
Software Engineering Concepts: Invariants
Simple Class Example
Thoughts on Project 1

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, August 31, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

continued

Unit Overview
Advanced C++ & Software Engineering Concepts

Major Topics: Advanced C++
§ Expressions
§ Parameter passing I
§ Operator overloading
§ Parameter passing II
§ Invisible functions I
§ Integer types
§ Managing resources in a class
§ Containers & iterators
§ Invisible functions II
§ Error handling
§ Using exceptions
§ A little about Linked Lists

Major Topics: S.E. Concepts
§ Invariants
§ Testing
§ Abstraction

P

2020-08-31 CS 311 Fall 2020

P
P
P
P

We are currently here,
working on an example class
illustrating some of the ideas
we have discussed.

2

Review
Part 1

2020-08-31 CS 311 Fall 2020 3

Review
Invisible Functions I [1/2]

A C++ compiler may automatically write a number of member
functions. Here are six important ones:

Dog(); // Default ctor
~Dog(); // Dctor
Dog(const Dog & other); // Copy ctor
Dog & operator=(const Dog & rhs); // Copy assignment
Dog(Dog && other); // Move ctor*
Dog & operator=(Dog && rhs); // Move assignment*

*Move operations were added in C++11.

For each function, the automatically generated version calls the
corresponding member function for each data member.

2020-08-31 CS 311 Fall 2020

The Big Five

4

Review
Invisible Functions I [2/2]

The default ctor is automatically generated when we declare no
ctors.

For the Big Five, we covered the rules for when they are
automatically generated. But you do not need to know these;
just follow the Rule of Five.

Two special options. Use these!
§ Automatically generate. Dog(Dog && other) = default;
§ Eliminate the function. Dog(Dog && other) = delete;

The Rule of Five: If you define one of the Big Five, then define or
=delete all of them.

Typically, this happens when an object directly manages some
resource—like dynamically allocated memory—that will need to
be cleaned up.

2020-08-31 CS 311 Fall 2020 5

Software Engineering Concepts:
Invariants

2020-08-31 CS 311 Fall 2020 6

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Basics [1/2]

An invariant is a condition that is always true at a particular point in a
computation. Typically, it says something about the value of a variable.

if (ix < 0)
{

flagError("Index too small");
return;

}
// Invariant: ???
if (ix >= myVec.size())
{

flagError("Index too large");
return;

}
// Invariant: ???
myItem = myVec[ix];

Suppose myVec is a vector<int>.

We wish to set (non-const) int
variable myItem equal to myVec[ix],
if possible.

Q. When would it be impossible?

A. ???

7

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Basics [1/2]

An invariant is a condition that is always true at a particular point in a
computation. Typically, it says something about the value of a variable.

if (ix < 0)
{

flagError("Index too small");
return;

}
// Invariant: ???
if (ix >= myVec.size())
{

flagError("Index too large");
return;

}
// Invariant: ???
myItem = myVec[ix];

Suppose myVec is a vector<int>.

We wish to set (non-const) int
variable myItem equal to myVec[ix],
if possible.

Q. When would it be impossible?

A. When ix is out of range, that is,
when it is not a valid index for myVec.

8

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Basics [1/2]

An invariant is a condition that is always true at a particular point in a
computation. Typically, it says something about the value of a variable.

if (ix < 0)
{

flagError("Index too small");
return;

}
// Invariant: ix >= 0
if (ix >= myVec.size())
{

flagError("Index too large");
return;

}
// Invariant: (ix >= 0) && (ix < myVec.size())
myItem = myVec[ix];

Suppose myVec is a vector<int>.

We wish to set (non-const) int
variable myItem equal to myVec[ix],
if possible.

Q. When would it be impossible?

A. When ix is out of range, that is,
when it is not a valid index for myVec.

9

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Basics [2/2]

We use invariants:
§ To ensure that we are allowed to perform various operations.
§ To remind ourselves—and others who may read our code later—of

information that is implicitly known in a program. This can make
code more maintainable.

§ To document ways in which code can be used.
§ To help us verify that our programs are correct.

In this class, we are explicit about some of our invariants, and we
use them in our documentation.

It is a good idea to
comment invariants
that are not obvious.

(The invariants on the
previous slide were
obvious, I think.)

10

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Pre & Post [1/4]

We are particularly interested in two special kinds of invariants:
preconditions and postconditions.

A precondition is an invariant at the beginning of a function.
§ The responsibility for making sure the precondition is true rests with

the calling code (that is, the client).
§ In practice, a precondition states what must be true for the

function to execute properly.

A postcondition is an invariant at the end of a function.
§ It tells what services the function has performed for the client code.
§ The responsibility for making sure the postcondition is true rests

with the function itself.
§ In practice, a postcondition describes the function’s effect using

statements about values.

11

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Pre & Post [2/4]

Preconditions and postconditions are the basis of operation
contracts.
§ We think of a function call as the carrying out of a contract. The

function says to the caller, “If you do this [preconditions], then I
will do this [postconditions].”

