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ABSTRACT
We present a high performance GPU programming language, based
on OpenCL, that is embedded in C++. Our embedding provides
shared data structures, typesafe kernel invocation, and the ability
to more naturally interleave CPU and GPU functions, similar to
CUDA but with the portability of OpenCL. For expressivity, our
language provides the FILL abstraction that releases control over
data writes to the runtime system, which both improves expres-
sivity and eliminates the chance of memory race conditions. We
benchmark our new language EPGPU on NVIDIA and AMD hard-
ware for several small examples.

1. INTRODUCTION
Modern hardware systems present enormous parallelism—at the
instruction level (superscalar), vector level (SIMD), thread level
(SMT), core level (SMP), and across the network—yet modern
software such as C++ or C# is primarily serial. Building usable
abstractions for parallel software has been identified as a key chal-
lenge for 21st century computer science [17]. In particular, the
modern Graphics Processing Unit (GPU) combines 16–48 way par-
allel SIMD execution, thousands of SMT threads, and 4-32 SMP
cores to execute thousands of floating point instructions per clock
cycle. To take advantage of this GPU hardware parallelism, ap-
plication software must provide approximately million-fold paral-
lelism while carefully managing memory accesses.

In this work, we explore several simple methods to express mas-
sive parallelism by embedding OpenCL in C++. We call the corre-
sponding library expressive programming for GPU: EPGPU. In ad-
dition to C++ embedding, our other key enabling technology is en-
coding detailed knowledge about the hardware performance model
into the runtime system. As shown in Figure 1, our system makes
it straightforward to mix C++ and OpenCL.

1.1 Prior Work
OpenGL’s GL Shading Language (GLSL or GLslang), introduced
in 2003, is a C++-like language for computing the colors of screen
pixels based on texture lookups and arbitrary amounts of C++-

like arithmetic. GLSL supports branching, looping, function calls,
a restricted form of user-defined classes, and a surprisingly rich
standard library, including access to a full set of texture lookup
functions including mipmaps. Since many games use GLSL, it is
comparatively reliable, high performance, and widely supported by
OpenGL drivers. The biggest language limitation of GLSL is that
each shader execution can only write to the pixel currently being
rendered; other writes are not allowed, which means some applica-
tions such as bitonic sort cannot be easily written in GLSL. How-
ever, mipmapping support means that some applications such as
multigrid are actually easier to write in GLSL than in more recent
languages, as we discuss in the appendix.

Microsoft’s DirectX 9 High Level Shading Language (HLSL) and
NVIDIA’s Cg are contemporary with and quite similar to GLSL.
Brook [1] is a stream programming language using HLSL as a
backend. Shallows [7] is a more recent GPL GPGPU library us-
ing OpenGL’s GLSL, but the wrapper only slightly reduces the
complexity of doing GPU work, and client code must still make
a number of calls to the underlying glut library.

NVIDIA’s CUDA, introduced in 2007, has become the de facto
standard programming model for expressing GPU parallelism. The
performance potential of CUDA is incredible, and the fact it is a
compiled language allows excellent CPU-GPU integration. How-
ever, CUDA only runs on NVIDIA GPUs, and its plain C style
pointers-and-memcpy interface is somewhat error prone.

Thrust [5] is an excellent C++ template wrapper around CUDA’s
memory and kernel interfaces, combining the best of high perfor-
mance and high productivity. Our work shares many of these goals,
but is based on OpenCL.

OpenCL [6] is a recent cross-platform library for heterogeneous
computing, including both GPU and CPU SIMD/SMP execution.
High performance implementations exist for x86 SSE CPUs, AMD
GPUs, NVIDIA GPUs, the Cell Broadband Engine, and even up-
coming cell phone GPUs. Like GLSL, OpenCL kernels are typ-
ically uploaded to the runtime system as strings and compiled at
runtime. Like CUDA, access to memory is via bare pointers, which
provide no protection against buffer overruns or memory race con-
ditions.

Other recent work has built a GPU backend for Haskell array codes
[3], and several groups are working on Matlab GPU backends such
GPULib [16]. These vector-style interfaces are easy to use, but the
performance is not always as high as a kernel-style interface.



