
SOFTWARE SIMULATION OF PHYLOGENETIC
TREE BASED ON MIXED AND COMPLEX

MODELS

A

PROJECT

Presented to the faculty of University of Alaska Fairbanks

In Partial Fulfillment of the Requirements of

MASTERS IN SOFTWARE ENGINEERING

By

Md. Muksitul Haque

Fairbanks, Alaska

August 2008

SOFTWARE SIMULATION OF PHYLOGENETIC
TREE BASED ON MIXED AND COMPLEX

MODELS

By

Md. Muksitul Haque

RECOMMENDED:

 Advisory Committee Co‐chair Date

 Advisory Committee Co‐chair Date

Advisory Committee Member Date

APPROVED:

 Dept Head, Computer Science Department Date

 Dean, College of Science, Engineering, and Mathematics Date

 Dean of the Graduate School Date

 Date

ABSTRACT

The aim of this project was to create a software system called PhyloSim which can generate
complex data from a synthetic phylogeny. This new system uses multi or mixed mathematical
models and variable input parameters for construction of phylogenetic trees. Models that were
implemented include covarion, mixture-models, GTR+Γ, GTR+Γ+I, F84, HKY (K2P, F81 and
JC69), JTT, WAG, PAM, BLOSUM, MTREV and CPREV. Many of these models are discussed
in this report.

These more complex mixture models are of interest because they are believed to be more
biologically realistic than those in widespread use currently. However, in order to understand
their performance in phylogenetic inference it is necessary to simulate data according to them
and see how successful inference schemes are in recovering the tree. Currently available
simulators are very limited and insufficient for studying newer phylogenetic models. PhyloSim is
an improvement in this respect.

PhyloSim was developed in accordance with a conventional software development plan. The
software development approach uses a hybrid of a classical software engineering approach and
an agile programming approach. The agile part entails the sequential development of a series of
phylogenetic models. Each model was tested carefully before then next was started. The
developments were done in accordance with good software engineering practices (i.e.
requirement analysis, followed by design, implementation and test). This approach and its results
are described in the report and its appendices. A portion of this source code is included in an
appendix. Further software evolution is expected to be based on results from the future use of
PhyloSim.

 1

2

ACKNOWLEDGEMENTS

I thank Dr. Peter J. Knoke, Department of Computer Science, University of Alaska Fairbanks, Dr.
John Rhodes, Department of Mathematics, University of Alaska Fairbanks and Dr. Orion Lawlor,
Department of Computer Science, University of Alaska Fairbanks for the guidance and support they
provided.

 I would also like to express my sincere appreciation to Dr. John Rhodes, Associate Professor of
Mathematics and Dr. Elizabeth S. Allman, Associate Professor of Mathematics, University of Alaska
Fairbanks for suggesting this study and for their significant contribution to the domain‐specific research.
I would also like to thank Dr. Allman for the time she took for extensive testing of all the models and for
performing simulations with a broader range of parameter values and trees.

 Finally I would like to thank people in The UAF Biotechnology Computing Research Group
especially, James Long and Shawn Houston, for their support. This work was partially supported by AK
INBRE Grant Number 5P20RR016466 from the National Center for Research Resources (NCRR), a
component of the National Institutes of Health (NIH). It was also supported by the National Science
Foundation, through DMS grant #0714830.

3

TABLE OF CONTENTS

ABSTRACT………. 1

ACKNOWLEDGEMENTS …………………………………………………………………………………………. 2

TABLE OF CONTENTS..……………………………………………………………………………………………… 3

CHAPTER 1. INTRODUCTION………………………………………………………………………………….. 6

CHAPTER 2. DOMAIN BACKGROUND AND RELATED WORK………………………………….. 8

2.1 Introduction

2.2 Molecular Evolution

2.2.1 DNA structure

2.2.2 Mutations

2.2.3 Aligned Orthologous Sequences

2.2.4 Newick Format for phylogenetic tree representation
2.3 The Software

CHAPTER 3. DEFINITION OF THE MODELS PROBLEM……………………………………………. 14

3.1 Probabilistic Models of DNA mutation

3.1.1 A simple example:

3.1.2 A continuous‐time version

3.2.1 Markov models of DNA base substitution

3.2.2 A common rate‐matrix variant of the Model

3.2.3 Properties of Markov Matrix

3.3 Jukes Cantor and Kimura models

3.3.1 Jukes Cantor

3.3.2 Kimura Models

3.4 Time Reversible Model

3.5 A simple construction of a Model

CHAPTER 4. PROJECT PLANNING………………………………………………………………………….. 25

 4.1 Objective

4.2 Main tasks to be done and their sequences

4

4.3 Resources

4.4 Risk Analysis

4.5 Schedule

4.6 Project Plan

CHAPTER 5. SOFTWARE DEVELOPMENT APPROACH……………………………………………. 28

CHAPTER 6. SOFTWARE REQUIREMENTS ANALYSIS……………………………………………….. 30

6.1 Technical requirements for the programmer

6.2 Data requirements for PhyloSim

6.3 Requirement specification

1. Introduction

2. System Requirements

2.1 Stakeholders

2.2 Assumptions

2.3 User Characteristics

2.4 Functional Requirements

2.5 Non‐Functional Requirements

3. Design

4. Constraints on time and resources

CHAPTER 7. SOFTWARE ARCHITECTURE, SOFTWARE DESIGN AND SOFTWARE
IMPLEMENTATION………………………………………………………………………………………………… 34

7.1 Software Architecture

7.2 Software Design

7.3 Software Implementation

CHAPTER 8. SOFTWARE TEST, TEST RESULTS AND DISCUSSION…………………………….. 52

8.1 Test plan

8.2 Test case

8.2.1 Test of the System

8.2.2 White Box Testing

8.2.3 Black Box Testing

8.3 Performance Test

8.4 Test documentation

5

CHAPTER 9. SUMMARY AND CONCLUSION…………………………………………………………… 54

CHAPTER 10. RECOMMENTATIONS FOR FUTURE WORK…….……………………………………56

GLOSSARY………57

REFERENCES……….59

APPENDICES……….61

 Appendix A: Software Project Plan……….…………………………………………………….61

 Appendix B: Work Breakdown Structure…………………………………………………….62

 Appendix C: Task Network—PERT Chart …………………………………………………….63

 Appendix D: Gantt Chart …………………………………………………………………………….64

 Appendix E: Test Documentation………………………………………………………………..65

 Appendix F: Sample Source Code ………………………………………………………………67

 Appendix G: Program Snapshots………………………………………………………………….72

CHAPTER 1. INTRODUCTION

The goal of this project was to create a flexible software system for simulating the evolution of biological
sequences, such as DNA and proteins. This software incorporates mixture-models[1][2][3],
covarion[4][5][6][7] models and other complex models of current interest in phylogenetics. It is intended
to be useful for assessing the performance of phylogenetic inference schemes[8][9][10][11]. These more
complex mixture models are of great current interest, as they are believed to be more biologically realistic
than those in widespread use. Currently available simulators are very limited, and are insufficient for
studying newer models.

Popular phylogenetic sequence simulators such as Seq-Gen[12][13] were studied, and a system of greater
flexibility for the models used for such program and the their output trees was proposed. The main feature
of the proposed system was a general framework in which any of the currently used model information
can be entered. Using this information, the system simulates evolution along a phylogenetic tree and
produces sequences for the leaves and internal nodes of the tree. The above issues are further discussed in
chapters 2 and 3.

