
Haskell: Lists

CS F331 Programming Languages
CSCE A331 Programming Language Concepts
Lecture Slides
Friday, February 24, 2017

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017 Glenn G. Chappell

Review
PL Categories: Functional PLs — Background

Functional programming (FP) is a programming style that
generally has the following characteristics.
§ Computation is considered primarily in terms of the evaluation of

functions (as opposed to execution of code).
§ Thus, functions are a primary concern. Rather than considered as

repositories for code, functions are values to be constructed and
manipulated.

§ Side effects & mutable data are avoided. The only job of a function
is to return a value.
§ A side effect occurs when a function alters data, and this alteration is

visible outside the function.
§ Mutable data is data that can be altered.

A functional programming language is a PL designed to
support FP well.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 2

Review
PL Categories: Functional PLs — Typical Characteristics

A typical functional programming language has the following
features/characteristics.
§ It has first-class functions.
§ It offers good support for higher-order functions.

§ A higher-order function is a function that acts on functions.
§ It offers good support for recursion.
§ It has a preference for immutable data.

A pure functional PL goes further, and does not support mutable
data at all. There are no side effects in a pure functional PL.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 3

Review
Introduction to Haskell — Characteristics: Type System

Haskell is a pure functional PL. It has first-class functions and good
support for higher-order functions.

Haskell has a sound static type system with sophisticated type
inference. So typing is largely inferred, and thus implicit;
however, we are allowed to use manifest typing, if we wish.

Haskell’s type-checking standards are difficult to place on the
nominal-structural axis.

Haskell has few implicit type conversions. New implicit type
conversions cannot be defined.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 4

Review
Introduction to Haskell — Characteristics: Flow of Control

Haskell implementations are required to do tail call optimization
(TCO). This means that the last operation in a function is not
implemented via a function call, but rather as the equivalent of
a goto, never returning to the original function.

Iteration is difficult without mutable data. And, indeed, Haskell has
no iterative flow-of-control constructs. It uses recursion instead,
with tail recursion preferred. The latter will generally be
optimized using TCO.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 5

Review
Introduction to Haskell — Characteristics: Syntax, Evaluation

Haskell has significant indentation. Indenting is the usual way
to indicate the start & end of a block.

By default Haskell does lazy evaluation: expressions are not
evaluated until they need to be. C++, Java, and Lua do the
opposite, evaluating as soon as an expression is encountered;
this is eager evaluation (or strict evaluation).

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 6

Review
Haskell: Functions — Basic Syntax [1/3]

The material for this topic is also covered in a Haskell source file,
which is extensively commented.

Haskell expression: stream of words separated by blanks where
necessary. Optional parentheses for grouping.
§ Each line below is a single Haskell expression. Type it at the GHCi

prompt and press <Enter> to see its value.

2+3
(2+3)*5
reverse "abcde"
map (\ x -> x*x) [1,2,3,4]

24 Feb 2017 CS F331 / CSCE A331 Spring 2017

See func.hs.

7

Review
Haskell: Functions — Basic Syntax [2/3]

Comments
§ Single line, two dashes to end of line: -- …
§ Multi-line, begin with brace-dash, end with dash-brace: {- … -}

Identifiers begin with letter or underscore, and contain only letters,
underscores, digits, and single quotes (').
§ Normal identifiers begin with lower-case letter or underscore. These

are used to name variables and functions.

myVariable
my_Function'_33

§ Special identifiers begin with UPPER-CASE letter. These are used to
name types, modules, and constructors.

MyModule

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 8

Review
Haskell: Functions — Basic Syntax [3/3]

Define a variable by giving its name, and equals sign (=) and an
expression for the value.

ab'c = 7 * (3 + 2)

A variable definition is not an expression in Haskell.
The above is legal in a Haskell source file. At the GHCi prompt it

must be preceded by let.

let ab'c = 7 * (3 + 2)

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 9

Review
Haskell: Functions — Defining Functions & Operators [1/3]

To define a Haskell function, write what looks like a call to the
function, an equals sign, and then an expression for what the
function returns.

addem a b = a+b

We can also define new operators. Infix binary operators have
names consisting of special characters. They are defined
similarly.

a +$+ b = 2*a + b

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 10

Review
Haskell: Functions — Defining Functions & Operators [2/3]

Function definitions use pattern matching. Define a function
differently for different patterns. The first matching pattern is
the one used.