§ If the preconditions are met, then the function is required to make
the postconditions true upon its normal termination.
§ We consider abnormal termination (throwing an exception) later.

§ If the preconditions are not met, then the function may be
considered to have no responsibilities.

12

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Pre & Post [3/4]

Example 1
§ Write reasonable pre- and postconditions for the following function,

which is supposed to compute the average speed of an object,
given the distance it travels and the time elapsed.

// avgSpeed
// Pre: ???
// Post: ???

double avgSpeed(int dist,
int time)

{
return double(dist) / double(time);

}

Preconditions:
What must be true for the
function to execute properly?

Postconditions:
Describe the function’s effect
using statements about values.

13

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Pre & Post [3/4]

Example 1
§ Write reasonable pre- and postconditions for the following function,

which is supposed to compute the average speed of an object,
given the distance it travels and the time elapsed.

// avgSpeed
// Pre: time != 0.
// Post: return == dist/time, where the computation is
// done using floating-point division.
double avgSpeed(int dist,

int time)
{

return double(dist) / double(time);
}

Preconditions:
What must be true for the
function to execute properly?

Postconditions:
Describe the function’s effect
using statements about values.

14

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Pre & Post [4/4]

Example 2
§ Write reasonable pre- and postconditions for the following function,

which is supposed to store the number 7 in the provided memory.

// store7
// Pre: ???

// Post: ???
void store7(int * ptr)
{

*ptr = 7;
}

Postconditions:
Describe the function’s effect
using statements about values.

Preconditions:
What must be true for the
function to execute properly?

15

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Pre & Post [4/4]

Example 2
§ Write reasonable pre- and postconditions for the following function,

which is supposed to store the number 7 in the provided memory.

// store7
// Pre: ptr points at writable memory sufficient
// to hold an int.
// Post: *ptr == 7.
void store7(int * ptr)
{

*ptr = 7;
}

Postconditions:
Describe the function’s effect
using statements about values.

Preconditions:
What must be true for the
function to execute properly?

16

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Class Invariants [1/4]

For a given class, a class invariant is an invariant that holds for
an object of the class, whenever execution is not inside a
member function.

§ Class invariants are preconditions for every public member function,
except constructors.

§ Class invariants are postconditions for every public member
function, except the destructor.

§ Since we know this, you do not need to list class invariants in the
pre- and postcondition lists of public member functions.

§ In practice, class invariants are statements about data members
that indicate what it means for an object to be valid or usable.

Constructor DestructorMember Func. Member Func.

Class invariants are true
here

17

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Class Invariants [2/4]

Example
§ Write reasonable class invariants for the following class.

// class Date
// Invariants:
// ???

class Date {
public:

[Lots of code goes here]
private:

int _mo; // Month 1..12
int _day; // Day 1..#days in month given by _mo

}; // End class Date

Class invariants:
statements about data members that
indicate what it means for an object to be
valid or usable.

18

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Class Invariants [2/4]

Example
§ Write reasonable class invariants for the following class.

// class Date
// Invariants:
// 1 <= _mo <= 12.
// 1 <= _day <= #days in month given by _mo.
class Date {
public:

[Lots of code goes here]
private:

int _mo; // Month 1..12
int _day; // Day 1..#days in month given by _mo

}; // End class Date

Class invariants:
statements about data members that
indicate what it means for an object to be
valid or usable.

19

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Class Invariants [3/4]

Think about the creation of dynamic objects. In C++, we do:

Foo * p = new Foo[100];

But we could, instead, simply allocate some memory and point a
(Foo *) at it. This is what is usually done in C—and is still legal
in C++:

Foo * p = (Foo *)malloc(100 * sizeof(Foo));

I claim that the first way of doing it is better. Why?
§ Yes, it is simpler and cleaner. What other reasons are there?
§ Hint. The two lines of code above do not do the same thing.
§ Another hint. We are discussing invariants.
§ See the next slide.

20

2020-08-31 CS 311 Fall 2020

Software Engineering Concepts: Invariants
Class Invariants [4/4]

In C++, using new calls a constructor for each allocated item, thus
ensuring that class invariants are true for that item.

The job of a constructor is to make the class invariants true.

Constructor DestructorMember Func. Member Func.

Member Func. Member Func.

With Constructor
(& Destructor)

Without Constructor
(& Destructor)

Class invariants are true
here

Are class invariants true
here?

21

Review
Part 2

2020-08-31 CS 311 Fall 2020 22

Review
Simple Class Example

TO DO
§ Write a C++ package consisting primarily of a class whose objects

store and handle a time of day, in hours, minutes, and seconds.
§ Name the class TimeOfDay.
§ Give it reasonable ctors, etc.

§ Default ctor, ctor from
hours/minutes/seconds, Big Five.

§ Can we use automatically generated functions?
§ We can =default the Big Five.
§ We will need to write our own default ctor and 3-parameter ctor.