The proposed flexible system was developed and subsequently named PhyloSim. The implemented
mathematical models for PhyloSim include DNA, protein and codon models. Specifically, the models
have been implemented: are GTR, GM[14], F81, F84, HKY, JC, K2P, TN, CFN, GTR+Γ, GTR+Γ+I,
TreeMixture, mixture, Invariable, BLOSUM, CPREV, DAYHOFF, DCMUT, JTT, MTMAM, MTREV,
VT, WAG, WAGSTAR, EqualDistCovarion and ScaledCovarion[15][16][17]. These models are
discussed further in chapters 3 and 7. Appropriate data structures were used to store the information of
nodes and edges as the tree is being constructed. All of the models are rigorously tested with varying
input and were checked against other popular phylogenetic inference[18][19] software such as
PAUP*[20] and PhyML[21] for consistency. Test methods and results are discussed in chapter 8.

PhyloSim takes required model parameters from an input file and saves the output as output.nex file. An
advantage of the PhyloSim is that it accepts custom bases, and flexible tree and matrix sizes can be used.
There are options for recording ancestral sequences and displaying sequences in interleaved or non-
interleaved formats. Multiple simulations or datasets can be created in the same run of the program.
Complex model construction supports across-site rate variation & covarion models, mixture models allow
multiple models to be used in different ratios on the gene sequence along the phylogenetic tree.
Substitution rates are one of the most fundamental parameters in a phylogenetic analysis and are
represented in phylogenetic models as the branch lengths on a tree. Variation in substitution rates across
an alignment of molecular sequences is well established and likely caused by variation in functional
constraint across the genes encoded in the sequences. Rate variation across alignment sites is important to
accommodate in a phylogenetic analysis; failure to account for across-site rate variation can cause biased
estimates of phylogeny or other model parameters. Traditionally, rate variation across sites has been
modeled by treating the rate for a site as a random variable drawn from some probability distribution
(such as the gamma probability distribution) or by partitioning sites to different rate classes and
estimating the rate for each class independently[22]. Tree mixtures allow changes according to different
trees simulated by different models but with the same taxa in each of them.

6

7

The GUI created by gtk+[23] library includes an easy to use tree creator. The GUI comes with a template
for each of the models; the model user can make use of these to create the input file for any of the model
data very quickly. It also allows the user to see the output below the input window. The GUI comes with
other options and a help menu.

The development of PhyloSim was a complex project because it requires the use of great deal of data,
because it uses a different style of programming approach, and because of its functional and non-
functional requirements. To implement the project successfully with high quality software, a hybrid
software engineering approach has been used.

These software engineering issues and methods are further discussed in chapter 4 through 8. Chapter 3
and 7 contains flowcharts and algorithms of the architecture, design and implementation of the PhyloSim
software and the mathematical models.

Finally, chapter 9 provides a summary and conclusions based on results from the project, which chapter
10 provides recommendation for further work on PhyloSim development. Such further work is expected
to be based on findings from its further use. Increased use could be expected if access were improved by
making it web-based. Also larger models could be supported with continuing good performance by use of
parallel programming, better mathematical models and better algorithms.

CHAPTER 2. DOMAIN BACKGROUND AND RELATED WORK

2.1 Introduction

In modern molecular biology, new sources of data are present today. Biological sequences such
as DNA and protein retain similarity to their ancestral parents. Mathematical methods can be used
for analyzing the similarity and the differences in the sequences to infer phylogenies. Through the
aid of mathematical thinking in biology, we nowadays have several tools to extract evolutionary
information from sequence data. But still challenges remain to improving methods, and such
research is ongoing.

2.2 Molecular Evolution

Natural selection is the main mechanism through which evolution occurs. For selection to occur
however there must be underlying changes in genetic makeup within a species. Because selection
acts to reduce variability, new sources of genetic variation are introduced at the molecular level,
such as the DNA of each individual, through random mutation.

With changes in their DNA, some offspring might be more or less capable of living than their
parents. A particular gene’s DNA might mutate over generations and become very different than
its ancestral form. So many species descending from the same ancestor can have different DNA
forming the same gene. The similarity shows common ancestors while difference shows
evolutionary divergence.

So we can conclude that species with more similar genetic sequences are probably more closely
related.

But for inferring an evolutionary tree relating a large number of different species with varying
degree of similarity of a chosen gene, we need more elaborate mathematical ideas of how the
mutations occurred.

First let us cover some biological background.

2.2.1 DNA structure

The structure of DNA is a double helix, with about 10 nucleotide pairs per helical turn. Each
spiral strand, composed of a sugar phosphate backbone and attached bases, is connected to a
complementary strand by hydrogen bonding (non- covalent) between paired bases, adenine (A)
with thymine (T), and guanine (G) with cytosine (C). Adenine and thymine are connected by two
hydrogen bonds (non-covalent) while guanine and cytosine are connected by three. This structure
was first described by James Watson and Francis Crick in 1953.

Because of chemical similarity, adenine and guanine are called purines, and cytosine and thymine
are called pyrimidines. We always find A paired with a T or G paired with a C. So knowing one
side of the ladder helps to know the other side. For example if we have sequence

8

AATTGGCC

Then the complementary sequence would be

TTAACCGG

Some sections of this DNA are used to form genes that have information for creation of proteins.
Three consecutive bases in these genes create codons, where each codon specifies a specific
amino acid to be placed according to genetic code. There are 43=64 different codons and 20
amino acids. Three of the codons signal the end of the protein sequence, and it do not code for an
amino acid.

Not all DNA are coded into genes, 97% of human DNA is believed to be non-coding. Some of
this may be meaningless, but other parts probably serve as controllers of some sort. It is not yet
understood.

2.2.2 Mutations

A common mutation in copying sequences of DNA is called a base substitution. This happens by
replacing one base by another base at a certain site in the sequence. An example of a base
substitution is

AATTGGCCC

ATTTGGCCC

A base substitution of A→T has happened on the 2nd site.

In a base substitution if a purine replaces a purine or a pyrimidine replaces a pyrimidine then it is
called transition; an interchange of these classes is called a transversion. Transitions usually
occur more than transversions because the chemical structure of the molecule changes less under
a transition than a transversion.

Special cases of base substitution are hidden mutation such as C→T→ G in which a subsequent
mutation hides an earlier mutation. This may happen in the case where we do not have all the
sequences of all generations, and we would not know. Back mutation C→T→C is a special case
of hidden mutation.

Other things that happen more rarely in natural populations are insertion or deletion of one or
consecutive bases.

2.2.3 Aligned Orthologous Sequences

All parts of the genome are believed to be descended from one much smaller ancestral piece of
nucleic acid. All genomes have originated from this ancestral sequence by gene duplication, loss
of parts of resulting genomes, insertion and rearrangements of various sorts. As complete
genomes have been sequenced, both gene family and genome structure have become available in

9

those species. Specialized methods are required to gain an understanding of the events in gene
family and genome evolution and to assist in inferring phylogenies.

One such method is sequence alignment. In order to compare two or more sequences, it is
required to align the conserved and unconserved residues across all the sequences. The residues
form a pattern from which the relationship between sequences can be determined with
phylogenetic programs. When the sequences are aligned, it is possible to identify locations of
insertions or deletions because of their divergence from their common ancestor. There are three
possibilities:

1. The bases match: this means that there is no change since their divergence, although
back mutation is possible
 2. The bases mismatch: this means that there is a substitution since their divergence.
 3. There is a base in one sequence, no base in the other: there is an insertion or a deletion
since their divergence.