Intel has released several parallel programming toolkits, most re-
cently the Array Building Blocks (ArBB) [15], a parallel language
embedded within C++ using template-lambda-calculus style tech-
niques. ArBB is an evolution of RapidMind, itself the commercial
evolution of the composeable shader language Sh [13]. ArBB is
capable of scaling to industrial strength problems, and has a solid
implementation for CPU SIMD instructions such as SSE and AVX,
but does not yet support a GPU backend.

The runtime system and library nature of this work is similar in
spirit to our own previous work on the CUDA message passing
library cudaMPI [9], an automatic parallelizing powerwall library
MPIglut [12], parallel unstructured mesh library ParFUM [11], and
Adaptive MPI [8]. A similar runtime system is the Charm++ Accel-
erator Interface [18], a runtime system which automatically over-
laps computation and communication using asynchronous kernel
executions.

2. GPU PROBLEMS & SOLUTIONS
In this section, we explore the software challenges posed by mod-
ern GPU hardware, and begin to explore how those challenges can
be addressed.

2.1 PCI Bus and GPU Driver Latency
The GPU’s arithmetic rate, measured in trillions of floating point
operations per second, is often limited by the memory and I/O
bandwidth. The GPU is distant from the CPU, and so it takes time
to coordinate GPU and CPU activities across the PCI-Express bus.
For example, as shown in Table 1, on an NVIDIA GeForce GTX
5801 the OpenCL kernel shown in Figure 1 costs about 5 microsec-
onds end to end latency to set up, but once started the kernel can
read, modify, and update one 32-bit floating point number every
0.05 nanoseconds. Put another way, we can only issue 200,000
kernels per second, modify 20 billion memory floats per second,
and calculate trillions of floats per second.

The memory/arithmetic performance gap is well known, but this
factor of 100,000 difference between kernel latency and bandwidth
can also dominate the execution time for GPU applications. For
this reason, we must make it easy for users to maximize the size
and minimize the total number of OpenCL kernel calls.

1Intel Core i5 2400 3.1GHz, 8GB RAM, Linux 2.6.38, g++ 4.4.3,
CUDA 3.2

GPU_FILLKERNEL(float,
poly3gpu, (float a,float b,float c,float d),
{ // OpenCL code
if (result>=0) {
result=((a*result+b)*result+c)*result+d;

}
}

)
void poly3(gpu_array<float> &arr,float x)
{ // C++ code

arr=poly3gpu(-0.01,x,0.01,0.2);
}

Figure 1: GPU polynomial evaluation in EPGPU. Each entry in
the array is read, the polynomial is evaluated with that value,
and the result is written back to GPU memory.

NVIDIA GeForce GTX 580
OpenCL Function Performance Model

Kernel 5 us + 0.05 ns/float
Host Read 46 us + 0.66 ns/float
Host Write 25 us + 0.68 ns/float

Write, Kernel, Read 95 us + 1.38 ns/float
Allocate 100 us + 0.05 ns/float

Allocate, Write, Kernel, Read 329 us + 1.43 ns/float
AMD Radeon 6850

OpenCL Function Performance Model
Kernel 8 us + 0.09 ns/float

Host Read 316 us + 1.39 ns/float
Host Write 333 us + 2.25 ns/float

Write, Kernel, Read 1659 us + 3.62 ns/float
Allocate 364 us + 2.00 ns/float

Allocate, Write, Kernel, Read 2598 us + 5.23 ns/float

Table 1: Measured performance for basic OpenCL operations
on various hardware. Latencies are in microseconds per oper-
ation; memory rates in nanoseconds per 32-bit float.

The well known bandwidth cost of reading and writing data back
over the PCI-Express bus to the host CPU are shown in Table 1.
These figures correspond to a few gigabytes per second of band-
width. However, note the enormous latency of memory transfers—
if there are several small pieces of data to transfer, rather than make
several small transfers it is more efficient to call even several ker-
nels to consolidate memory on the GPU before copying one large
piece. Unlike in CUDA, in OpenCL there currently appears to be
no latency or bandwidth improvement from using mapped buffers,
with or without CL_MEM_ALLOC_HOST_PTR.

