
Containers & Iterators
Invisible Functions II
Thoughts on Project 2

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, September 9, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

continued

Unit Overview
Advanced C++ & Software Engineering Concepts

Major Topics: Advanced C++
§ Expressions
§ Parameter passing I
§ Operator overloading
§ Parameter passing II
§ Invisible functions I
§ Integer types
§ Managing resources in a class
§ Containers & iterators
§ Invisible functions II
§ Error handling
§ Using exceptions
§ A little about Linked Lists

Major Topics: S.E. Concepts
§ Invariants
§ Testing
§ Abstraction

P

2020-09-09 CS 311 Fall 2020

P
P
P
P

P
P

(part)

P
P

2

Review

2020-09-09 CS 311 Fall 2020 3

Review
Managing Resources in a Class

Some resources need clean-up when we are done with them.
§ Examples: dynamic objects or arrays, files to be closed, etc.
§ We acquire a resource. Later, we release it.
§ If we never release: there is a resource leak.

Own a resource = be responsible for releasing.
§ Ownership can be transferred, shared,

and chained.

Prevent resource leaks with RAII.
§ A resource is owned by an object.
§ Therefore, its destructor releases─if this

has not been done yet.
§ Define or =delete each of the Big Five in

an RAII class.

2020-09-09 CS 311 Fall 2020

Ownership =
Responsibility
for Releasing

RAII =
An Object Owns
(and, therefore, its
destructor releases)

4

2020-09-09 CS 311 Fall 2020

Review
Containers & Iterators

A container is a data structure that can hold multiple items,
usually all of the same type.

A generic container is a container that can hold items of a client-
specified type. One kind is a C++ built-in array; others are in
the C++ Standard Template Library (STL).

The STL includes std::vector, a smart array template.

#include <vector>
using std::vector;

vector<int> iv(20);
iv.push_back(4);
cout << iv.size() << endl; // Prints "21"
cout << iv[20] << endl; // Prints "4"

5

Containers & Iterators

2020-09-09 CS 311 Fall 2020

continued

6

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Containers — Kinds of Data

When we deal with containers, the following broad categories of
data are important:
§ Random Access

§ Random-access data can be dealt with in any order.
We can efficiently skip from one
item to any other item in the
dataset. Example: std::vector.

§ Sequential Access
§ Sequential-access data is data

that can only be dealt with—or
only dealt with efficiently—in
order. We begin with some item,
then proceed to the next, etc.

§ Sequential access data may be
two-way, accessible in both
forward and backward order.
Or it may be one-way,
accessible only in forward order.

Random
Access

Two-Way
Sequential
Access

One-Way
Sequential
Access

7

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Containers — STL Generic Containers

The STL includes a number of generic containers. Some are
random-access; others are sequential-access.
§ std::vector
§ std::basic_string
§ std::array
§ std::list
§ std::forward_list

§ std::deque

All of these have interfaces that involve iterators.

§ std::map
§ std::set
§ std::unordered_map
§ std::unordered_set
§ std::multimap
§ std::multiset
§ std::unordered_multimap
§ std::unordered_multiset

8

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Iterators — Introduction [1/4]

An iterator refers to an item in a container.

vector<int> v(8);
vector<int>::iterator iter1 = begin(v);

An iterator does not own the item it refers to.

Use the dereference operator (*) to access
the item an iterator refers to. The item is available as an Lvalue.

v[0] = 3;
cout << *iter; // Prints "3"
*iter = 5; // Set v[0] to 5

iter1

auto would be helpful here.

STL containers have
iterator member types.

Global function begin
(<iterator>) calls
member function begin,
which returns an iterator
to the first item in the
container.

9

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Iterators — Introduction [2/4]

STL containers actually have multiple iterator member types.

vector<int>::iterator it;
vector<int>::const_iterator cit;

// Does not allow modification of referenced item

cout << *it; // Okay
*it = 5; // Okay
cout << *cit; // Okay
*cit = 5; // DOES NOT COMPILE!

10

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Iterators — Introduction [3/4]

Non-owning pointers are iterators for C++ built-in arrays.

int arr[8];
int * p = &arr[2];
*p = 7; // Sets arr[2] to 7

The syntax used for iterators in C++ was based on the syntax for
pointers, which is derived from the C programming language.

11

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Iterators — Introduction [4/4]

An iterator can be a wrapper around data, to make it look like a
container.

#include <iterator>
using std::ostream_iterator;

std::ostream_iterator<int> coolIter(cout, "\n");

Now the following two lines do the same thing:

cout << 3 << "\n";
*coolIter++ = 3; // Has same effect as previous line

12

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Iterators — Operations [1/3]

Adding to an iterator moves the iterator forward some number of
steps to a new item in the same container.

++iter1;
auto iter2 = iter1 + 4;

Similarly, subtracting moves an iterator backward.

