What instances of the problem can serve as base cases?
§ List size is 0 or 1.

4. As the problem size shrinks, will a base case always be 
reached?
§ Yes—the size of a list cannot be negative.

13



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Binary Search — Design Decisions

Let’s write a function to do Binary Search.

How should the list to search be given?
§ Parameters: two iterators specifying a range as usual—one pointing 

to the first item and one pointing just past the last item.
Should there be any other parameters?

§ Yes, the key to search for.
The parameter types may vary. We will write a function template.
What should it return?

§ There are several options:
§ Return a bool, indicating found or not found.
§ Return an iterator to the value found.
§ Return an iterator to the first equivalent value in the list.
§ Return two iterators specifying the range of equivalent values.

§ Use the first option: return a bool. (So our function will not indicate 
where a key is in the list; we certainly could write such a function.)

14



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Binary Search — CODE

TO DO
§ Write a function template binSearch that does Binary Search, as 

designed on the previous slide.
Done. See binsearch1.cpp.

15



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Better Binary Search — Equality vs. Equivalence

Let’s improve function template binSearch.
Here are some ideas.

Can we get away with using nothing that deals with the value type
other than operator<? 

In particular, if we use operator< to search for something, then 
we prefer to use operator< to check whether we have found it.
§ Equality: a == b
§ Equivalence: !(a < b) && !(b < a)

Using equivalence instead of equality lets us handle types that:
§ Do not have operator==.
§ Have operator==, but do not define it in a way that is consistent 

with operator<.
Improvement: Check equivalence in the base case. Never use “==” 

on the value type.

16



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Better Binary Search — Extra Computations

binSearch finds the size of the range (last - first) when 
finding the middle. The size is also used in the base case.

Improvement: Compute the size of the range once. Save this for 
later use.

binSearch does two checks to see if it is in a base case. Most of 
the time, these will both be executed.

Improvement: Only check for the base case once.
§ This will make the base case more complicated. But the base case 

only happens once in a search; there may be many recursive calls.

binSearch takes the key by value. This requires copy construction, 
as well as destruction at the end of the function. These may be
time-consuming if the keys are objects.

Improvement: Pass the key by reference-to-const.

17



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Better Binary Search — More General Iterators

Random-access iterators can do pointer-style arithmetic:
§ Adding Integers

§ iter1 = iter2 + 3;
§ iter1 += 3;

§ Difference
§ n = iter1 - iter2;

In general, iterators may not support all of these operations.
However, we can get the same results for more general forward

iterators with std::advance & std::distance (<iterator>).
§ std::advance(iter, n) is like iter += n.
§ std::distance(iter1, iter2) is like iter2 - iter1.
§ These two functions are fast for random-access iterators; they may 

be slower for other iterators.
Improvement: Replace pointer arithmetic with std::advance & 

std::distance. Allow the parameters to be forward iterators.
Is this really an improvement? Maybe. Regardless,
std::advance and std::distance are worth learning about. 

18



2020-09-16 CS 311 Fall 2020

Search Algorithms I
Better Binary Search — CODE

TO DO
§ Improve function template binSearch:

§ Check equivalence in the base case. Never use “==” on the value type.
§ Compute the size of the range once. Save this for later use.
§ Only check for the base case once.
§ Pass the key by reference-to-const.
§ Replace pointer arithmetic with std::advance & std::distance. Allow 

the parameters to be forward iterators.

Benefits
§ Redundant computations are avoided.
§ binSearch works with datasets that support a very limited set of 

operations. Only operator< is used on the value type (no copy ctor, 
dctor, or operator== required). Iterators can be forward iterators.

§ The recursive and base cases work consistently, using operator<.
We are not done improving binSearch yet!

Done. See binsearch2.cpp.

19


