
Scheme: Strings & I/O

CS F331 Programming Languages
CSCE A331 Programming Language Concepts
Lecture Slides
Friday, April 12, 2019

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017–2019 Glenn G. Chappell

Review
Introduction to Scheme [1/2]

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain
atoms or other lists. List items are separated by space; blanks
and newlines between list items are treated the same.

(define (hello-world)
(begin

(display "Hello, world!")
(newline)

)
)

When a list is evaluated, the first item should be a procedure
(think “function”); the remaining items are its arguments.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 2

Review
Introduction to Scheme [2/2]

The type system of Scheme is similar to that of Lua.
§ Typing is dynamic.
§ Typing is implicit. Type annotations are generally not used.
§ Type checking is structural. Duck typing is used.
§ There is a high level of type safety: operations on invalid types are

not allowed, and implicit type conversions are rare.
§ There is a fixed set of types (36 of them).

Scheme has 36 types (as compared to Lua’s 8).

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 3

Review
Scheme: Data — Evaluation [1/2]

quote is a special procedure that takes one parameter,
suppressing the normal parameter evaluation. It returns this
parameter.

> (quote (1 2 3))
(1 2 3)

The leading-single-quote syntax is actually shorthand for quote.

> '(1 2 3) ; Same as (quote (1 2 3))
(1 2 3)

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

For code from this topic,
see data.scm.

4

Review
Scheme: Data — Evaluation [2/2]

eval is a procedure that takes one parameter and evaluates it.
eval does not suppress the normal evaluation of parameters,
so, strictly speaking, evaluation happens twice: the parameter is
evaluated, and then it evaluates the result.

> (eval '(+ 2 3))
5

A variation is apply. This takes a procedure and a list of
arguments. It calls the procedure with the given arguments and
returns the result.

> (apply + '(2 3))
5

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 5

Review
Scheme: Data — Data Format [1/5]

The dot notation originally used in S-expressions is also valid in
Scheme.

> '(1 . 2)
(1 . 2)

A list is really shorthand for the equivalent dot notation, again, just
as in the original S-expression syntax.

> '(1 . (2 . (3 . (4 . ()))))
(1 2 3 4)

Dot (.) is not a procedure. It is simply another way of typing S-
expressions. If you want a procedure that puts things together
the way dot does, use cons.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 6

Review
Scheme: Data — Data Format [2/5]

The main building block for constructing data structures in Scheme
is the pair. You can think of this as a node with two pointers.

We get the item referenced by the left pointer using car; similarly
use cdr for the right pointer.

> (car '(1 . 2))
1
> (cdr '(1 . 2))
2

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

(1 . 2)
1 2

7

Review
Scheme: Data — Data Format [3/5]

Lists are constructed from pairs and null.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

1
(1 2 3) = (1 . (2 . (3 . ())))

2

3 NULL

8

Review
Scheme: Data — Data Format [4/5]

The full story on the dot syntax is that the dot may optionally be
added just before the last item of a list.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

1

(1 2 3)
= (1 . (2 . (3 . ())))

2

3 NULL

(1 2 . 3)
= (1 . (2 . 3))

1

2 3

9

Review
Scheme: Data — Data Format [5/5]

We can create arbitrary binary trees—with the restriction that only
leaf nodes contain data.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

((((() . 8) . 1) . (5 . 1))

5 11

NULL 1

10

Review
Scheme: Data — Varying Number of Parameters

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

A procedure call is a pair: (PROC . ARGS).

define will take this form of a “picture”
of a procedure call.

(define (sum . args)
…

)

How to make a recursive call on (cdr args)?

(sum . (cdr args)) ; WRONG!
(eval (cons sum (cdr args))) ; Okay
(apply sum (cdr args)) ; Okay (and also clearer)

(sum . (cdr args))
is just another way to write
(sum cdr args), which is
not what we want.

PROC ARGS

Procedure Call

args is a list of the arguments
of sum. So sum can take an
arbitrary number of parameters.