--iter1;
iter2 -= 2;

iter1

iter1 iter2

iter1 iter2

13

2020-09-09 CS 311 Fall 2020

Containers & Iterators
Iterators — Operations [2/3]

Subtract two iterators to the same container, to find the distance
between them.

auto dist = iter2 - iter1; // dist is an integer

Copying an iterator gives a new iterator referring to the same item.

auto iter3 = iter1;

Checking equality of iterators tells
whether they refer to the same spot in the container.

if (iter3 == iter1)
…

iter1 iter3

14

Containers & Iterators
Iterators — Operations [3/3]

Operations available on an iterator match the underlying data.

§ Iterators for one-way
sequential-access data have
the ++ operation. These are
forward iterators.

++forwardIterator;

§ Iterators for two-way
sequential-access data also
have the -- operation. These
are bidirectional iterators.

++bidirectionalIterator;
--bidirectionalIterator;

§ Iterators for random-access
data have all the iterator
arithmetic operations. These
are random-access iterators.

++randomAccessIter;
--randomAccessIter;
randomAccessIter += 7;
cout << randomAccessIter[5];
std::ptrdiff_t dist =

raIter2 - raIter1;

2020-09-09 CS 311 Fall 2020

Each boldface term is an
iterator category.

15

Containers & Iterators
Iterators — Specifying Ranges

To specify a range, we use two iterators:
§ An iterator to the first item in the range.
§ An iterator to just past the last item in the range.

#include <algorithm>
using std::sort;
sort(begin(v)+2, begin(v)+6); // Sort v[2]..v[5]
sort(begin(v), end(v)); // Sort all of v

2020-09-09 CS 311 Fall 2020

iter1 iter2

Specified range
is entire container

Specified range

Global function end (<iterator>) calls member
function end, which returns an iterator to just past
the last item in a container.

iter1 iter2

16

Containers & Iterators
Iterators — Range-Based For-Loop [1/2]

Iterators are fundamental to the range-based for-loop, a flow-
of-control construct introduced in the 2011 C++ Standard.

vector<int> data;

for (auto x : data)
cout << x << " " << endl;

The above is pretty much the same as the following.

for (auto it = begin(data); it != end(data); ++it)
{

auto x = *it;
cout << x << " " << endl;

}
2020-09-09 CS 311 Fall 2020

x becomes a copy of each
item in container data.

17

Containers & Iterators
Iterators — Range-Based For-Loop [2/2]

The variable in a range-based for-loop is treated much like a
parameter. The usual parameter-passing methods are available.

We generally use by reference-to-const for containers of objects.

vector<Blug> data2;

for (const auto & x : data2)
cout << x << endl;

Use by reference to allow alteration
of items in the container.

for (auto & x : data2)
x = bb;

2020-09-09 CS 311 Fall 2020

Here, x is not a copy.

18

Containers & Iterators
Generic Algorithms [1/3]

The STL includes a number of generic algorithms, which can
operate on arbitrary datasets. Most of these make use of
iterators. All are defined in the header <algorithm>.

For example, algorithm std::copy copies the values in a range to
another range.

#include <algorithm>
using std::copy;

vector<int> v(20);
vector<int> v2(20);
copy(begin(v), end(v), begin(v2)); // Copy v to v2.
copy(begin(v), end(v), coolIter);

// Print the items in v, one on each line!

2020-09-09 CS 311 Fall 2020 19

Containers & Iterators
Generic Algorithms [2/3]

Most of the STL generic algorithms take ranges. A range is
specified using 2 iterators, in the way we have discussed.
§ An iterator to the first item in the range.
§ An iterator to just past the last item in the range.

std::copy has three parameters: 2 iterators specifying the range
to read from, and an iterator to the first item in the range to
write to.

copy(begin(v), end(v), begin(v2));

The second range must be large enough to hold all the items from
the first range.

2020-09-09 CS 311 Fall 2020

Range to
read from

Start of range
to write to

20

Containers & Iterators
Generic Algorithms [3/3]

In addition to std::copy, be familiar with these STL algorithms:
§ std::equal: check if two ranges have the same values.

bool isEq = equal(begin(v), end(v), begin(v2), end(v2));
// Another version takes 3 params, like std::copy;

// that one assumes the ranges are the same size

§ std::sort: reorder the values in a range in ascending order.

sort(begin(v), end(v)); // Rearrange items in v

§ std::fill: set all items in a range to a given value.

fill(begin(v), end(v), 6); // Set every item in v to 6

2020-09-09 CS 311 Fall 2020 21

Containers & Iterators
CODE

TO DO
§ Run some code using iterators and STL algorithms.

2020-09-09 CS 311 Fall 2020

See iterators.cpp.

22

Invisible Functions II

2020-09-09 CS 311 Fall 2020 23

Invisible Functions II
The Big Five [1/2]

Recall: the Big Five are the following.