The substantial costs of allocating new GPU memory are shown in
Table 1. Note that merely calling clCreateBuffer takes less than a
microsecond, but any use of the new memory triggers the actual
allocation. In addition to the per-float cost of allocation, which is
at least as expensive as writing memory, allocation incurs a startup
latency that is twenty times higher than a kernel’s already high la-
tency. Clearly, minimizing memory allocations is key for accept-
able performance.

The combination of memory allocation and host copy cost is par-
ticularly acute. Allocating new GPU storage, writing CPU data
into that storage, running a kernel, and reading the result back to
the CPU can be over 50 times more expensive than running a GPU
kernel on data left on the GPU.

One way to address the cost of transferring data is to leave the data
on the GPU for all processing except I/O. In complex applications,
this becomes difficult due to the number and variety of accesses to
application data. Hence one of our key efforts is to simplify the
process of defining and calling new GPU kernels. See Section 3 for
details on how EPGPU interleaves C++ and OpenCL.

We can address the high cost of GPU memory allocation by sim-
ply re-using allocated GPU memory buffers. This is typically done
manually, at the application level, but we feel it is more beneficial
when performed by the runtime system. Unlike application-level
code, the runtime system can reuse buffers between separate paral-
lel components, resulting in better “performance compositionality”
in addition to simpler application code.



We implemented buffer reuse in the usual way, by checking the
buffer pool for existing space of compatible size in our gpu_buffer
class constructor before EPGPU allocates a new buffer, and the de-
structor merely returns used buffers back to the pool. To avoid
keeping too much memory in the pool, we keep a short leash on the
number of buffers stored for reuse.

The performance improvement from buffer reuse is dramatic, as
shown in Table 2. This measures the time to declare a new GPU
data array and run a kernel on it. With current AMD drivers the
improvement in both latency and bandwidth is over twentyfold! On
NVIDIA hardware the improvement in bandwidth is only a factor
of two, but the latency improvement is still enormous.

AMD Radeon 6850
Without buffer reuse 282 us + 2.14 ns/float
With buffer reuse 10 us + 0.09 ns/float
NVIDIA GeForce GTX 580
Without buffer reuse 85 us + 0.10 ns/float
With buffer reuse 3 us + 0.05 ns/float

Table 2: Performance improvement for buffer reuse.

2.2 Choosing a Workgroup Size
GPU hardware allocates threads in blocks, known in OpenCL as
a “work group.” Delivered performance as a function of work-
group size is shown in Table 3 for powers of two, and plotted in
Figure 2 for every integer workgroup size. For kernels to take
advantage of the hardware’s parallelism, a work group needs to
contain hundreds of threads. But larger workgroups are not al-
ways better; GPU software must respect the limits of clGetDevice-
Info(CL_DEVICE_MAX_WORK_GROUP_SIZE) and clGetKer-
nelWorkGroupInfo(CL_KERNEL_WORK_GROUP_SIZE), which
depends on the kernel’s register usage. Using the largest possible
workgroup may limit cross-workgroup parallelism, impacting per-
formance.

These curves are shown for the kernel in Figure 1, but are similar
for any short kernel. Longer kernels can give good performance at
smaller workgroup sizes. The sawtooth pattern is due to the hard-
ware’s branch granularity (warp size), which is a lower bound on
the useful workgroup size.

Ideally, the OpenCL driver would do a good job of automatically
determining the workgroup size, but unfortunately in many cases
the automatically determined workgroup is of size one. For ex-
ample, if the size of kernel’s domain is a large prime number, a
terrible-performing single thread workgroup is the only way to di-
vide the domain into an integral number of workgroups less than
the hardware’s limit.

To handle domain sizes that are not an even multiple of our chosen
workgroup size, we insert a domain size check into each generated
kernel, similar to “if (i<length)”. These branches are highly coher-
ent, only firing on the last workgroup, and hence do not appear to
impact the code’s performance. In any case, the benefit from using
large workgroups drastically outweighs the cost of an additional
branch.

On current hardware, for simple kernels the optimum workgroup
size seems to be 256 threads, unless a lower limit is imposed by
the hardware. This is the value our runtime system automatically
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Figure 2: Timing as a function of workgroup size. Log-log plot.
The Radeon card cannot handle workgroups over 256.

targets for each kernel, unless overridden by the user. Our default
seems to work well for most memory-bound kernels.