Here is a factorial function.

factorial 0 = 1
factorial n = n * factorial (n-1)

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 11

Review
Haskell: Functions — Defining Functions & Operators [3/3]

We can use a regular function as an infix operator by surrounding
its name with backquotes (`). Having defined function addem,
try the following at the GHCi prompt.

2 `addem` 3

And we can use an operator as a regular function by surrounding
its name with parentheses. Having defined +$+, try the following
at the GHCi prompt.

(+$+) 5 7

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 12

Review
Haskell: Functions — Local Definitions

Use where to introduce a block (indent!) of local definitions.

plus_minus times a b c d = a_plus_b * c_minus_d where
a_plus_b = a + b
c_minus_d = c - d

Local-definition blocks can be nested.

twiceFactorial n = twice (factorial n) where
twice k = two*k where

two = 2
factorial 0 = 1
factorial curr = curr * factorial prev where

prev = curr-1

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 13

Review
Haskell: Functions — Function Application & Currying

Currying mean simulating a multiparameter function using a single
parameter function that returns a function.

For example, our function addem really takes one parameter. It
returns a function that adds that parameter to something. The
following are the same:

addem 2 3 -- Returns 5
(addem 2) 3 -- Returns 5

We can give the intermediate function a name.

add2 = addem 2
add2 3 -- Returns 5

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 14

Review
Haskell: Functions — Higher-Order Functions

A higher-order function is a function that acts on functions.

rev f a b = f b a

sub a b = a - b
rsub = rev sub

sub 5 2 -- Returns 3
rsub 5 2 -- Returns -3

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 15

Review
Haskell: Functions — Lambda Functions

A lambda function (or lambda expression) is a kind of
expression whose value is a function.
§ The name comes from the lambda calculus, a mathematical

system in which everything is a function. In this system, an
unnamed function is introduced using the Greek letter lambda (λ).

§ Haskell uses a backslash (\) since it looks a bit like a lambda.

square x = x*x
square’ = \ x -> x*x -- Using lambda function;

-- same as above

-- Alternate definitions for addem
addem’ = \ x y -> x+y
addem’’ a = \ y -> a+y
addem’’’ = \ x -> (\ y -> x+y)

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 16

Haskell: Lists
Lists & Tuples [1/4]

A statically typed PL will typically support two ways of aggregating
multiple data items into a single collection:
§ A collection of an arbitrary number of data items, all of the same

type. Example. C++ vector, list, deque.
§ A collection of a fixed number of data items, possibly of different

types. Example. C++ tuple, struct.

Haskell supports the above two categories as well, in the form of
lists and tuples.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017

For code, see list.hs.

17

Haskell: Lists
Lists & Tuples [2/4]

A Haskell list holds an arbitrary number of data items, all of the
same type. A list literal uses brackets and commas.

[] -- Empty list
[2, 5, 3] -- List of three Integer values
["hello", "there"] -- List of two String values
[[1], [], [1,2,3,4]] -- List of lists of Integer
[1, [2, 3]] -- ERROR; types differ

Haskell lists can be infinite.

[1, 3 ..] -- List of ALL nonnegative odd Integers

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 18

Haskell: Lists
Lists & Tuples [3/4]

The type of a list is written as the item type in brackets.

> :t [True, False]
[True, False] :: [Bool]

Lists with different lengths can have the same type.

> :t [False, True, True, True, True, False]
[False, True, True, True, True, False] :: [Bool]

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 19

This represents
the GHCi prompt.

Haskell: Lists
Lists & Tuples [4/4]

A Haskell tuple holds a fixed number of data items, possibly of
different types. A tuple literal uses parenthesis and commas.

(2.1, 1.2, "hello", True) -- Tuple: Double, Double,
-- String, Bool

Haskell tuples cannot be infinite.

The type of a tuple is written as if it were a tuple of types.

> :t (2.1, True)
(2.1, True) :: (Double, Bool)

Tuples with different numbers of items always have different types.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 20

Haskell: Lists
List Primitives [1/2]

A primitive operation (or simply primitive) is one that other
operations are constructed from.

Haskell has three list primitives.
1. Construct an empty list.