11

Review
Scheme: Data — Lazy Evaluation [1/3]

Normal evaluation in Scheme is eager.

However, we can do lazy evaluation in Scheme, using a promise:
a wrapper around an expression that leaves the expression
unevaluated.

When we force a promise, the expression is evaluated, and the
resulting value is stored in the promise and returned. Force
again, and the same value is returned, without reevaluating the
expression.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 12

Review
Scheme: Data — Lazy Evaluation [2/3]

Create a promise using delay.

> (define pp (delay (* 20 5)))

The type-checking predicate for promises is promise?.

> (promise? pp)
#t

Force a promise using force. Again, force a promise as many
times as you like; evaluation only happens the first time.

> (force pp)
100

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 13

Review
Scheme: Data — Lazy Evaluation [3/3]

Using promises, we can create the kind of lazy infinite lists we saw
in Haskell (rather less conveniently, though).

One way to do this is to construct a list as usual, from pairs and
null, but wherever there is a pair, we actually have a promise
wrapping a pair.

TO DO
§ Write code to create a lazy infinite list.
§ Write code to print out a portion of the above list. (With a little

thought, we can write a procedure that will print both lazy lists and
normal lists.)

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

See data.scm.

14

Scheme: Strings & I/O
Strings [1/3]

As in so many PLs, to understand Scheme I/O, it helps to know
something about Scheme strings.

String literals in Scheme are surrounded by double quotes. The
usual backslash escapes are accepted.

"This is a string."
"A newline: \nA double quote: \" A backslash: \\"

Check whether a value is a string with string?.

> (string? "42")
#t
> (string? 42)
#f

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

For code from this topic,
see string.scm.

15

Scheme: Strings & I/O
Strings [2/3]

Get the length of a string with string-length.

> (string-length "Hello!")
6

Concatenate strings with string-append.

> (string-append "abc" "def" "ghi" "jklmnop")
"abcdefghijklmnop"

Get a substring with (substring STRING START PAST_END).

> (substring "Howdy thar!" 2 7) ; Zero-based indices
"wdy t"

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

Includes the characters at indices 2, 3, 4, 5, 6, but not 7.

16

Scheme: Strings & I/O
Strings [3/3]

Convert a number to a string using number->string.

> (number->string 42)
"42"

Convert a string to a number using string->number. This returns
the number, or #f if the conversion could not be done. So the
result can be used in an if.

> (string->number "42")
42
> (string->number "Hello!")
#f

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

(if COND THEN-EXPR ELSE-EXPR)

When the above is evaluated,
THEN-EXPR is chosen if COND

evaluates to anything other than #f.

17

Scheme: Strings & I/O
Characters [1/2]

Character literals generally have the form #\CHAR. Some
characters have special literals.

#\A ; The 'A' character
#\newline #\space

Check whether a value is a character with char?.

> (char? #\x)
#t
> (char? "x")
#f
> (string? #\x) ; A Scheme character is not a string
#f

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 18

Scheme: Strings & I/O
Characters [2/2]

Convert a character to its numeric version (ASCII value/Unicode
codepoint) with char->integer. Reverse: integer->char.

> (char->integer #\A)
65
> (integer->char 65)
#\A

Convert between strings and lists of characters with string->list
and list->string.

> (string->list "Howdy thar!")
(#\H #\o #\w #\d #\y #\space #\t #\h #\a #\r #\!)
> (list->string '(#\a #\b #\c))
"abc"
12 Apr 2019 CS F331 / CSCE A331 Spring 2019 19

Scheme: Strings & I/O
Comparisons [1/5]

We have seen the Scheme numeric comparison operators: = < <=
> >=. These can only be used with numbers.

Some Scheme types have their own comparison functions.

> (string=? "abc" "def")
#f
> (string=? "42" 42)

ERROR
> (string<? "abc" "def")
#t

Also: string<=? string>? string>=?
char=? char<? char<=? char>? char>=?

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 20

Scheme: Strings & I/O
Comparisons [2/5]

There are several kinds of equality in Scheme.