For multidimensional domains, such as 2D rectangles, our runtime
system automatically divides the domain into square workgroups
with a total size not exceeding our target workgroup size.

2.3 Memory Race Conditions
General purpose GPU languages like CUDA and OpenCL provide
any kernel the ability to read and write from any location in GPU
RAM. This flexibility allows a variety of interesting new applica-
tions to be written, but at the price of enabling the memory race
conditions well known to shared memory programmers. Every part
of every program must either ensure that multiple kernels never
write to the same location in memory, or else use expensive atomic
operations to synchronize the multiple writes. The “single writer”
principle is easy to apply in theory, but in large complex programs
it is difficult to guarantee.

Many kernels do not need the flexibility to write to any location in
memory, but instead there is one unique destination for every kernel
work-item’s data. We call this a “FILL” type kernel, since it com-
pletely fills its memory. A FILL kernel is called on a destination
region, and is free to read any memory except that region. Each
FILL work-item does its own local computation and then hands
the result off to the runtime system to be written to the destination
memory region.

AMD Radeon 6850
size 1 .. 64 128 256 512 1024

ns/float 9.706 .. 0.164 0.100 0.088 n/a n/a
NVIDIA GeForce GTX 580

size 1 ... 64 128 256 512 1024
ns/float 4.500 ... 0.081 0.053 0.047 0.048 0.060

Table 3: Effect of workgroup size on GPU performance. Small
workgroups take many nanoseconds per float, while large
workgroups compute many floats per nanosecond! Perfor-
mance improves nearly linearly with workgroup sizes up to 64.
n/a means exceeds the maximum workgroup size.



A typical read-modify-write 1D kernel, such as shown in Figure 1,
works on a value “result” at array index “i”; similarly a 2D kernel
works on array index “i” (column) and “j” (row). The EPGPU run-
time system automatically generates these OpenCL variables via
the following support code.

// OpenCL generated by the runtime system
int i=get_global_id(0);
if (i<result_length) { // bounds check

float result=result_array[i]; // read

// <- User code goes here == modify step

result_array[i]=result; // write
}

For the user, the advantage of a FILL kernel is the lack of flexibility—
user code cannot write past the end of an array or cause a mem-
ory race condition, because the runtime system does the memory
writes. This is surprisingly liberating both for novice programmers,
who are not yet comfortable with indexing, as well as experienced
programmers, who know their pitfalls all too well.

For the runtime system, the fact that the FILL kernel is “well be-
haved” means a variety of interesting transformations become pos-
sible. For example, the array storage could be indexed using a
space-filling curve for locality. A metakernel could be constructed
that calls several versions of the FILL kernel and computes the vari-
ance of their results, for ensemble simulations or parameter sensi-
tivity analysis. Along distributed memory boundaries, the runtime
system could copy results directly into message buffers to be sent
to other processors.

3. EMBEDDING OPENCL IN C++
Because OpenCL is implemented as a library, not a compiler, it
is more difficult to provide a variety of basic features. But C++
provides an extremely rich set of tools for building domain-specific
languages embedded inside C++, including powerful preprocessor
macros, and partial specialization of user-defined templates. This
section describes how we use these C++ features in EPGPU.

3.1 Mixing OpenCL with C++ Source
OpenCL source code is uploaded to the driver as a string, so the
source code must either be stored in a separate file, or quoted as
a string. Because adding quotes around every line is tedious and
error prone, OpenCL code is normally relegated to a separate file.
But because OpenCL code must always be called by C++, and in
complex applications the call sequence is intricate, we find it is
more readable to bring the OpenCL and C++ closer together.

// C++ code
cl_program p = GPU_SOURCECODE( //now OpenCL

__kernel void fill_array
(__global int *arr,int value)

{
int i=get_global_id(0);
arr[i]=value;

}
);

One method to achieve this syntax is using the C preprocessor fea-
ture called “stringification,” which can quote a macro parameter

at compile time. Our macro “#define GPU_SOURCECODE(code)
gpu_compile(#code)” expands to include a quoted copy of every-
thing inside the macro’s parenthesis, which can be arbitrarily long,
even including semicolons and extending across multiple lines.

