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Review
Introduction to Scheme [1/2]

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain 
atoms or other lists. List items are separated by space; blanks 
and newlines between list items are treated the same.

(define (hello-world)
(begin

(display "Hello, world!")
(newline)

)
)

When a list is evaluated, the first item should be a procedure
(think “function”); the remaining items are its arguments.
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Review
Introduction to Scheme [2/2]

The type system of Scheme is similar to that of Lua.
§ Typing is dynamic.
§ Typing is implicit. Type annotations are generally not used.
§ Type checking is structural. Duck typing is used.
§ There is a high level of type safety: operations on invalid types are 

not allowed, and implicit type conversions are rare.
§ There is a fixed set of types (36 of them).

Scheme has 36 types (as compared to Lua’s 8).
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Review
Scheme: Data — Evaluation [1/2]

quote is a special procedure that takes one parameter, 
suppressing the normal parameter evaluation. It returns this 
parameter.

> (quote (1 2 3))
(1 2 3)

The leading-single-quote syntax is actually shorthand for quote.

> '(1 2 3)  ; Same as (quote (1 2 3))
(1 2 3)
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For code from this topic, 
see data.scm.
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Review
Scheme: Data — Evaluation [2/2]

eval is a procedure that takes one parameter and evaluates it. 
eval does not suppress the normal evaluation of parameters, 
so, strictly speaking, evaluation happens twice: the parameter is 
evaluated, and then it evaluates the result.

> (eval '(+ 2 3))
5

A variation is apply. This takes a procedure and a list of 
arguments. It calls the procedure with the given arguments and 
returns the result.

> (apply + '(2 3))
5
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Review
Scheme: Data — Data Format [1/5]

The dot notation originally used in S-expressions is also valid in 
Scheme.

> '(1 . 2)
(1 . 2)

A list is really shorthand for the equivalent dot notation, again, just 
as in the original S-expression syntax.

> '(1 . (2 . (3 . (4 . ()))))
(1 2 3 4)

Dot (.) is not a procedure. It is simply another way of typing S-
expressions. If you want a procedure that puts things together 
the way dot does, use cons.
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Review
Scheme: Data — Data Format [2/5]

The main building block for constructing data structures in Scheme 
is the pair. You can think of this as a node with two pointers.

We get the item referenced by the left pointer using car; similarly 
use cdr for the right pointer.

> (car '(1 . 2))
1
> (cdr '(1 . 2))
2
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(1 . 2)
1 2
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Review
Scheme: Data — Data Format [3/5]

Lists are constructed from pairs and null.
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1
(1 2 3) = (1 . (2 . (3 . ()))) 

2

3 NULL
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Review
Scheme: Data — Data Format [4/5]

The full story on the dot syntax is that the dot may optionally be 
added just before the last item of a list.
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1

(1 2 3)
= (1 . (2 . (3 . ()))) 

2

3 NULL

(1 2 . 3)
= (1 . (2 . 3)) 

1

2 3
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Review
Scheme: Data — Data Format [5/5]

We can create arbitrary binary trees—with the restriction that only 
leaf nodes contain data.
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((((() . 8) . 1) . (5 . 1)) 

5 11

NULL 1
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Review
Scheme: Data — Varying Number of Parameters
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A procedure call is a pair: (PROC . ARGS).

define will take this form of a “picture”
of a procedure call.

(define (sum . args)
…

)

How to make a recursive call on (cdr args)?

(sum . (cdr args))  ; WRONG!
(eval (cons sum (cdr args)))  ; Okay
(apply sum (cdr args))        ; Okay (and also clearer)

(sum . (cdr args))
is just another way to write 
(sum cdr args), which is 
not what we want.

PROC ARGS

Procedure Call

args is a list of the arguments 
of sum. So sum can take an 
arbitrary number of parameters.
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Review
Scheme: Data — Lazy Evaluation [1/3]

Normal evaluation in Scheme is eager.