A good alignment is important for the construction of phylogenetic trees. The alignment will
affect the distances between two different species and this will influence the inferred
phylogeny[16].

There are some good search algorithms such that when given a gene identified in one organism it
can locate similar genes in related organisms. By experimentally verifying that these in fact are
genes and they have similar functions, we can assume that they are orthologous, which means
they came from a common ancestral sequence.
For some data, we can align orthologous sequences from different organisms easily. For others,
finding good alignment is difficult; with large variation among sequences even the best software
may have a hard time aligning them. In particular, if many insertions or deletions have occurred,
alignment can be difficult. So, a mix of algorithm and ad hoc human adjustment is often used for
producing better results.
Once aligned orthologous sequences are in hand, the next goal is to produce a phylogenetic tree
that describes their likely decent from a common ancestral sequence.

2.2.4 Newick Format[24] for phylogenetic tree representation

The Newick standard for representing trees in computer readable form makes use of trees and
nested parenthesis. It was created by in 1857 by English mathematician Arthur Cayley.

10

Fig-1: graphical representation of (B,(A,C,E),D);

An example is given in Figure 1 the tree shown is represented by the following sequence of
characters
(B,(A,C,E),D);

Here the tree ends with a semicolon. The bottom most node (shown at the left in Figure 1) is an
interior node. Biologically, this represents the most recent common ancestor and is called the root
of the tree. Interior nodes are represented by a pair of matched parenthesis. In between them are
the nodes that are immediately descendents of that node, separated by comma.

In the above tree the immediate descendants are B, another interior node and D. Other interior
node is given by a pair of parenthesis, enclosing representation of its immediate descendants, A,
C, & E. In general there can be many interior nodes and results will be further nesting of
parenthesis, to any level.
Leaves are represented by names; such as A,B,C,D,E in the figure, a name can be any string of
printable characters, except blanks, colons, semicolons, parenthesis and square brackets.

Also trees can multifurcate at any level. We can add branch length into a tree by putting a real
number with or without decimal point, after a node and proceeded by a colon. This represents the
length of the branch immediately below that node. For Example

((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08);

is graphically represented using Dendroscope[25] as shown in Figure 2.

11

Fig-2: graphical representation of ((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08);

A tree starts on the first line, and bigger trees with more branches can continue to subsequent
lines. Blanks can be entered anywhere, except in the middle of a species name or a branch
length.

Examples of Newick trees are

(((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06);
(((A:1, B:2):3, C:4):4, ((D:1, E:2):3, F:4):4);
(A:0.01,B:0.02);
(Bovine:0.69395,(Gibbon:0.36079,(Orang:0.33636,(Gorilla:0.17147,(Chimp:0.19268,Human:0.1
1927):0.08386):0.06124):0.15057):0.54939,Mouse:1.21460):0.10;

Although both binary and non-binary trees are used, by using edge lengths of 0, we can represent
non-binary trees in Newick format as if they are binary.
There are some limitations for the representation of the Newick tree. One of them is the left right
order of desendants of a node affects the representation, even though it is not biologically
meaningful. So

(A,(B,C),D); is same as (A,(C,B),D);

Also, in phylogeny inference we generally cannot infer the position of the root. We represent the
tree as unrooted tree. When describing inferences of such cases

(B,(A,D),C); is same as unrooted tree (A,(B,C),D)

Although some limitations do exist for the readability of Newick representations, this standard is
in widespread use in phylogenetics.

12

13

2.3 The Software

We need to use software for inferring phylogenies from molecular data. Although new software
packages for this purpose are being written every day, two general phylogenetics inference packages
are in widespread use: they are PAUP* and PHYLIP.

Both of these use mathematical models of the substitution process in their approaches to statistical
inference of phylogenetic trees. Seq-Gen is a program that uses some of these models to simulate
sequence evolution. It is an important tool for understanding how inference works, since it is almost
impossible to produce experimental datasets where the phylogenetic tree is known beyond any
doubt. Use of simulated data sets with known phylogenetic trees can be used to test how well
inference can be performed.
Many phylogenetics packages use nexus file formats and there are packages that export data to other
formats as well.

Brief descriptions of the packages are given as follows:

PAUP*: Phylogenetic Analysis using parsimony and other methods. David Swofford’s package is
probably the most widely used package for the inference of evolutionary trees[11][21].

PHYLIP: PHYLIP is a free package of programs for inferring phylogenies. It is distributed as source
code, documentation files, and a number of different types of executables. Written by Joe Felsenstein
of the Department of Genome Sciences and the Department of Biology at the University of
Washington [8].

Seq-Gen: Seq-Gen is a program that simulates the evolution of nucleotide or amino acid sequences
along a phylogeny, using common models of the substitution process. A small range of models of
molecular evolution are implemented including the general reversible model. State frequencies and
other parameters of the model may be given and site-specific rate heterogeneity may also be
incorporated in a number of ways. Any number of trees may be read in and the program will produce
any number of data sets for each tree. Thus large sets of replicate simulations can be easily created.
Seq-Gen is created by Andrew Rambaut & Grassly NC[12][13].

14

CHAPTER 3. DEFINITION OF THE MODELS PROBLEM

3.1 Probabilistic Models of DNA mutation

Mutations are not always rare and hidden and back mutations may occur often. Trying to
mathematically describe the mutation process that DNA undergoes as evolution proceeds is
important. That is the only way we can gain insight into things we cannot observe.

We need mathematical models that describe how mutations happen. Since there is a probability in
this happening, we describe mutations probabilistically.

3.1.1 A simple example:

We shall begin our modeling approach with a basic example.

Let us imagine a tree with only one edge, we will model one site in a DNA sequence from
ancestral to descendant sequence. We will focus on how the sequences change classes. Here
R=purine, Y=pyrimidines

In our example we have ancestral and descendant sequence

Suppose we somehow had access to an ancestral sequence S0 and a descendant sequence S1.

S0 : RRYRYRYYRYYYRYRYYRRYY
S1 : RYYRYYYYRYYYRYRYYRRYR

To represent a site in an ancestral sequence we specify the probabilities that site may be occupied
by R or Y.

Here Pr, Py =0.5,0.5 would indicate an equal chance of each while Pr, Py =0.6,0.4 would indicate
a greater likelihood of purine. But the probabilities should always add to 1. Since this is a root
distribution of the sequence, where the two states are R,Y.

In case of General Markov (GM) matrix it must have at least 2x2 matrix where each element
represent the probability of change

R→R R→Y

Y→R Y→Y

For example, if we compare it with the sequence in S0 and S1, we would get the following data

PR→R ≈ ଻
ଽ
 PR→Y ≈ ଶ

ଽ

PY→R ≈
ଵଵ
ଵ PY→Y ≈ ଵ଴

ଵଵ

15

Here PR→R indicates the probability of R base becoming R and PR→Y indicates the probability of R
becoming a Y for the sequence (where 9 is the total number of events and 2 & 7 are the number
of those particular events). So we can see that adding them we always get 1.

3.1.2 A continuous-time version

It is natural to think mutation as occurring at discrete times for an evolving organism. But the
generation duration is usually quite small on an evolutionary time scale, so it is common to use
continuous time.