This is surprisingly useful and reliable, with one minor exception:
the preprocessor uses commas to separate macro arguments, so a
compile error results from the use of commas outside parenthesis,
such as in “int i,j;”. The workaround is simply to separate the dec-
larations into “int i; int j;”, a slight restriction in the language.

3.2 Functors for Type Checking
Modern GPU programming revolves around kernels, task-parallel
blocks of threads that share a common set of arguments. In our lan-
guage, we represent OpenCL kernels in C++ using classes with an
overloaded function-call operator; these function objects or “func-
tors” provide a number of features.

For example, OpenCL kernel arguments are only checked for size
at runtime, and never checked for data type. This means that in
bare OpenCL, passing a C++ integer into an OpenCL floating point
parameter, or passing a cl_mem handle representing an array of
floats into a kernel expecting an array of int2, silently results in
incorrect output at runtime. In a small program, this is relatively
simple to find and correct; but in large programs with hundreds of
kernels, it can be very difficult to track down the source of the error
at runtime.

However, it is possible to use C++’s template partial specialization
to both check OpenCL kernel arguments at compile time, and co-
erce compatible types into the correct data type. The fundamental
trick here is to use templates to specialize our kernel functor object,
and extract the template parameters to accept the appropriate argu-
ments and upload them as OpenCL kernel arguments. Here is the
two-argument version, which accepts CPU-side parameters from
C++, coerces them to the correct datatype, and passes them to the
GPU via OpenCL. The return type of our operator() is a runnable
kernel object, as described in the next section.

template <class type0,class type1>
struct gpuKernel<void (type0,type1)> {

...
runKernel &operator()(type0 v0,type1 v1)
{
clSetKernelArg(k,0,sizeof(v0),&v0);
clSetKernelArg(k,1,sizeof(v1),&v1);
return *this;

}
};

Given the kernel’s argument list, the compiler can pick and instanti-
ate the appropriate specialization automatically, but we must some-
how get the argument list into C++ from OpenCL. Forcing the user
to manually duplicate the argument list in both C++ and OpenCL
would inevitably lead to the sorts of mismatches we are trying to
eliminate. However, it is possible to use a C++ macro to send the
same argument list to both a C++ template specialization as well as
an OpenCL code string, as shown below. The result of the follow-
ing macro is the creation of a C++ function object with the same
name as the OpenCL kernel, and including compile-time argument
type checking.



#define GPU_KERNEL(kname,args,code) \
class kname##_type : \

public gpuKernel<void args> { \
static const char *getCode(void) { \

return "__kernel void "#kname#args\
"{" #code "}"; \

} \
} kname;

This macro-generated function object can then be used to define an
OpenCL kernel in a reasonably natural fashion, aside from a few
extra commas to separate the name, argument list, and function
body.

// OpenCL: Define the kernel "doAtan"
GPU_KERNEL(

doAtan,(__global<int *> d,int v), {
int i=get_global_id(0);
d[i]=atan2pi(v,i);

}
);

// C++: Run "doAtan" for every index in arr
arr=doAtan(a,17);

Unlike in OpenCL, in C++ “__global” is not a keyword. We work
around this mismatch by making a C++ template “__global” as a
typesafe wrapper around a bare OpenCL memory pointer “cl_mem”.
The “gpu_array” types decay into this when passed as arguments.

3.3 Running Kernels on Arrays
Now that we have function arguments, the only thing remaining to
execute a kernel is the kernel’s domain of execution (global work
size), and for FILL kernels we need the destination array.

In EPGPU, we determine the domain of execution using an over-
loaded assignment statement “array=kernel(args);”. For FILL ker-
nels, the same assignment statement sets the given array as the des-
tination for the results computed by the kernel, which are passed
into OpenCL via generated kernel arguments not visible to the user.

For running a kernel on a novel domain, such as a subset of an ex-
isting grid, users can call the kernel’s “run” method directly, sup-
plying the dimensions the kernel should execute over.

