
CS 471 - Senior Capstone I, Fall 2013
Technical Writing Tips

General Technical Writing Tips

Keep in mind that writing is more difficult than programming (the language is bigger with a much
more expressive syntax)
Should look like a professional document
Keep technical documents simple and "dry"
If you can express an idea in 7 words instead of 10, do it!
Formatting/fonts/margins/acronyms/etc must be consistent
You have to assume that these will be printed and used in hard-copy form. Therefore, you will need a
quality table of contents with correct sections numbers.
Use strong/professional language:

weak/informal strong/professional
made created/developed
give provide
is going to will
will help improve
wants to have requires
be able to let allow
handle support
talk over network communicate
so as to to
to reduce excess verbosity

Software Requirements Tips

Use and follow the template provided - it is similar to following a checklist
Start with user stories. They should be narrative and describe how users will interact with the software
system. (Example: After accepting a contract, the user will create several tasks, providing a time
estimate and priority for each new task. Next, the user displays all unfinished tasks by priority and
makes any adjustments needed.)
Include sample interfaces - a picture is worth 1000 words - to help drive discussions with the client and
reduce writing required
Number all requirements for reference (e.g. This code tests the non-functional requirement 4.8.1 in the
Software Requirements Document)
This document describes WHAT is needed, not HOW it is done.
Rare to use a bullet list - everything needs to be numbered for reference (in SWR, DPD, TESTING,
code, etc)
We usually do not specify priorities of tasks in SWR, since they are almost always "high" or "very
high" and will change during development.
Use a metric than can be measured instead of vague goals, e.g. needs to run quickly:

vague measureable
must be fast must respond to user input within 1 second
must handle big task lists must support at least 1000 active tasks and 1,000,000 archived tasks
deal with heavy loads must support 1,000 simultaneous users
easy to use after 4 hours of training a user will make less than 1 mistake per hour