~Dog(); // Dctor
Dog(const Dog & other); // Copy ctor
Dog & operator=(const Dog & rhs); // Copy assignment op
Dog(Dog && other); // Move ctor
Dog & operator=(Dog && rhs); // Move assignment op

All five are sometimes automatically generated. But when we write
them ourselves, we need to consider how we would write them.

2020-09-09 CS 311 Fall 2020 24

Invisible Functions II
The Big Five [2/2]

The Rule of Five:
If you define one of the Big Five, then define or =delete all of them.

This typically happens when an object directly manages a resource.

We much prefer writing none of them. This is our usual way of
operating.

Thus, we have the Rule of Zero:
Where possible, do not explicitly define any of the Big Five. Resources

should be managed by data members that are objects of RAII
classes.

But sometimes we need to write one of those RAII classes. And
then we need to write the Big Five for that class.

2020-09-09 CS 311 Fall 2020 25

Invisible Functions II
Copy vs. Move [1/3]

In order to write copy & move operations, it can be helpful to
consider the difference between them.

Suppose we have an array object. Typically, this will have a pointer
to a block of memory containing the array data, along with an
integer whose value is the size of the array.

Now we want to create a new object just like it.
§ If we are not allowed to alter the original, we are doing a copy.
§ If we are allowed to alter the original, we are doing a move.

2020-09-09 CS 311 Fall 2020

3 5 3 51 2

6
size pointer

26

Invisible Functions II
Copy vs. Move [2/3]

To do a copy, we first create our new object, set its size member,
and allocate a memory block of the correct size.

Then we copy each array item to the new memory.

If the array is large, then this can be time-consuming. If the array
items are complicated, then it is possible for an item to copy
unsuccessfully, and we will have to deal with the error.

2020-09-09 CS 311 Fall 2020

3 5 3 51 2

6 6

3 5 3 51 2

6

3 5 3 51 2

6

Original New

27

Invisible Functions II
Copy vs. Move [3/3]

A move can use a different strategy. First, set each data member
of the new object to the corresponding member in the original.

The new object is finished. But leaving the original pointing to the
same memory is a problem. So we set the original to a
“nothing” value that can still be correctly destroyed.

And we are done. So a move operation can be both fast and free
from the possibility of errors.

2020-09-09 CS 311 Fall 2020

3 5 3 51 2

6 6Original New

3 5 3 51 2

0 6

28

Invisible Functions II
Writing Them — Assumptions

We consider how to write the Big Five for a class under the
following assumptions.
§ Every data member has a built-in type: things like int,

std::size_t, double, and any pointer type—including (Foo *)
when Foo is a class we wrote.

§ Objects of our class will be destructible, copyable, and moveable
§ So we will not =delete any of the Big Five.

§ There are no inheritance hierarchies involved.
§ So there are no virtual functions and no base-class initializers.

On the following slides, we will be discussing how to write the Big
Five for a class Foo with data members _a and _b.

2020-09-09 CS 311 Fall 2020 29

Invisible Functions II
Writing Them — Dctor & Copy Ctor

Write the dctor and the copy ctor however we need to.
§ The dctor must clean up any owned resources.
§ The copy ctor needs to make a real copy.

§ If some member is a pointer referencing a dynamic array, then do not
copy the pointer. Instead, allocate a new array and then copy from old
array to new array.

class Foo {
public:

// Dctor
~Foo()
{ … }

2020-09-09 CS 311 Fall 2020

// Copy ctor
Foo(const Foo & other)

:_a(…),
_b(…)

{ … }

30

Invisible Functions II
Writing Them — Move Ctor

A move ctor makes an object with the same value as its parameter
(other). It may alter other. But other still needs to be destructible.

Procedure
§ Construct each data member from the corresponding member of other.
§ Set other to a value that can be destroyed—without messing up our object.

A move ctor should be marked noexcept, which promises that it throws no
exceptions. This allows optimizations that can improve efficiency.

// Move ctor
Foo(Foo && other) noexcept

:_a(other._a),
_b(other._b)

{
other._a = …;
other._b = …;

}

2020-09-09 CS 311 Fall 2020

Set other to a valid value, so its destructor
still works. This value should be one whose
destruction does not mess up our newly
constructed object.

We will discuss
exceptions on
another day

31

Invisible Functions II
Writing Them — Swap [1/2]

A useful operation is a swap member function.
§ Take another object of the same type.
§ Swap the values of this object and the other object.

Swap can often be implemented very efficiently: call Standard
Library function swap (<utility>) to swap each data member
with the corresponding data member of the other object.

Generally, we should mark a swap member function as noexcept.
This member function will typically be private.

private:
void mswap(Foo & other) noexcept
{

swap(_a, other._a);
swap(_b, other._b);

}

2020-09-09 CS 311 Fall 2020

Traditionally, this member function is
named swap. Here, I call it mswap (for
“member swap”) to avoid confusion
with std::swap. But if it is private, then
you can call it whatever you want.