4. PERFORMANCE EXAMPLES
We have extensively benchmarked the performance of our EPGPU
library for several small applications on a variety of hardware, as
summarized in Table4. The hardware is: a six-core AMD Phe-
nom II 3.2GHz CPU; an $150 AMD Radeon 6850 desktop GPU;
an older $200 NVIDIA GeForce GTX 280 desktop GPU; a laptop
NVIDIA GeForce GTX 460M GPU; and a $500 NVIDIA GeForce
GTX 580 desktop GPU. With sufficient attention to detail in the li-
brary, the same EPGPU binary runs perfectly on all these machines,
which confirms OpenCL’s binary interoperability. Bandwidths are
measured using GPU manufacturers’ standard: total global mem-
ory bytes read or written.

Broadly, the 6850 and 280 have good arithmetic rates, but memory
accesses must be coalesced to be fast. By contrast, both the 460M
and 580 are “Fermi” parts, with onboard coherent global memory

caches, and so give better performance for non-coalesced memory
access patterns. This difference is especially evident for stencil, and
the matrix transposes naiveT and localT discussed in Section 4.3.

CPU 6850 280 460M 580
poly3 2GB/s 92GB/s 35GB/s 38GB/s 83GB/s
mbrot 10GF 156GF 199GF 92GF 372GF

stencil 2GB/s 77GB/s 11GB/s 49GB/s 223GB/s
naiveT 1GB/s 3GB/s 3GB/s 14GB/s 63GB/s
localT 0.2GB/s 19GB/s 29GB/s 24GB/s 93GB/s

Table 4: EPGPU example application performance on var-
ious hardware. Measurements are in gigabytes per second
of memory bandwidth for memory-bound applications, and
gigaflops for compute-bound applications. All applications
benchmarked at 1024x1024 array resolution.

Figure 1 shows a trivial FILL kernel used to evaluate a cubic poly-
nomial. This kernel runs at memory read-modify-write rate, about
80GB/s on a GTX 580.

4.1 Mandelbrot Example
Figure 3 shows the complete source code for a simple GPU Man-
delbrot set renderer. First, note that the main function can imme-
diately begin work: EPGPU automatically initializes the OpenCL
library and compiles the kernel. The width (w) and height (h) pa-
rameters are truly arbitrary, and performance is still good even if
they are large prime numbers.

OpenCL does not support complex numbers by default, and does
not provide operator overloading, so the complex arithmetic is em-
ulated using “float2” vectors. Figure 4 shows the colorized output.
This is a complex area in the set, where high iteration count points
are interleaved with low iteration count points, so branch granular-
ity is a significant limiting factor. Aside from branches, the code
is arithmetic bound, computing an average of 1,593 flops per pixel,
and achieves 372 gigaflops/second on a GTX 580.

4.2 Stencil Example
Figure 5 shows a simple 2D five-point stencil on a regular grid.
Compared to this simple example, real applications such as com-
putational fluid dynamics do dramatically more arithmetic per grid
cell, which improves the overall computation to memory ratio, but
this trivial version maximally stresses the runtime system. This ker-
nel benefits from global memory cache, running at about 220GB/s
on the GTX 580. On Fermi cards, the code’s performance seems to
be competitive with a much more complex hand-optimized CUDA
version exploiting __shared__ memory; as well as versions using
texture memory (OpenCL images).

In main, the GPU 2D array “D” is created and destroyed at every
iteration of the time loop, but this is actually efficient due to the
buffer reuse described in Section 2.1. In stencil_sweep, the AMD
OpenCL compiler actually seems to use a slower divide instruc-
tion when the average is written more naturally as sum/4.0 instead
of sum*0.25; but either version runs at the same speed with the
NVIDIA compiler. For further details on 3D stencil tuning on the
GPU, see Micikevicius and Paulius [14], and also see a number
of detailed optimizations and cross-platform performance compar-
isons in a recent survey [4].