[]

2. Cons: construct a list given its first item and a list of other items.
Uses the infix colon (:) operator.

[5, 2, 1, 8]
5:[2, 1, 8] -- Same as above
5:2:1:8:[] -- Also same; ":" is right-associative

Continued …

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 21

Haskell: Lists
List Primitives [2/2]

(three Haskell list primitives, continued)
3. Pattern matching for lists.

ff [] = 3 -- Value of ff for an empty list
ff (x:xs) = 4 -- Value of ff for a nonempty list

Read “x:xs” as “x and some xs (plural)”. This is a common
convention.

Above, the parentheses around (x:xs) are required due to
precedence: function application has very high precedence.

gg [a] = 17 -- Value of gg for a 1-item list
gg [a, b, c] = 19 -- Value of gg for a 3-item list

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 22

Haskell: Lists
Other List Syntax — Strings & Ranges

A Haskell String is a list of characters (Char values).

['a', 'b', 'c']
"abc" -- Same as above

Use “..” to construct a list holding a range of values. There are
exactly four ways to do this.

[1..10] -- Same as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1,3..10] -- Same as [1, 3, 5, 7, 9]
[1..] -- Infinite list: [1, 2, 3, 4, 5, 6, 7, 8, …]
[1,3..] -- Infinite list: [1, 3, 5, 7, 9, 11, …]

These four are wrappers around enumFromTo, enumFromThenTo,
enumFrom, and enumFromThen, respectively.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 23

Haskell: Lists
Other List Syntax — List Comprehensions [1/2]

You have probably seen the mathematical notation known as a set
comprehension (or set-builder notation). Here is an example.

{ xy | x ∈ {3, 2, 1} and y ∈ {10, 11, 12} }

The above is read as, “The set of all xy for x in the set {1, 2, 3}
and y in the set {10, 11, 12}.”

A number of PLs, including Haskell, have a construct based on this
idea: the list comprehension. Here is a Haskell example.

[x*y | x <- [3, 2, 1], y <- [10, 11, 12]]

This deals with Haskell lists instead of sets, but is otherwise very
similar to the above set comprehension.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 24

Haskell: Lists
Other List Syntax — List Comprehensions [2/2]

The syntax of a Haskell list comprehension is as follows. Brackets
enclose the following:
§ An expression.
§ Then a vertical bar (|).
§ Then a comma-separated list of two kinds of things:

§ var <- list
§ Expression of type Bool

Here are some examples:

> [x*y | x <- [3, 2, 1], y <- [10, 11, 12]]
[30,33,36,20,22,24,10,11,12]
> [x*x | x <- [1..6]]
[1,4,9,16,25,36]
> [x | x <- [1..20], x `mod` 2 == 1]
[1,3,5,7,9,11,13,15,17,19]

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 25

Haskell: Lists
Lists & Recursion [1/3]

When writing a function that takes a list, it is very common to have
two cases.
§ One case handles the empty list: [].
§ The other case handles nonempty lists. Remember that a pattern

like a:as matches nonempty lists.

isEmpty [] = True
isEmpty (x:xs) = False

listLength [] = 0
listLength (x:xs) = 1 + listLength xs

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 26

Haskell: Lists
Lists & Recursion [2/3]

A function that takes a list will often be recursive. Such a function
will usually be organized as follows.
§ The version that handles the empty list ([]) will be the base case.
§ The version that handles nonempty lists (b:bs) will be the recursive

case. This will do a computation involving the head of the list (b)
and make a recursive call with the tail (bs).

myFilter p [] = [] -- p for predicate: function
-- returning Bool

myFilter p (x:xs) = if (p x) then x:rest
else rest where

rest = myFilter p xs

Note the if … then … else construction. We can put line breaks
pretty much anywhere we want inside this construction.

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 27

Haskell: Lists
Lists & Recursion [3/3]

Sometimes other kinds of recursion are used. Here is a function
that does lookup by index in a list (zero-based).

lookup 0 (x:xs) = x
lookup n (x:xs) = lookup (n-1) xs
lookup _ [] = error "lookup: index too big or negative"

Function error takes a String and returns any type; that is, it can
be used in any context. It does not actually return anything.
Instead, it crashes the program, printing a message that
includes the given String.

An alternate error-message function is undefined, which takes no
parameters. It is like error with a default message.

lookup _ [] = undefined -- Replaces the above line

24 Feb 2017 CS F331 / CSCE A331 Spring 2017 28

This pattern means unused parameter.