For this reason, we use certain rates at which the different mutations occur and then we organize
them into a matrix such as

 qRR qRY

Q = qYR qYY

So here, qRY denotes instant rates at which Y replaces R states and is measured in units like
substitution per site/year. The entries in each row of Q must add to give 0 and non-diagonals must
be positive while diagonals must be negative.

So we have a system of differential equation

ௗ
ௗ௧

 pR(t) =pR(t)qRR + pY(t) qYR

ௗ
ௗ௧

 pY(t) = pR(t)qRR + pY(t)qYY

We can write this differential equation in matrix form as,

ௗ
ௗ௧

pt =ptQ where pt = (pR(t) pY(t))

Using initial values of p0 we obtain the solution

pt=poexp(Qt)

We can use the Taylor series formula here, as this formula involves the exponential of a matrix,
So for a square matrix A

݁஺ ൌ 1 ൅
ܣ
1!

൅
ଶܣ

2!
൅

A3
3!

൅ ,ڮ

-1

A Λ -1

where eΛ is a diagonal matrix, with diagonal entries the exponential of entries of Λ

If A can be diagonalized, A=SΛS with Λ the diagonal matrix of eigenvalues of A and S matrix,
whose columns are corresponding right eigenvectors

e =Se S

16

In our model we have pt=p0eQt hence M(t)=eQt.

As we compare sequences from time 0 to time t, the entries of M(t) are conditional probability of
various mu gle matrix describing mutation along an edge representing

tation process along an entire edge

.2.1 Markov models of DNA base substitution

e that can have four bases (A, G, C, T) . Here purines
precede pyrimidines.

e Tp. Then the GM model Tp consists of

of all non-negative entries is 1.
2. For each edge we have e=(u,v) a 4x4 Markov matrix M , in which each row sums to 1

e= p p p p

allowed are base substitutions.

3.2.2 A

ng the various edges of the tree we create a
continuous time 4x4 rate Matrix Q, whose off diagonal entries are non negative and rows

qAA qAG qAC qAT

Q = q q q q

ij t i is replaced by j

 in Tp

tation, hence, M(t) is a sin
time t. It is therefore like the matrix M given in section 3.1.1.

In a Markov matrix, M as in section 3.1.1, we describe the mu
and all the elements of the row sum to 1. In a rate matrix Q the row sum to zero and we describe
instantaneous mutation process. We get a Markov matrix by applying the exponential function to
a rate matrix times the elapsed time.

3

Let us consider a single vertex in a tre

Let us take a rooted tre

1. pρ =(pA, pG, pC, pT) root distribution vector, where sums
 e

and values are non-negative
So we have Mij=P(Sv=j|Su=i)

 pAA pAG pAC pAT

M GA GG GC GT

pCA pCG pCC pCT

 pTA pTG p p T TC T

Here the only mutations

common rate-matrix variant of the Model

In order to specify mutation process alo

add to 0

 GA GG GC GT

 qCA qCG qCC qCT

 qTA qTG q qTT TC

with q the rate per site tha

2b) if edge lengths te≥0 are given for all edges

17

the Markov Matrix
Me =M(te) =eQte

Can be interpreted as in (2)

ies of Markov Matrix (M)

of 3.2.1 above for the edge e, directed away from the root.

.2.3. Propert
λ1=1 as its largest eigenvalue and all eigenvalues |λ| ≤ 1

lue 1 with multiplicity 1

.3 Jukes Cantor and Kimura models

.3.1 Jukes Cantor
or adds to GM that all bases occurs with equal probability in ancestral

, ¼, ¼)
 model, we use transition matrices of the form

 1-a a/3 a/3 a/3

here a larger value of a denotes more mutation.

quivalently we use the rate matrix

 -1 1/3 1/3 1/3

.3.2 Kimura Models

uses a single parameter a to denote mutation, but Kimura may add more

dds different probabilities of transition and transversion.

 * b c c

3
1) A Markov matrix always has
one eigenvector corresponding to λ1 has all non-negative entries
2) A Markov matrix with all entries positive has largest eigenva
and the one eigenvector associated to λ1 =1 has all positive entries.

3

3

Jukes Cant
sequence
po = (¼, ¼
In the Jukes Cantor

M = a/3 1-a a/3 a/3
 a/3 a/3 1-a a/3
 a/3 a/3 a/3 1-a

w

E

Q = 1/3 -1 1/3 1/3
 1/3 1/3 -1 1/3
 1/3 1/3 1/3 -1

3
Jukes Cantor
parameters per edge.
Kimura 2 parameter a

M = b * c c
 c c * b
 c c b *

18

Wh c=transversion and *=1-b-2c

 where * =- β -2δ
r is

.4 General Time Reversible Model

The continuous time version of the Jukes Cantor and Kimura Models are time –

 P is the joint

hus time reversibility means P=PT or

iag(p)M =(diag(p)M)T=MTdiag(p)

o, for time-reversibility to hold we need,

iag(p)Q=QTdiag(p)

 p = (pA pG pC pT) is the root distribution & we use a rate matrix

 * pGα pCβ pTγ

here rows sum to zero and where the relative rates α, β, δ, Є, η, γ ≥ 0, then we use a

ote that P Q = O , so P is an eigenvector of Q with eigenvalue O.

he General Time Reversible (GTR) assumes as parameters

on that is stable, p is an eigenvector of Q of eigenvalue 0

ere and b =transition
A continuous version uses a rate matrix
 * β δ δ
Q = β * δ δ
 δ δ * β
 δ δ δ *
Kimura assumes the root distribution vecto
po= (1/4, 1/4, 1/4, 1/4)

3

reversible. For example in an edge with ancestral and descendant, if we reverse the flow
of time, we can describe the evolution with exactly the same parameters.
If p is the ancestral base distribution, M is the Markov matrix and
distribution of bases in ancestral and descendant sequence, then
P(i,j) =pi M (i,j), or as a matrix equation
P=diag(p)M.

T

d

S

d

If

 Q = pAα * pcδ pTЄ
 pAβ pGδ * PTη
 pAγ PGЄ PCη *

w
time reversible model.

N

T
1) GTR rate matrix Q on all edges
2) Scalar edge length
3) Root base distributi

19

Nice feature of GTR

GTR is the most general neutral, independent, finite-sites, time-reversible model possible.
It was first described in a general form by Simon Tavaré in 1986

e for optimal trees
2) Common rate matrix for all edges means less parameters

ole

 articular models, models with more
arameters are intractable for computation with large number of taxa. Its desirable to use models

3.5 A simple construction of a model

1) Time reversibility ignores location of root, reducing search tim

3) Common rate matrix also imposes commonality to mutation process over the wh
tree, hence may be biologically more realistic

 While nature does not necessarily follow any p

p
with few parameters provided they capture the key aspect of reality. Having a small number of
parameters also avoids overfittting data while keeping variance of inferred trees lower.

Example GM model

The GM model takes input matrices from the user; the user can enter any number of matrices and the

[M],2:[N]):[M1],((4:[P1],5:[P2]):[P3],3:[P4]):[L]);

for each of the
edge. The system allows for input of Markov matrices for each edge. The program returns sequences at

here is a "root distribution"
parameter that gives the probabilities that the root is in each of the possible states (four for DNA). For

required root parameters for the model. The GM model simulates the phylogenetic tree and outputs the
DNA sequence for each of the leaves.

