
Software Engineering Concepts: Abstraction
A Little about Linked Lists
Introduction to Recursion

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, September 14, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

Unit Overview
Advanced C++ & Software Engineering Concepts

Major Topics: Advanced C++
§ Expressions
§ Parameter passing I
§ Operator overloading
§ Parameter passing II
§ Invisible functions I
§ Integer types
§ Managing resources in a class
§ Containers & iterators
§ Invisible functions II
§ Error handling
§ Using exceptions
§ A little about Linked Lists

Major Topics: S.E. Concepts
§ Invariants
§ Testing
§ Abstraction

P

2020-09-14 CS 311 Fall 2020

P
P
P
P

P
P

P
P
P
P
P
P

2

Review

2020-09-14 CS 311 Fall 2020 3

2020-09-14 CS 311 Fall 2020

Review
Error Handling

An error condition (often error) is a condition occurring during
runtime that cannot be handled by the normal flow of execution.
§ Not necessarily a bug or a user mistake.
§ Example: Could not read file.

before

during

after

Three ways to deal
with a possible error

condition in a function:

Prevention
Client code must prevent
the error (precondition).

Containment
Fix the problem inside the
function.

We like
these two,
but they
might not
be feasible

Three ways to signal
an error condition to

the client code:

Return an error code

Set a flag, checked by
a separate function

Throw an exceptionSignal the Client Code
Idea: When we cannot
fulfill our postconditions.

4

Review
Using Exceptions [1/3]

Exception: an object that is thrown to signal an error condition.
To handle an exception, catch it using try … catch.

Foo * p;
bool success = true;
try {

p = new Foo;
}
catch (std::bad_alloc & e) {

success = false;
cerr << "Alloc. failed: "

<< e.what() << endl;
}

2020-09-14 CS 311 Fall 2020

How It Works
§ When an exception is

thrown inside a try-block,
control passes to the catch-
block that (1) is associated
with the smallest possible
enclosing try-block, and (2)
catches the proper type.
Derived classes are handled
as usual.

§ In all other circumstances,
a catch-block is not
executed.

new throws
std::bad_alloc
(<new>) or a derived
class, if memory
allocation fails.

5

Review
Using Exceptions [2/3]

Catch—when you can handle an error signaled by a function you call.

try { … }
catch (std::out_of_range & e) {

Throw—when your function is unable to fulfill its postconditions.

if (ix >= arrsize) throw std::out_of_range("bad index");

Catch all & re-throw—when you call a throwing function, and you cannot
handle the error, but your function must clean up before exiting.

try { … }
catch (...) {

[Clean up here]
throw; }

2020-09-14 CS 311 Fall 2020

We generally only write one of the three:
catch, throw, or catch all & re-throw.

Another might be written by someone else.

Catch exceptions
by reference.

The code contains
three dots.

6

Review
Using Exceptions [3/3]

Destructors should not throw.

Why? Destructors are called when an automatic object goes out of
scope due to an exception. If the destructor throws in this
context, then the program terminates.

Because of this, generally the destructors in your classes are
implicitly marked noexcept, unless you specify otherwise.
§ To specify otherwise: “noexcept(false)”. However, this is EVIL. L

If a noexcept function throws, then the program terminates.

A throwing constructor is fine. Throwing is the standard way to
signal that an object cannot be successfully constructed.

2020-09-14 CS 311 Fall 2020 7

Software Engineering Concepts:
Abstraction

2020-09-14 CS 311 Fall 2020 8

Software Engineering Concepts: Abstraction
Definitions

Abstraction: Considering a software component in terms of how
and why it is used, separate from its implementation.

Here, “component” is just a general term for a thing: function,
class, package, etc.

We use the term “client” for code that uses a component.
A client is code. A user is a person.

Component

Client

Client

Client

(defined by the
specification)

Implementation
(hidden from clients and

not part of the abstraction)

Interface

2020-09-14 CS 311 Fall 2020 9

Software Engineering Concepts: Abstraction
Functional & Data Abstraction [1/2]

Functional abstraction means applying the idea of abstraction to
a function.

In the second half of the semester, we will talk about data
abstraction: applying abstraction to data.

You have certainly used these ideas—even if you were not familiar
with the terms “functional abstraction” and “data abstraction".
See the next slide for an example.

2020-09-14 CS 311 Fall 2020 10

Software Engineering Concepts: Abstraction
Functional & Data Abstraction [2/2]

void printIntVec(const vector<int> & data)
{

for (size_t i = 0; i != data.size(); ++i)
cout << data[i] << " ";

cout << endl;
}

Function printIntVec
prints a given vector
of ints to cout. Items

are separated by
blanks, and followed

by a blank and a
newline.

Describe this
function, in

detail.