However, we can do lazy evaluation in Scheme, using a promise: 
a wrapper around an expression that leaves the expression 
unevaluated.

When we force a promise, the expression is evaluated, and the 
resulting value is stored in the promise and returned. Force 
again, and the same value is returned, without reevaluating the 
expression.
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Review
Scheme: Data — Lazy Evaluation [2/3]

Create a promise using delay.

> (define pp (delay (* 20 5)))

The type-checking predicate for promises is promise?.

> (promise? pp)
#t

Force a promise using force. Again, force a promise as many 
times as you like; evaluation only happens the first time.

> (force pp)
100
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Review
Scheme: Data — Lazy Evaluation [3/3]

Using promises, we can create the kind of lazy infinite lists we saw 
in Haskell (rather less conveniently, though).

One way to do this is to construct a list as usual, from pairs and 
null, but wherever there is a pair, we actually have a promise 
wrapping a pair.

TO DO
§ Write code to create a lazy infinite list.
§ Write code to print out a portion of the above list. (With a little 

thought, we can write a procedure that will print both lazy lists and 
normal lists.)
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See data.scm.
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Scheme: Strings & I/O
Strings [1/3]

As in so many PLs, to understand Scheme I/O, it helps to know 
something about Scheme strings.

String literals in Scheme are surrounded by double quotes. The 
usual backslash escapes are accepted.

"This is a string."
"A newline: \nA double quote: \" A backslash: \\"

Check whether a value is a string with string?.

> (string? "42")
#t
> (string? 42)
#f
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For code from this topic, 
see string.scm.
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Scheme: Strings & I/O
Strings [2/3]

Get the length of a string with string-length.

> (string-length "Hello!")
6

Concatenate strings with string-append.

> (string-append "abc" "def" "ghi" "jklmnop")
"abcdefghijklmnop"

Get a substring with (substring STRING START PAST_END).

> (substring "Howdy thar!" 2 7)  ; Zero-based indices
"wdy t"
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Includes the characters at indices 2, 3, 4, 5, 6, but not 7.
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Scheme: Strings & I/O
Strings [3/3]

Convert a number to a string using number->string.

> (number->string 42)
"42"

Convert a string to a number using string->number. This returns 
the number, or #f if the conversion could not be done. So the 
result can be used in an if.

> (string->number "42")
42
> (string->number "Hello!")
#f
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(if COND THEN-EXPR ELSE-EXPR)

When the above is evaluated,
THEN-EXPR is chosen if COND

evaluates to anything other than #f.
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Scheme: Strings & I/O
Characters [1/2]

Character literals generally have the form #\CHAR. Some 
characters have special literals.

#\A  ; The 'A' character
#\newline  #\space

Check whether a value is a character with char?.

> (char? #\x)
#t
> (char? "x")
#f
> (string? #\x)  ; A Scheme character is not a string
#f
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Scheme: Strings & I/O
Characters [2/2]

Convert a character to its numeric version (ASCII value/Unicode 
codepoint) with char->integer. Reverse: integer->char.

> (char->integer #\A)
65
> (integer->char 65)
#\A

Convert between strings and lists of characters with string->list
and list->string.

> (string->list "Howdy thar!")
(#\H #\o #\w #\d #\y #\space #\t #\h #\a #\r #\!)
> (list->string '(#\a #\b #\c))
"abc"
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Scheme: Strings & I/O
Comparisons [1/5]

We have seen the Scheme numeric comparison operators: = < <= 
> >=. These can only be used with numbers.

Some Scheme types have their own comparison functions.

> (string=? "abc" "def")
#f
> (string=? "42" 42)

ERROR
> (string<? "abc" "def")
#t

Also: string<=? string>? string>=?
char=? char<? char<=? char>? char>=?
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Scheme: Strings & I/O
Comparisons [2/5]

There are several kinds of equality in Scheme.