Example of an input tree would be ((1:

where 1 to 5 are different leaf numbers and M,N,M1,P1,P2,P3,P4 and L are the matrices

the leaves of the tree that have been generated according to such parameters.

For construction of the tree the user must specify the root of the tree. T

each edge there is a transition matrix giving the transition probabilities of various substitutions along that
edge. The form of the matrix depends on the model of substitution chosen.

A sample input file for GM

A sample input file that is taken by our program is given below

tree = (((1:[P1],2:[P2]):[M1],(3:[P3],4:[P4]):[L]):[M],5:[N]);

,0.7,0.1,0.1,0.1,0.1,0.7,0.2,0.1,0.1,0.1,0.7};

,0.1,0.1,0.7,0.1,0.1,0.2,0.1,0.6,0.1,0.1,0.1,0.1,0.7};

model = GM

states = DNA
root = [0.2,0.3,0.2,0.3]
nchar = 200000
P1 = {0.7,0.1,0.1,0.1,0.1
P2 = {0.6,0.2,0.1
M1 = {0.6,0.2,0.1,0.1,0.2,0.6,0.1,0.1,0.1,0.1,0.6,0.2,0.1,0.2,0.1,0.6};
P3 = {0.6,0.2,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.2,0.6};
P4 = {0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7};

20

L = {0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7};
M = {0.6,0.1,0.2,0.1,0.2,0.6,0.1,0.1,0.1,0.1,0.6,0.2,0.1,0.2,0.1,0.6};
N = {0.7,0.1,0.1,0.1,0.1,0.6,0.1,0.2,0.1,0.1,0.7,0.1,0.1,0.1,0.2,0.6};

Here, the model name is given as GM. The tree is in Newick[24] format where the capital letters inside

e brackets “[“ and “]” indicate matrix names and the numbers are taxa names. After that we have the

xample GTR model

th
root parameters, the probability of the four bases in the root DNA sequence, then we have the total length
of the sequence, and last is given the edge matrix of each of the edges, this matrix gives the probability of
one base changing to same or other base along the edge. Those are 4x4 matrices, whose 16 entries are
listed by consecutive rows.

E

-like models, the software takes the tree, root-parameters, relative rates, transition-
transversion ratio, RYratio. The output of the file is produced as output.nex. It contains DNA bases of the

duces the
input tree to our program for the GTR model, as well as very close approximations of all other

truction. The file also
contains the number of sequences, so when simulating the tree the input and the output DNA sequence

c compiler used). gsl[26] library
has been used for some of the matrix computations, such as finding the exponential; of a symmetric

For the GTR and GTR

leaves of the phylogenetic tree. The "rate matrix" is part of what is known as a "GTR" model.

The output of the phyogenetic program (output.nex) was fed into the PAUP* program and it pro

parameters. So the GTR model is producing correct result. The Complexity Cluster service of BCRG,
UAF was used to make use of PAUP* and check the GTR model for varying input.

For the models all the information is read in from a file for phylogenetic tree cons

can be any bases (A,C,G,T) long. It also supports Amino acid(20) and binary(0,1) bases. In addition
custom bases can be created and flexible input and matrix sizes be used.

The software has been written in C language in Linux environment (gc

matrix in the GTR model. The GUI was created using GTK+/glade interface designer.

A sample input file for GTR

A sample input file that is taken by our program is given below

tree=((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08);

, 2, 1]

ere, the model name is given as GTR. The tree is in Newick format where the capital letters indicate leaf
names and the numbers edge length, after that we have the root parameters, the probability of the four

model=GTR

states = DNA
root=[0.4, 0.2, 0.2, 0.2]
nchar=200000
relative-rates = [1, 2, 3, 1

H

bases in the root DNA sequence. Then we have the total length of the sequence and last is given the
relative rates to construct the rate matrix Q for the GTR model, as in section 3.4.

21

3.6 Rate Variation Model

In our past examples, Markov models of DNA mutation all assumed that all sites behave identically. But
listic. It is desirable to model mutation processes so that some sites mutate

quickly, other slowly and others not at all.
in Biology this is not rea

Invariable sites Model

For creating rate variation models, we can create two classes of sites. The first class (variable sites)
 (invariable sites) do not mutate.

ce it may have been variable but simply never

For rooted tree, T relating the n taxa

ρ

{Me}eЄE(T) a kxk Markov matrix for each edge

variable and 1-r the probability it is

We can implement GM+I in the PhyloSim program as a mixture model. The input file for GM+I is given

((A:0.01, B:0.02):0.03, C:0.04):0.05, D:0.06);
states = DNA

ns = [0.6,0.4]

 root = [0.1, 0.2, 0.3, 0.4]
.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.2,0.1,0.1,0.1,0.7};

.1,0.1,0.1,0.7,0.1,0.1,0.2,0.1,0.6,0.1,0.1,0.1,0.1,0.7};
,0.1,0.1,0.1,0.6,0.2,0.1,0.2,0.1,0.6};

 Invariable
 root = [0.4,0.3,0.2,0.1]

mutates but the 2nd class

If, we examine data from such a model, if we observe mutation at a site, then it must be in the first class.
If no mutation is observed, it may be in either class, sin
changed, or perhaps had a hidden mutation.

Such a model is GM+I, We formulate this for characters with K states, trees relating n taxa.

P is a root distribution vector with k entries for the variable sites

r is class size parameter, where r gives the probability a site is
invariable.

q is another distribution vector for invariable sites

below

model = Mixture
tree = (

nchar = 2000
nclasses = 2
ClassProportio

begin-class
 model = GM

 A = {0.7,0
 B = {0.6,0.2,0
 C = {0.6,0.2,0.1,0.1,0.2,0.6,0.1
 D = {0.6,0.2,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.2,0.6};
end-class

begin-class
 model =

22

end-class

or we can implement GTR+GAMMA (using GTR instead of GM) as given below

 sample input file for GTR+GAMMA

A

 sample input file that is taken by our program is given below

model=GTR+GAMMA

states = DNA

 [1, 2, 3, 1, 2, 1]

 sites Models

A

tree=((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08);

root=[0.4, 0.2, 0.2, 0.2]
nchar=200
relative-rates =
alpha=0.5
nclasses=4

Rates across

 GM+I model we use two classes, where we let one of them to not allow mutating. In practice models
 a mixture of GM are usually used.

scalar edge length {te}eЄE(T)

if we have m classes of sites, we use m scalar rate parameters λ1 λ2 λ3… λm where a vector r=(r1,r2,r3…rm)
r1+ r 2+ rm=1

Me, i = exp(e i)

We combine the classes to get the joint distribution for the mixture model

P = ∑ riPi

Similarly we can get a continuous distribution of rates

P= ׬ ሻ Pߣሺݎ dλ

It is common to use a Ѓ-distribution of rates

rα(ߣሻ = αα/ Ѓ(α) λ α-1 e-αλ

arameter to our model, but allows flexibility in distribution
elihood fit.