The simplest is eq?, which means “same location in memory”.

> (eq? '() '())
#t
> (eq? 2 2)

IMPLEMENTATION-DEPENDENT
> (define a '(1 2))
> (eq? a '(1 2))
#f
> (define b a)
> (eq? a b)
#t

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 21

Scheme: Strings & I/O
Comparisons [3/5]

Next is eqv?, which means “same primitive value”.

> (eqv? 2 2)
#t
> (eqv? 2 2.0)
#f
> (define a '(1 2))
> (eqv? a '(1 2))
#f
> (eqv? "ab" "ab")

IMPLEMENTATION-DEPENDENT

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

Lists and strings are
not primitive values.

22

Scheme: Strings & I/O
Comparisons [4/5]

Then there is equal?, which does the following:
§ If the types are different, then return #f.
§ For primitive values (everything we have covered except strings

and pairs) of the same type, call eqv?.
§ For strings, call string=?.
§ For pairs, recursively call equal? on the cars & cdrs.

> (define a '(1 2))
> (equal? a '(1 2))
#t
> (equal? "ab" "ab")
#t

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 23

Scheme: Strings & I/O
Comparisons [5/5]

equal? mostly does what we usually want, with one caveat. Since
it always returns #f when the types are different, it can give
unexpected results with numbers.

> (equal? 2 2.0)
#f

I offer the following rule of thumb.
§ Use = for numeric equality.
§ Use equal? for most other kinds of equality.
§ If you want the code to indicate what type you are comparing, and

flag type errors for other types, then use a type-specific equality
function (e.g., string=?, char=?).

§ Use eq? or eqv? only if you are sure you know what you are doing.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 24

Scheme: Strings & I/O
Console Output [1/2]

Print any value with display. String conversion is automatic. No
trailing newline is printed. Print a newline with newline. Both of
these return void, which does not print in the REPL.

> (display "Howdy thar!")
Howdy thar!
> (newline)

> (display #\A)
A
> (display '(42 #t (300)))
(42 #t (300))
> (display +)
#<procedure:+>

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 25

Scheme: Strings & I/O
Console Output [2/2]

To do multiple I/O calls in a single expression, use begin. This
takes any number of arguments, evaluates them all, in order,
and returns the value of the last one.

> (begin
(display "dog")
(display "food")
(display "love")

)
dogfoodlove

begin takes arbitrary expressions, not just those that do I/O.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 26

Scheme: Strings & I/O
Console Interaction [1/5]

Read a line from the console with read-line. This takes no
parameters. It returns the typed-in line with no trailing newline.

> (begin (display "Type something: ") (read-line))
Type something: Hello there!
Hello there!

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 27

Typed by user

Scheme: Strings & I/O
Console Interaction [2/5]

How can we set a local variable to the return value of read-line in
a procedure?

We use let.

(let ; Locally bind vars to values in the expression
(
[VARIABLE1 VALUE1]
…
[VARIABLEn VALUEn]

)
(EXPRESSION)

)

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 28

Scheme: Strings & I/O
Console Interaction [3/5]

TO DO
§ Write a procedure to prompt for input, read a line, and then print it,

with some explanation (“Here is what you typed:”).

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

See string.scm.

29

Scheme: Strings & I/O
Console Interaction [4/5]

We can repeat using a recursive procedure.
Alternatively, use let with a name.

(let NAME
(
[VARIABLE1 VALUE1]
…

[VARIABLEn VALUEn]
)
(EXPRESSION)

)

Within EXPRESSION, we can use NAME as a procedure taking n
arguments. These become the values of VARIABLE1 through
VARIABLEn in that invocation of the procedure.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019 30

Scheme: Strings & I/O
Console Interaction [5/5]

TO DO
§ Write a procedure that reads a series of numbers, until a blank line

is entered, printing a running total after each. It should also
respond in a reasonable way if the user types something other than
a number.

12 Apr 2019 CS F331 / CSCE A331 Spring 2019

See string.scm.

31