#include "epgpu.h" /* our library */
#include <fstream>

GPU_FILLKERNEL_2D(unsigned char,
mandelbrot,(float sz,float xoff,float yoff),
/* Create complex numbers c and z */
float2 c=(float2)(

i*sz+xoff,
(h-1-j)*sz+yoff

);
float2 z=c;

/* Run the Mandelbrot iteration */
int count;
enum { max_count=250};
for (count=0;count<max_count;count++) {

if ((z.x*z.x+z.y*z.y)>4.0f) break;
z=(float2)(

z.x*z.x-z.y*z.y + c.x,
2.0f*z.x*z.y + c.y

);
}
/* Return the output pixel color */
result=count;

)

int main() {
int w=1024, h=1024;
gpu_array2d<unsigned char> img(w,h);
img=mandelbrot(0.00001,0.317,0.414);

// Write data to output file
std::ofstream file("mandel.ppm");
file<<"P5\n"<<w<<" "<<h<<"\n255\n";
unsigned char *ca=new unsigned char[w*h];
img.read(ca);
file.write((char *)ca,w*h);

}

Figure 3: Mandelbrot rendering example.

4.3 Matrix Transpose
Figure 6 shows two versions of matrix transpose. The naive version
is a trivial FILL kernel, but this results in scattered reads that per-
form especially poorly on older cards: about 3GB/s on the Radeon
6850 or GTX 280. To avoid the global memory scatter, the opti-
mized version first does a set of contiguous global reads into local
memory, switches indexing to essentially do a local transpose, and
then writes back to global memory in the transposed order. This op-
timized version yields nearly a tenfold speedup on older hardware,
and is still quite helpful even on the newest cards.

However, the number of lines of code needed is about fivefold
more. Randal Schwartz popularized the quote “Make easy things
easy, and make hard things possible,” but languages and runtime
systems can make hard things easy as well. Specifically, it should
be possible to build abstractions to factor out the hardware knowl-
edge expressed in local_transpose for use in other similar applica-
tions, future work we explore in the next section.

Figure 4: Colorized output from Mandelbrot renderer.

5. CONCLUSIONS AND FUTURE WORK
We have presented the design of a new GPU parallel language built
from OpenCL and embedded inside C++. The language is designed
to maximize programmer productivity by minimizing the distance
between definition and use, reducing duplication of declarations
and data structures, and eliminating opportunities for error.

This effort is just beginning, and an enormous amount of work re-
mains to be done. The notion of well behaved FILL kernels can
be exploited in a variety of interesting ways by runtime and li-
brary writers. Our language is under rapid development, support-
ing new features and more regular syntax for existing features. A
more compiler-like preprocessing of the generated OpenCL code
would allow a cleaner syntax for accessing 2D arrays, and allow us
to insert runtime bounds checking for debugging. A key enabling
technology for our future work is kernel data dependency analysis,
which is dramatically simplified for kernels using our FILL kernel
interface. Another idea we have not begun to exploit is the possi-
bility of generating a C++ CPU-side version of each FILL kernel,
which the runtime system could choose to use on datasets too small
to benefit from the higher bandwidth of the GPU.

We have not addressed distributed-memory parallelism; although
explicit memory-passing work along similar lines to cudaMPI [9]
would be a natural addition, a higher-productivity solution would
provide a globally shared view of GPU memory. An automated
performance tuning component would be useful to optimize kernel
sizes and work parameters. A more ambitious task would be to
lazily evaluate GPU kernels, reducing kernel startup overhead by
transparently combining multiple kernel calls.

We invite the reader to download, [10] experiment with, extend,
and contribute to EPGPU!



/* Set up initial conditions */
GPU_FILLKERNEL_2D(float,
stencil_setup,(float sz,float cx,float cy),
float x=i*sz-cx; float y=j*sz-cy;
if (sqrt(x*x+y*y)<=3.0) { // inside circle

result=1.0;
} else { // outside the circle

result=0.0;
}

)

/* Do neighborhood averages */
GPU_FILLKERNEL_2D(float,
stencil_sweep,(__global<float *> src),

int n=i+w*j; // our 1D array index
if (i>0 && i<w-1 && j>0 && j<h-1)
{ // Interior--average four neighbors

result = (src[n-1]+src[n+1]+
src[n-w]+src[n+w])*0.25;

} else { // Boundary--copy old value
result = src[n];

}
)

/* C++ driver and I/O code */
int main(void) {

int w=1024, h=1024;
gpu_array2d<float> S(w,h);
S=stencil_setup(0.01,2.0,2.4);
for (int time=0;time<1000;time++) {

gpu_array2d<float> D(w,h);
D=stencil_sweep(S);
std::swap(D,S);