We can use a mixture model or we can implement GTR instead of GM as GTR+GAMMA+I. A sample
input file is given below

In
with fewer parameters than

For a fixed tree T, and rate matrix Q, with root distribution vector ρ

gives the sizes of the classes so

For ith rate class, we will use rate matrix λiQ on an edge e of the tree we have Markov matrix.

t λ Q

௠
௜ୀଵ

ఒ λ

The shape parameter α then adds only one p
for a better maximum lik

23

A sample input file for GTR+GAMMA+I

A sample input file that is taken by our program is given below

.03,C:0.04):0.05,D:0.06):0.07,Q:0.08);
model=GTR+GAMMA+I
tree=((((A:0.01,B:0.02):0
states = DNA
root=[0.4, 0.2, 0.2, 0.2]
nchar=1000
relative-rates = [1, 2, 3, 1, 2, 1]
alpha=0.5
nclasses=4
Pinv=0.2

n ModelThe Covario

In evolution, some sites are unable to change because they code for a part of protein that is essential for
 to live. After some evolution, those proteins might not be necessary. So they are free to

 different parts of the tree. Fitch and Markowitz called the sites that were free to vary at a
articular time “covarions” which indicates some characters of switching between free and not free as

he tree.

e S1 at which “on” state switch to “off” state and
2

t

1 1

ty matrix.

Now letting

σ1= ௌଶ
ௌଵାௌଶ

the organism
change in
p
evolution proceeds across t

For a DNA model, instead of 4 states, we have 8 states

Aon , Gon , Con , Ton , Aoff , Goff , Con , Toff ,

where on means the site can vary and off means currently that site is invariable

So we have additional parameters, an instantaneous rat
instant rate S at which “off” state switch to “on” state.

So we get 8x8 rate ma rix

Q~ = Q – s I s I

 s2I -s2I

Where I denotes 4x4 identi

 σ2= ௌଵ
ௌଵାௌଶ

p~=(σ1p, σ2p)

p~ is a stable distribution for Q~. The rate matrix Q~ and root distribution vector p~ form a time
reversible model.

So, for any tree T, with root ρ, we have 8 state model with root distribution vector p~, rate matrix Q~,
eЄE(T) where Markov matrix Me=etQ~ is assigned to the edge e[15]. edge length {te}

24

h base) but when we go to the leaves the program only shows the A, C, G, T bases as
output.

Although inside the program different variation of each of the bases is used, so we have a total of 8 bases
(on and off for eac

A sample input file for Covarion

A sample input file that is taken by our program is given below

model =
states =

 ScaledCovarion
DNA

tree = (((A:0.01, B:0.02):0.03, C:0.04):0.05, D:0.06);
.4, 0.3, 0.2, 0.1]

ates = [1, 2, 3, 1, 2, 1]
istribution = [0.75, 0.25]

Rates = [1]

nchar = 20
nclasses = 2
ScalingFactors = [1, 0.5]

StateRootDistribution = [0
StateRelativeR
ClassRootD
ClassRelative

CHAPTER 4. PROJECT PLANNING

Some kind of project planning is the initial step for any project. It usually includes determining objectives
of the project, scheduling information, obtaining resources of the project and determining main tasks to be
completed. Risk analysis is also an important component of most project plans. Here risks are identified
and risk monitoring procedures are defined.

4.1 Objective

Software projects that are finished late, over budget and with poor quality software are common.
In software engineering this has been called “Software Crisis”. To avoid such problems, a project
plan was created for PhyloSim. The main tasks to be completed were identified, with sequences
and schedules.

4.2 Resources needed

1. Hardware needed

The system runs fairly fast on most machines, but for higher number of sites recommended
systems for the product are as following.

Recommended for running the software, the user should have the minimum following
hardware configuration:

800MHz Pentium 3 processor

With 512 MB of RAM

10 MB of free hard disk space

And a display resolution of 1024x768 with 24-bit color (to support the GUI)

2. Operating System needed

The operating system must be running is Linux or MacOSX

The code can be run on Windows98/NT/2000/XP using cygwin software (not tested yet)

3. Tools needed

gcc compiler

 Dependencies of the software includes several freely available libraries for download

They are

gsl library

gtk+ library

dependencies of gtk+

glib

atk

pango

25

cairo

most of the libraries besides gsl are already installed in popular versions of Linux and only
required to be installed for compiling the code in Macintosh operating system.

4.3 Risk Analysis

The purpose of risk analysis is to find, evaluate and decrease the impact of foreseeable risks. This
helps to ensure that the project can produce high quality software within the predetermined
schedule and budget.

Scenarios (Risk discovered from an ATAM analysis [27][28])

1. Invalid data is entered in the input file

2. Invalid tree format used

3. The hard disk of the user crashes

4. The user tries a high mutation rate in one of the nodes

5. The user tries to implement invalid horizontal gene transfer

6. The user tries to save the file in an unsupported file format

7. The GUI crashes while using in a different operating system other than Linux

8. The software update needs to be done automated

9. Process received from the user is put in queue for processing, all process in queue have
the same priority

4.3.1 Risk Themes

There are four types of risks outlined in the previous page. They can be categorized
as integrity, technical, logical and usability.

Data Integrity Risk: These are items 1,2. These can be addressed by making sure
that the system goes through rigorous data checking while the user is providing
them and keeping options disabled (In GUI) so that the user cannot enter invalid
entry.

Technical Risk: These are items 3,4,8,9. This should cover other system software
and hardware to make sure that the system supports PhyloSim properly.

Logical Risk: These are items 4,5. This should cover that by varying some
parameters to a certain degree would result in trees and output data that be
irrelevant and not useful.

Usability Risk: These are items 6,7,8,9. These can be addresses by properly
stating the functional and non-functional requirements and making sure they are
implemented properly.

26

27

4.4 Schedule

The Work Breakdown Structure (WBS) lists the main project tasks and the PERT shows
their sequencing. The schedule for implementing each task considers both priority and
resource requirements. The Gantt chart is for basic scheduling and tracing tool for the
project. It was modified whenever needed depending on the progress of the project. For
example changing the way tree data is represented in GM model.

4.5 Project Plan

The project plan is a brief document that describes the project objective, the risk analysis,
schedule and resources. It is provided in Appendix A. Appendix B is WBS that indicates all
the main required tasks. Appendix C is a PERT chart that shows task sequencing. Appendix
D is a Gantt chart which lists the schedule for all tasks.

CHAPTER 5. SOFTWARE DEVELOPMENT APPROACH

This project is mainly a software development project. A sound software engineering approach is used to
ensure high quality and timeliness of the software development. “High quality” means that the software
meets its requirements. Software engineering is a young and rapidly maturing discipline which
emphasizes the development of methodologies and tools to help manage the process of creating today’s
complicated software. It is hard to define exactly. An early definition of software engineering was
proposed by Fritz Bauer at the first major conference [29]:

The establishment and use of sound engineering principles in order to obtain economically software that
is reliable and works efficiently on real machines.

There are software engineering methodologies associated with such areas as software project planning,
software requirements analysis, software design, software implementation and software testing. The use
of a suitable software engineering approach enhances such software attributes as correctness, reusability,
portability and reliability.

For PhyloSim a hybrid software development approach was used. The hybrid approach has the following
elements:

(1) A baseline project plan was developed initially
(2) Project requirements were analyzed and a requirements specification was generated. The

specification includes the model requirements and performance requirements. Best efforts were
made to modify the software to increase the degree of performance.

(3) The software architecture and design were developed before implementation began. The
architecture identified the major components, while the overall design includes the I/O, program
structure and algorithm design.

(4) Individual phylogenetic models (discussed in chapter 3 and 7) were developed sequentially using
an agile approach similar to extreme programming. Under this approach each phylogenetic model
was developed and tested, followed by the next, etc. All such phylogenetic models used the same
overall software framework or architecture.