The simplest is eq?, which means “same location in memory”.

> (eq? '() '())
#t
> (eq? 2 2)

IMPLEMENTATION-DEPENDENT
> (define a '(1 2))
> (eq? a '(1 2))
#f
> (define b a)
> (eq? a b)
#t
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Scheme: Strings & I/O
Comparisons [3/5]

Next is eqv?, which means “same primitive value”.

> (eqv? 2 2)
#t
> (eqv? 2 2.0)
#f
> (define a '(1 2))
> (eqv? a '(1 2))
#f
> (eqv? "ab" "ab")

IMPLEMENTATION-DEPENDENT
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Lists and strings are 
not primitive values.
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Scheme: Strings & I/O
Comparisons [4/5]

Then there is equal?, which does the following:
§ If the types are different, then return #f.
§ For primitive values (everything we have covered except strings 

and pairs) of the same type, call eqv?.
§ For strings, call string=?.
§ For pairs, recursively call equal? on the cars & cdrs.

> (define a '(1 2))
> (equal? a '(1 2))
#t
> (equal? "ab" "ab")
#t
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Scheme: Strings & I/O
Comparisons [5/5]

equal? mostly does what we usually want, with one caveat. Since 
it always returns #f when the types are different, it can give 
unexpected results with numbers.

> (equal? 2 2.0)
#f

I offer the following rule of thumb.
§ Use = for numeric equality.
§ Use equal? for most other kinds of equality.
§ If you want the code to indicate what type you are comparing, and 

flag type errors for other types, then use a type-specific equality 
function (e.g., string=?, char=?).

§ Use eq? or eqv? only if you are sure you know what you are doing.
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Scheme: Strings & I/O
Console Output [1/2]

Print any value with display. String conversion is automatic. No 
trailing newline is printed. Print a newline with newline. Both of 
these return void, which does not print in the REPL.

> (display "Howdy thar!")
Howdy thar!
> (newline)

> (display #\A)
A
> (display '(42 #t (300)))
(42 #t (300))
> (display +)
#<procedure:+>
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Scheme: Strings & I/O
Console Output [2/2]

To do multiple I/O calls in a single expression, use begin. This 
takes any number of arguments, evaluates them all, in order, 
and returns the value of the last one.

> (begin
(display "dog")
(display "food")
(display "love")

)
dogfoodlove

begin takes arbitrary expressions, not just those that do I/O.
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Scheme: Strings & I/O
Console Interaction [1/5]

Read a line from the console with read-line. This takes no 
parameters. It returns the typed-in line with no trailing newline.

> (begin (display "Type something: ") (read-line))
Type something: Hello there!
Hello there!
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Scheme: Strings & I/O
Console Interaction [2/5]

How can we set a local variable to the return value of read-line in 
a procedure?

We use let.

(let  ; Locally bind vars to values in the expression
(
[VARIABLE1 VALUE1]
…
[VARIABLEn VALUEn]

)
( EXPRESSION )

)
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Scheme: Strings & I/O
Console Interaction [3/5]

TO DO
§ Write a procedure to prompt for input, read a line, and then print it, 

with some explanation (“Here is what you typed:”).
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See string.scm.

29



Scheme: Strings & I/O
Console Interaction [4/5]

We can repeat using a recursive procedure.
Alternatively, use let with a name.

(let NAME
(
[VARIABLE1 VALUE1]
…

[VARIABLEn VALUEn]
)
( EXPRESSION )

)

Within EXPRESSION, we can use NAME as a procedure taking n
arguments. These become the values of VARIABLE1 through 
VARIABLEn in that invocation of the procedure.
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Scheme: Strings & I/O
Console Interaction [5/5]

TO DO
§ Write a procedure that reads a series of numbers, until a blank line 

is entered, printing a running total after each. It should also 
respond in a reasonable way if the user types something other than 
a number.
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See string.scm.
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