}

// Write data to output file
std::ofstream of("stencil_image.ppm",

std::ios_base::binary);
of<<"P5\n"<<w<<" "<<h<<"\n255\n";
float *fa=new float[w*h];
S.read(fa);
char *ca=new char[w*h];
for (int j=0;j<h;j++)

for (int i=0;i<w;i++)
ca[i+j*w]=(unsigned char)(

255.0*fa[i+j*w]
);

of.write(ca,w*h);
delete[] fa; delete[] ca;
return 0;

}

Figure 5: A complete 2D five-point stencil example.
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/* Simple naive 2D matrix transpose.
src must have dimensions h x w. */

GPU_FILLKERNEL_2D(float,
naive_transpose,(__global<float *> src),

result=src[j+i*h];
);
... from C++ ...

gpu_array2d<float> src(h,w),dst(w,h);
src=...;
dst=naive_transpose(src);

...

/* __local optimized matrix transpose.
dst[i+j*w] = src[j+i*h]; */

GPU_KERNEL_2D( local_transpose,
(__global<float *> dst,
__global<float *> src,int w,int h),

{
enum N=16; // size of local work groups
int2 G=(int2)(N*get_group_id(0),

N*get_group_id(1));
int2 L=(int2)(get_local_id(0),

get_local_id(1));
__local float loc[N*N]; // transpose here

int2 S=G+(int2)(L.y,L.x); // Read flipped
if (S.x<w && S.y<h)
loc[L.y+N*L.x]=src[S.y+S.x*h];

barrier(CLK_LOCAL_MEM_FENCE);

int2 D=G+L; // Write forwards
if (D.x<w && D.y<h)
dst[D.x+D.y*w]=loc[L.x+N*L.y];

}
);
... from C++ ...

local_transpose.override_local[0]=16;
local_transpose.override_local[1]=16;
local_transpose(dst,src,w,h).run(w,h);

...

Figure 6: Naive and optimized matrix transposes.
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APPENDIX
GPGPU in OpenGL Shading Language (GLSL)
While paper primarily discusses OpenCL, this appendix discusses
GLSL, the OpenGL Shading Language, a much older and more
limited language. EPGPU’s concept of FILL kernels is derived di-
rectly from GLSL.

Figure 7: GLSL multigrid fluid dynamics, at 5ms/frame.

The most salient feature of GLSL is that it is intended for graph-
ics. 2D or 3D textures are the primary source of data for GLSL
shaders, and can be freely sampled at any location exactly as in
OpenCL or CUDA. However, GLSL only supports a single exter-
nally visible “kernel” per source file, named main, and the only out-
put from this kernel is a single multichannel builtin variable named
“gl_FragColor.” As the name implies, this variable determines the
color written to the corresponding pixel in the current framebuffer,
which can be bound to a 2D texture or 2D slice of a 3D texture.

Because the GLSL driver determines where and when each pixel
is written, the driver has complete freedom to organize textures’
memory layout to optimize performance. Internally, GLSL tex-
tures use a space-filling curve layout in memory [2], which results
in excellent access locality for stencil, transpose, as well as more
regular access patterns. Crucially, unlike OpenCL or CUDA, GLSL
provides ready access to texture mipmaps, which are exceptionally
useful for multigrid.

Figure 7 shows a 2D incompressible fluid dynamics simulator writ-
ten in GLSL, and running at 200 million finished pixels per second
(200fps at 1024x1024) using RGBA half float 8 byte pixels. In
just 50 lines of GLSL, this simulator applies Stam-style upwind
advection, solves the Helmholtz problem using a multigrid penalty
method based on texture mipmaps, and applies all boundary condi-
tions.

GLSL does not provide any access to GPU global memory (it has
no pointers), nor GPU local memory (you cannot declare thread
groups or shared data), and GLSL functionality can only be ac-
cessed by tediously making dozens of OpenGL calls. For some
applications, these are serious limitations. But the conceptual ex-
ecution model of GLSL is valuable: it easy to learn, literally im-
possible to crash, and scales to extremely high performance and
surprisingly complex problems.