(5) During the software development, software tools such as glade[30], Make utilities, and debuggers
were used to help implement the project.

(6) Extensive testing of the software and all phylogenetic models was done using software
verification and validation strategies. Written test plans were created. Test documentation was
created which included the bug reports and comments on the results of the model computations.

(7) All software was well documented. The documentation includes source code with complete
comments, structure and flowcharts of the program, project plan, requirement specification, test
plan, and test documentation. These documents should make the software easy to read, maintain
and change in the future.

Details of approach followed are provided in subsequent chapters. The software engineering approach
helped to ensure project success.

28

29

In order to implement the software a hybrid model combining classical software engineering model
and the Agile model with Extreme Programming approach was used. Each of the mathematical
models were implemented and tested against other similar programs used for phylogenic inference.
After the test showed satisfactory results the next model was implemented. This continued until all
the models were implemented and then the entire system was tested.

CHAPTER 6. SOFTWARE REQUIREMENTS ANALYSIS

For complex systems, a complete understanding of software requirements is probably impossible to
achieve at the beginning of the project. However, good understanding of the software requirements is
usually the basis for a successful product. If we cannot understand the requirements of a particular
software, then the output product will probably not satisfy the user and so the project can fail even if the
project plan, the software design, implementation and testing are good. So, we need requirements analysis
because it is the first step for ensuring that right product is developed. At this point, a requirements
specification can be created. It describes the system, its main functions, its system environment,
performance and constraints.

6.1 Technical requirements for the PhyloSim programmer

To implement this software the programmer needs to have a basic knowledge about genetics,
computational biology, bioinformatics and especially mathematical modeling. This includes
knowledge of how to parse Newick format trees, how to use glib data structure to get that
information, how to store the tree data in appropriate data structures, and how to use them for
computations. The use of multiple free libraries like gsl, glib, pango, atk, cairo is needed. The
use of the glade GUI creator and corresponding gtk+ library can save a lot of time for
implementation.

The development of software for Phylogenetic inference software is quite different from the
development of other general software. It requires special skills and knowledge. I needed to learn
how to design and write programs using gtk+, and other libraries to minimize execution time.

6.2 Input and Output requirements for PhyloSim

Input: The input data consists of a file with required parameters for each target model. Those
parameters can be root distribution, relative rates, number of states, titv ratio, etc and a tree that
describes the lineage and the branch length.

Output: The output data consists of the sequence of each of the leaves after the mutations have
occurred down the tree according to the model parameters applied on the root sequence. These
sequences can be DNA, amino acid, protein or custom made sequences. The program also
supports having ancestral sequences; ancestral sequences are the sequences that are in the nodes
of the tree.

6.3 Requirement specification

After analyzing the requirements, a formal requirements specification was done. The requirement
specification is given as follows:

1. Introduction
The document is the requirement specification for the software system for phylogenetic tree
simulation based on complex and mixed models.

30

A GUI based software is to be developed for this purpose. This program will simulate the
phylogenetic tree based on input model and its parameters. The program should be fast in
execution and produce accurate results.

2. System Stakeholders

The main stakeholders are INBRE, advising committee members, and future PhyloSim users
(expected to be).

The Committee

The committee consists of the developer and three committee members who are assisting the
developer in making this product by giving computational biology, programming and
software engineering advice.

Biotechnology Computing Research Group (BCRG)

The BCRG group at UAF’s West Ridge is associated with the biotechnology and
bioinformatics research at UAF. This software will add to the other software that the BCRG
group has created and supports to the BioComputing research at UAF.

The BCRG existing portal could host the PhyloSim software, and make use of the parallel
processing, that the Bioinformatics core already provides.

IdEA Network for Biomedical research excellence (INBRE)

INBRE is funding some of the bioinformatics research at UAF. PhyloSim development is
funded by INBRE and supports the INBRE’s goals.

Fairbanks Community

UAF is well known for its Biology research. PhyloSim helps UAF broaden and grow its
research. It will help the ongoing research effort at UAF and also the biology and
bioinformatics community in general.

Computational Biologist / Bioinformatics researchers

Phylogenetic Inference programs are widely used and needed by Computational Biologist and
Bioinformatics researchers. New, user friendly, flexible and accurate phylogenetic inference
software like PhyloSim helps this group in their pursuit of new ideas and assists in
implementing them.

 2.1 Functional Requirements

1. Simulation Function:

Provides a way to generate a phylogenetic tree from the input Model parameters.

31

2. Multi Model or Model Mixer Function

Allows the use of more than one model at different parts (nodes) of the same tree.

3. File formats

Support popular file formats such as PHYLIP, NEXUS[31] and PAUP.

4. Model loader

Supports the loading of different kinds of models.

5. Complex Model initiator

Support options such as across site / lineage rate variation and other complex features.

6. Tree creator

Allows the user to create trees and enter edge length and leaf names easily.

2.2 Non-Functional Requirements

2.2.1 Flexibility

The system must have flexibility in supporting variable input parameters. It can support
variable matrix sizes which are considered very important for phylogenetic inference
schemes. Other variable parameters are the relative-rates, custom bases and root
parameters. The product also allows entering the matrix parameters directly in case of
General Markov models.

2.2.2 Modifiability

PhyloSim must be able to implement new phylogenetic modules with minimal change
costs. The way to achieve this requirement is to keep different mathematical models in
different PhyloSim sub-modules; any of these modules can be changed to further enhance
those models. Another desirable modification is to allow higher computational speeds
with minimal software changes. Enhancement can be in the form of increasing
computational speed such as creating a faster matrix-matrix multiplication for example.

2.2.3 Performance

PhyloSim must create phylogenetic trees using large DNA, codon, amino acid and
protein bases quickly, for example, it should generate the output of a five taxon tree with
a million bases in few seconds.

2.2.4 Usability

PhyloSim must be easy to use for its targeted primary users, who are computational
biology and phylogenetics researchers. One way to achieve this is to support GUI, which
enhances the capability of easier data entering and modifying. This viewing of input and
output also supports changing of the different parameters.

32

33

2.2.5 Scalability

PhyloSim must install and run on a single computer system, such as a modern laptop.
However, better performance could result by a further enhancement of the system by
making it run on a parallel machine. This could be a future requirement for an advanced
PhyloSim.

2.2.6 Extensibility

Many possible extensions could make PhyloSim more useful. Examples could be to add
code to support newer models and a graphical representation of the output data.

2.2.7 Testability

Testability verifies the ease of testing the system. PhyloSim takes data and outputs files
that can be used in other program to verify the accuracy of the program. Such programs
are PAUP* and PhyML. They take the output file from this product and produce the same
tree that was entered in our program. The Complexity Cluster service of BCRG, UAF
was used to make use of PAUP* and check the GTR & GTR-like models for varying
input. The web interface of PhyML was used for testing models as it is freely available
online.

2.2.8 Compatibility

The system must be compatible with the different NEXUS, PHYLIP files available
online for existing data of different species. The PhyloSim output file may be utilized by
other phylogenetic inference software.

2.2.9 Reliability and Accuracy

Reliability and accurate results are major software design constraints.

2.2.10 Constraints on time and resources

PhyloSim must run on any Linux and MacOSX machine.
PhyloSim should be finished and ready for release by the end of July, 2008.