Functional
abstraction

2020-09-14 CS 311 Fall 2020

Function printIntVec is given a vector of
ints called data, passed by reference-to-
const. It executes a for loop in which local
size_t variable i is initialized to 0, the loop
continues as long as “i != data.size()”

evaluates to true, and i is pre-incremented
after each loop iteration. Inside the loop, a
reference to an item in data is retrieved

using the bracket operator, with parameter
i, and then inserted into cout, using

overloaded operator<<, followed by an array
of chars of size 2, which contains a blank
and a null char. After the loop, stream

manipulator endl is inserted into cout. The
function then terminates.

11

A Little about Linked Lists

2020-09-14 CS 311 Fall 2020 12

2020-09-14 CS 311 Fall 2020

A Little about Linked Lists
Basics [1/2]

We now take a brief look at a container called a Linked List.
Later in the semester we discuss Linked Lists in detail. For now:

§ Like an array, a Linked List stores a sequence of data items.

§ A Linked List is made of nodes. Each has a single data item and a
pointer to the next node, or a null pointer at the end of the list.

§ These pointers are the only way to find the next item. Unlike with
an array, we cannot quickly find (say) the 100,000th item in a
Linked List. Nor can we quickly find the previous item.

§ A Linked List is a one-way sequential-access structure. So its
iterators are forward iterators, which have only the ++ operator.

513 3 5 2

Head
Null pointer

3 1 3 5 2Array

Linked
List

5

Nodes

13

A Little about Linked Lists
Basics [2/2]

We cannot quickly find a Linked List item, given only its index.
Why not? It certainly looks as if we could.

But the above picture can be deceptive. A Linked List might
actually be arranged in memory more like this:

2020-09-14 CS 311 Fall 2020

513 3 5 2

Why are we unable to
make this jump instantly?

1

3

52

Head

Head

5

3

14

2020-09-14 CS 311 Fall 2020

A Little about Linked Lists
Advantages

Why not always use (smart) arrays?
One reason: Linked Lists support fast insertion.

Suppose we have a sequence 3, 1, 5, 3, 5, 2.
We wish to insert a 7 before the first 5.

With an array, we move all later items up.
With a Linked List, if we know the proper

location, insertion is very fast.

For long sequences, the
speed difference
can be huge.

513 3 5 2

3 1 3 5 25

3 1 3 5 257

513 3 5 2

7

Array

Linked
List

15

2020-09-14 CS 311 Fall 2020

A Little about Linked Lists
Implementation

Here is one possible implementation of a Linked List node.

template <typename ValType>
struct LLNode {

ValType _data; // Data for this node
LLNode * _next; // Ptr to next node, or nullptr if none
// The following simplify creation & destruction
explicit LLNode(const ValType & data,

LLNode * next = nullptr)
:_data(data), _next(next)

{}
~LLNode()
{ delete _next; }

};

The head of our Linked List would hold an (LLNode<…> *).

The data members are public??!?!?

In practice, only the Linked List package deals
with this struct, so these are not a problem.

If _next points to a node, then delete calls that
node’s destructor, which will delete its _next pointer,
which calls the destructor of the node after that, etc.

So this destructor calls itself; it is recursive. This is
convenient! However, it can be problematic if there
are lots of nodes. More on this later in the semester.

6
_data _next

16

2020-09-14 CS 311 Fall 2020

A Little about Linked Lists
Implementation — CODE

TO DO
§ Write a function to find the size (number of items) of a Linked List,

given its head pointer (LLNode<…> *).
Done. See list_size.cpp.
See llnode.h for a header

that defines LLNode.

17

2020-09-14 CS 311 Fall 2020

A Little about Linked Lists
Doubly Linked Lists

In a Doubly Linked List, each node has two pointers: next-node
(null at the end) and previous-node (null at the beginning).

Doubly Linked Lists typically have not only a beginning-of-list
pointer, but also an end-of-list pointer.

To make it clear what we are talking about, the one-pointer-per-
node Linked List has a longer name: Singly Linked List.

3

(Singly)
Linked List

Doubly
Linked List

1 5 4 5

3 1 5 4 5

End-of-list
pointer

18

2020-09-14 CS 311 Fall 2020

Unit Overview
Recursion & Searching

This ends the introductory/review material.

We now begin a short unit on recursion and searching.
Major Topics

§ Introduction to recursion
§ Search algorithms I
§ Recursion vs. iteration
§ Search algorithms II
§ Eliminating recursion
§ Search in the C++ STL
§ Recursive backtracking

After this, we will cover Algorithmic Efficiency & Sorting.

There will be a number of topics like
this one—typically at the end of our
coverage of some data structure or
algorithmic idea.

19

Introduction to Recursion

2020-09-14 CS 311 Fall 2020 20

Introduction to Recursion
Basics — Definitions

A recursive algorithm is one that
makes use of itself.
§ An algorithm solves a problem.