32

Invisible Functions II
Writing Them — Swap [2/2]

For the convenience of other classes, we might write a noexcept
global function swap. This just calls the mswap member.

If mswap is private, then our global swap must be a friend.

friend void swap(Foo & a, Foo & b) noexcept;
private:

void mswap(Foo & other) noexcept
{ … }

}; // End class Foo

void swap(Foo & a, Foo & b) noexcept
{

a.mswap(b);
}

2020-09-09 CS 311 Fall 2020 33

Invisible Functions II
Writing Them — Copy & Move Assignment

Once we can swap, the assignment operators are easy to write.
§ Copy assignment swaps with a copy of its parameter.
§ Move assignment swaps with its parameter. It should be noexcept.

Foo & operator=(const Foo & rhs) // Copy assignment
{

Foo copy_of_rhs(rhs);
mswap(copy_of_rhs);
return *this;

}

Foo & operator=(Foo && rhs) noexcept // Move assignment
{

mswap(rhs);
return *this;

}

2020-09-09 CS 311 Fall 2020

An assignment operator should
always return the current object.

This is one way to write assignment
operators. It is easy, and it works.

For some classes, there may be better
ways to write these—but we will not

need to worry about that this semester.

34

Thoughts on Project 2

2020-09-09 CS 311 Fall 2020 35

Thoughts on Project 2
Overview of Ideas

In Project 2 you implement a “moderately smart” array (MSArray).
This will require applying some recently covered ideas.

§ Integer Types
§ What type will you use for the size of an MSArray? For array

indices?
§ Managing Resources in a Class

§ Are you doing dynamic allocation correctly? When you allocate
something, is it always freed?

§ MSArray should use RAII. This affects how you write it and how you
document it.

§ Containers & Iterators
§ MSArray is a generic container. Its member functions begin and end

return iterators.
§ Invisible Functions II

§ MSArray directly manages a resource. You will need to define all of
the Big Five. (So Project 2 is not a place to apply the Rule of Zero!)

2020-09-09 CS 311 Fall 2020 36

Thoughts on Project 2
Documentation [1/2]

MSArray and all global functions will be templates.
When we define a template, the things between

the angle brackets are template parameters.

template <typename ABC, typename XYZ>

This semester, all templates must have documented
requirements on types that specify what must be true about
the template parameters. Typically, these will say that the type
must have certain member functions.

// Requirements on Types:
// XYZ must have a copy ctor.
template <typename ABC, typename XYZ>
void fff(const ABC & n1, XYZ n2);

2020-09-09 CS 311 Fall 2020

Templates go
entirely in the
header. Do not

write a separate
source file.Template parameters

37

Thoughts on Project 2
Documentation [2/2]

We still need to document preconditions for all functions that
have them, and class invariants for all classes.

// Invariants: …
// Requirements on Types: ValType must have …
template <typename ValType>
class MSArray { … };

// Pre: …
// Requirements on Types: ValType must have …
template <typename ValType>
bool operator==(…)

2020-09-09 CS 311 Fall 2020

What must be true about ValType for this
template to work?

Typically: List member or global functions
that must be defined for ValType.

Maybe

38

2020-09-09 CS 311 Fall 2020

Thoughts on Project 2
Iterators

Member functions begin and end return iterators.
§ These can be pointers. Do not write a separate iterator class.
§ Function begin returns an iterator to the first array item. You

already have a pointer to the first array item (think …); use it.
§ Function end returns an iterator to just past the last array item. Add

a number to the return value of begin (what number?).

… begin()
{ return …; }
…
… end()
{ return begin() + …; }

Pointer type

39

Thoughts on Project 2
Access to Internal Data

A const MSArray has non-modifiable data. If a function gives
access to data in modifiable form, then write two versions.

… operator[](…)
{ … }
const … operator[](…) const
{ … }

… begin()
{ … }
const … begin() const
{ … }

… end()
…

2020-09-09 CS 311 Fall 2020

In each pair, the two functions should be
identical, except for (1) the const at the
end of the first line, and (2) the return
method.

In this particular case, we will allow
repetition of code.

40

Thoughts on Project 2
Writing the Big Five

Items in C++ built-in arrays are always default-constructed. We
cannot set their values to anything else in a member initializer.
Therefore, the copy ctor will need a loop* in the function body.

// Copy ctor
MSArray(const MSArray & other)

:_arrayPtr(new …),
…

{ … }
…
value_type * _arrayPtr;
…

For the rest, see Invisible Functions II, and do what it says!

2020-09-09 CS 311 Fall 2020

Initialize array items with
a loop* here.

*Or perhaps one of the
generic algorithms from
the STL? (Hint, hint.)

41