§ Give it reasonable operators.
§ Pre & post ++, -- to make the time go forward & back by 1 second.
§ Stream insertion (<<) to print the time like “ 3:21:05”, 24-hr time.
§ Assignment (=) is included in the Big Five, above.
§ It might be nice to add more. We will not, due to time constraints.

§ Give it other reasonable member functions.
§ getTime: get hours/minutes/seconds from an object.
§ setTime: set an object’s time, giving hours/minutes/seconds.
§ Again, time constraints prevent us from adding more.

2020-08-31 CS 311 Fall 2020

Partially done. See
timeofday.h/.cpp.

For a program that uses
class TimeOfDay, see
timeofday_main.cpp.

23

Simple Class Example

2020-08-31 CS 311 Fall 2020

continued

24

2020-08-31 CS 311 Fall 2020

Simple Class Example
More CODE

TO DO
§ Finish writing class TimeOfDay.

Done. See timeofday.h/.cpp.

25

2020-08-31 CS 311 Fall 2020

Simple Class Example
Notes [1/3]

Note 1. External interface does not dictate internal implementation
(although it certainly influences it).

Class TimeOfDay deals with the outside world in terms of hours,
minutes, and seconds. However, it has only one data member,
which counts seconds.

26

2020-08-31 CS 311 Fall 2020

Simple Class Example
Notes [2/3]

Note 2. Avoid duplication of code.

Look at the two operator++ functions. We could
have put the incrementing code into both of
them, but we did not.

Also, the constructors call setTime.

It is common for some operators to be based on other operators.
For example, postincrement nearly always calls preincrement,
as it does in TimeOfDay. Thus, we can nearly always write
postincrement without knowing anything about how
incrementing works in any particular class.

Why is this a
good thing?

27

2020-08-31 CS 311 Fall 2020

Simple Class Example
Notes [3/3]

Note 3. There are three ways to deal
with the possibility of invalid
parameter values.
1. Insist that given parameters are valid.

§ Use preconditions.
2. Allow invalid parameter values, but fix

them in the function.
3. If invalid parameter values are passed,

then signal the client code that there
is a problem.
§ We will discuss this further when we

cover Error Handling.

Method #1 is generally the easiest.

Look at the three-parameter ctor. Which method is used?

Responsibility for handling the
problem lies with the code
executed …

… in the function.

… after the function.

… before the function.

28

Thoughts on Project 1

2020-08-31 CS 311 Fall 2020 29

Thoughts on Project 1 [1/6]

We have covered all the Advanced C++ material needed for
Project 1. In that project, you write a C++ class of the kind you
have probably already written in CS 202 (Computer Science II).

But Project 1 differs somewhat from CS 202 work:
§ Do a really good job; standards are high now.
§ Pass a thorough test suite.
§ Apply ideas we have covered.

§ Pass parameters correctly.
§ Make overloaded operators member or global functions, as appropriate.
§ Handle invisible functions appropriately (Define? =delete? =default?)
§ Document preconditions where these exist, along with class invariants.
§ Etc.

§ Follow the Coding Standards.

2020-08-31 CS 311 Fall 2020 30

2020-08-31 CS 311 Fall 2020

Thoughts on Project 1 [2/6]

I have provided a test program for this project.

There is a huge difference between passing all the tests, and
passing (say) all but one of the tests. In the former case, your
code works; in the latter case, it does not.

In this class:
§ Being on time is important.
§ Working code is more important.

31

2020-08-31 CS 311 Fall 2020

Thoughts on Project 1 [3/6]

Do not write unnecessary code.

If the various automatically generated member functions do the
right thing, then use them. Just because a class needs to have
(say) a copy ctor, does not mean you need to write it.

If a function can call some other function to do most or all of its
work, then it should do so.

32

2020-08-31 CS 311 Fall 2020

Thoughts on Project 1 [4/6]

What happens if the client code does something bad?

ProductOrder po;
po.setNumber(-2);

The number of items in the inventory is not allowed to be negative.
How should the above be handled?

See Note 3 in the Simple Class Example topic, and observe that
simply forbidding incorrect parameter values—by writing a
precondition—is (1) a correct way of handling this situation, and
(2) very easy.

33

2020-08-31 CS 311 Fall 2020

Thoughts on Project 1 [5/6]

Let your compiler help you.
All C++ compilers have many warnings that they can give. By

default, most of these are turned off. Strong suggestion: turn
them all on. (If you find a warning unhelpful, then turn that
warning off.) Get your code to compile with no warnings at all.

One tricky issue: the dummy int parameter to post-increment is
never used. How do we avoid an unused-variable warning?

Answer. Tell your compiler it may not be used, using an attribute.

public:
// Post-increment
Foo operator++([[maybe_unused]] int dummy)
{

…

34

2020-08-31 CS 311 Fall 2020

Thoughts on Project 1 [6/6]

Some important things to note about Project 1 are the things you
do not need to do:
§ Anything related to passing by Rvalue reference—other than

=default’ing the move operations.
§ Explicitly defining any of the Big Five (but do =default them).
§ Anything covered in forthcoming Advanced C++ topics.

35