If we can write the solution of a
problem in terms of the solutions
to smaller problems of the
same kind, then recursion may
be called for.

§ There must be a smallest
problem, which we solve
directly. This is a base case.
(Others are recursive cases.)

Similarly, a recursive function is
one that calls itself.
§ Such calls are typically direct,

but may be indirect.
§ When a function calls itself, it is

making a recursive call. We
also say it recurses.

int mult(int a, int b)
{

if (a <= 1)
return a == 1 ? b : 0;

int ax = (a >> 1);
int m1 = mult(ax, b);
return m1 + m2(a, ax, b);

}

int m2(int a, int ax, int b)
{

return mult(a-ax, b);
}

2020-09-14 CS 311 Fall 2020

Base case

Direct recursion

Indirect recursion

Recursive
case

21

2020-09-14 CS 311 Fall 2020

Introduction to Recursion
Basics — Four Questions

When designing a recursive algorithm or function, consider the
following four questions*:

1. How can we solve the problem using solutions to one or more
smaller problems of the same kind?

2. How much does each recursive call reduce the size of the
problem?

3. What instances of the problem can serve as base cases?
4. As the problem size shrinks, will a base case always be

reached?

*Adapted from Frank M. Carrano, Data Abstraction and Problem Solving
with C++: Walls and Mirrors, 4th ed., 2004.

This is critical!

Every call to a recursive function
must eventually reach a base case.

22

2020-09-14 CS 311 Fall 2020

Introduction to Recursion
Fibonacci Numbers — Definitions [1/2]

The Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, …

To get the next Fibonacci number, add the two before it.

We denote the nth Fibonacci number by Fn (n = 0, 1, 2, …).
So F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, etc.

Now we can formally define the Fibonacci numbers as follows:
§ F0 = 0.
§ F1 = 1.
§ For n ≥ 2, Fn = Fn–2 + Fn–1.

Why are we talking about this?

Computing Fibonacci numbers is
our first example of a problem
that can be solved by multiple

algorithms. Some of these
algorithms are recursive, and
they differ greatly in speed.

23

2020-09-14 CS 311 Fall 2020

Introduction to Recursion
Fibonacci Numbers — Definitions [2/2]

The Fibonacci numbers (Fn, for n = 0, 1, 2, …):
§ F0 = 0.
§ F1 = 1.
§ For n ≥ 2, Fn = Fn–2 + Fn–1.

An equation defining a sequence of numbers in terms of itself, as
above, is a recurrence relation (often simply recurrence).

The values for the start of the sequence are initial conditions.

A recurrence often translates nicely into a recursive algorithm.

Let’s do such a translation for the Fibonacci numbers: write a
recursive function fibo that takes an integer n and returns the
nth Fibonacci number Fn.

24

2020-09-14 CS 311 Fall 2020

Introduction to Recursion
Fibonacci Numbers — Four Questions

1. How can we solve the problem using solutions to one or more
smaller problems of the same kind?
§ Use the recurrence: Fn = Fn–2 + Fn–1.

2. How much does each recursive call reduce the size of the
problem?
§ The first call: by 2. The second call: by 1.

3. What instances of the problem can serve as base cases?
§ Use the initial conditions: n = 0, n = 1.

4. As the problem size shrinks, will a base case always be
reached?
§ Yes, as long as n is nonnegative.
§ So function fibo should have “n ≥ 0” as a precondition.

Smaller problems
of the same kind

25

2020-09-14 CS 311 Fall 2020

Introduction to Recursion
Fibonacci Numbers — Design Decisions

Recall: fibo takes an integer n and returns the nth Fibonacci
number Fn. (I write this as “F(n)” in source-code comments.)

What should the parameter and return types for fibo be?
§ The parameter can be int.
§ As n grows, Fn will grow very quickly. So we need to guard against

numeric overflow. Let’s use a 64-bit unsigned integer for the
return type: std::uint_fast64_t. A type alias could be helpful:

using bignum = uint_fast64_t;

What pre- and postconditions should fibo have?
§ Pre: n >= 0. Also, F(n) is a within the range of values of bignum.

(Some checking shows that this requires n <= 93.)
§ Post: Return == F(n).

26

2020-09-14 CS 311 Fall 2020

Introduction to Recursion
Fibonacci Numbers — CODE

When we write a recursive function, we usually want to check for
the base case(s) first. If we are not in a base case, then we are
in a recursive case.

TO DO
§ Write recursive function fibo, as described.

Function fibo turns out to be extremely slow for anything other
than small parameters. We will revisit it, rewriting it in several
different ways. Most of these will be much faster. (Some of the
fast versions will be recursive; recursion is not inherently slow!).

Done. See fibo_first.cpp.

27