2.3 User Characteristics

User- A user is a person who can load input files, modify the existing parameters and make
use of the output file. Targeted primary users are computational biology and phylogenetic
researchers.

For benefit to some user who wants to modify PhyloSim themselves the entire source code
will be made available under the GNU license so that they can change it according to their
need.

CHAPTER 7. SOFTWARE ARCHITECTURE, SOFTWARE
DESIGN AND SOFTWARE IMPLEMENTATION

7.1 Software Architecture

At this phase PhyloSim enters into the second stage of development.
This part is the architecture part. The Architecture should lend itself to
incremental implementation via the creation of a ”skeletal” system in which the
communication paths are exercised but which at first has minimal functionality.
This skeletal system can then be used to ”grow” the system incrementally,
easing the integration and testing efforts[27]

Also, PhyloSim software architecture should be such as to faciliate
achievement of the non-functional requirements(flexibility, modifiability) that
were discussed in chapter 6.

Software architecture is much concerned with software structure, i.e. the
identification of the main software componenet and their inter-relationships.

The divide and conquer technique is used to make the project easy to
implement, it consists of the identification of the PhyloSim project tasks. These
are shown below in several categories.

In its simplest form, the PhyloSim Software system consists of

1. Parser: This is the one of core Module of the system, it takes input data
and parses it and feeds the models the required input.
2. GUI Module: This Module helps user create input file using template reads
in model data from input text file and views or saves output as user desires.
3. Mathematical Model loader: This module loads any mathematical model
according to the description of the Input txt file. It simulates the phylogenetic
tree and outputs the DNA sequences in different branches and produces the
resultant leaf nodes with DNA sequences.

The system was chosen to be built, because it is a somewhat unique system
that mixes up new and complex models that other available systems do not
support. The system helps biologists to create new trees that are supposed to
be more biologically realistic.

PhyloSim has major software components (modules) which are identification
in the table below.

34

The Program modules are:

Module name Functions
PhyloSim.c Program entry point. GUI load and initialization.
interface.c GUI management.
interface.glade XML description of GUI elements, for using with libglade.
parser.c Input data parsing.
data.c Common-used model descriptions and matrix operations.

7.2 Software Design

After Architecture part starts the design part. Software design is a process
through which requirements are translated into a representation of software[29].
Good design involves making the simplest system that will satisfy the
requirements of the project[32].

The description of some of the these modules is provided below

7.2.1 Design of PhyloSim.c

This module contains program entry point function main(). It initializes
GTK+2, creates and maximizes main window and enters GTK+2 event loop.
After initialization, program execution is controlled by interface.c module.

7.2.2. Design of interface.c

This module allows user to control the program execution. Using corresponding
GUI controls, user can start calculations on currently loaded text data.
We can see the algorithm of the execution function in Figure 1 in next page.

35

Begin

Call to parser scan text

Error
condition

Display error message

Call to data evaluate

Error
condition

Display error message

Show confirmation

End

No

No

Yes

Yes

Fig 1: Common algorithm of execute function:

7.2.3. Design of parser.c

This module contains lexical scanning and parsing related functions. Parsing
process of entire input text is controlled by function int parser scan text
(const char * text, parser data t * data). It takes input data text as const
char * text and scanning over it using GScanner lexical scanner included in
glib software library.

The parser data t structure contains parsed parameters as dynamically
allocated variables of corresponding type. Before scanner find a token
corresponding to particular data entry in parser data t structure, the
structure entry keeps NULL value. After finding a token, parser dynamically
allocates memory area, fills it with value read from input and stores pointer
to the allocated memory in parser data t structure. If corresponding slot is
already filled with some data, parser generates error state due duplicated data
entries is not allowed.

Common algorithm of parsing process is shown in Figure 2 as flowchart.

36

Begin

Initializations

End of input
or

error condition

Find entry of the scopes array
corresponding to current

scope identidier

Call to parser function stored
at found scopes entry

Error
condition is set

Setup structure fields
corresponding to error

handling

Current parser
structure has

parent

Setup structure fields
corresponding to error

handling (unfinished nested
model)

End

Yes

No

No

Yes

No

Yes

Fig 2. Common algorithm of parsing process is shown on flowchart.

37

7.2.4 Design of data.c

This module controls data integrity checking, calculations execution and con-
tains auxiliary mathematical functions. Internally, it contains static structures
describing models and states sets. const data model t data models [] array
contains model information, such as internal identifier, model name, calculations
function and Q matrix constructing function. Last one can be NULL if such
model cannot make Q matrix.

Static array of anonymous structures data parser items contains enu-
merated set of data fields and corresponding names. It used in int
data check valid parser set (parser data t * p, unsigned long int set,
unsigned long int mayset, int ms, char ** msg) function which checks
that given parser data contains only desired fields but not other ones.

The data flowchart is shown in next page as Figure 3:

38

Begin

Model is
defined in

parser data
Construct error message

i �0

find i-th model, name of
model is equal to passed with

parser data

i-th model
exists

Construct error message

j �0

j < Nsims and
no error state

call to perform function of
i-th entry

error state is
set

Construct error message

call to print result function
of i-th entry

j �j + 1

End

Yes

Yes

Yes

No

No

Yes

No

No

39

Fig 3. Common algorithm of data.c process is shown in flowchart

Next page in Figure 4. shows the overall structure of the PhyloSim program

40

PhyloSim

parser

scope recognizer

scope readers

string

real number

integer number

tree

sequence of real numbers

nested classes

GUI

main window

preferences dialog

template dialog

tree editing dialog

vector editing dialog

models

GM

Mixture

Scaled Covarion

Equal Stationary Distribution Covarion

GTR+Γ

GTR+Γ+I

Invariable

Tree Mixture

GYMO

GTR

GTR based models

CFN

F81

F84

HKY

JC

K2P

TN

GTR models with predefined parameters

BLOSUM

CPREV

DAYHOFF

DCMUT

JTT

LG

MTMAM

MTREV

VT

WAG

WAGSTAR

Fig 4. Overall structure of the Software Architecture of PhyloSim

41

7.3 Software Implementation

Currently PhyloSim supports the following phylogenetic models:

1. GM

2. Mixture

3. Scaled Covarion

4. Equal Stationary Distribution Covarion

5. GTR+Γ

6. GTR+Γ+I

7. Invariable

8. Tree Mixture

9. GYMO

10. GTR

11. GTR based models

(a) CFN

(b) F81

(c) F84

(d) HKY

(e) JC

(f) K2P

(g) TN

(h) GTR models with predefined parameters (BLOSUM, CPREV,
DAYHOFF, DCMUT, JTT, LG, MTMAM, MTREV, VT, WAG,
WAGSTAR)

Code implementing models is placed on models subdirectory. There is a
pair of C source code file and it’s header file for each model named do xxx.c
and do xxx.h, where xxx is signature related to model name. For each
model module exports function int do xxx (parser data t * data, void (*
print fn) (void *, const char *, ...), void * print data, char ** errmsg)
which performs calculation for model. Some models also exports function int
xxx make q (parser data t * data, long int ms, double ** ret, double *
root) which calculates Q matrix for that model. These functions are enlisted in
states array const data model t data models [] of data.c module with model
name used in the input data. Function int do xxx (parser data t * data,
void (* print fn) (void *, const char *, ...), void * print data, char

42

** errmsg) uses parser data t * data as input data, prints out calculation
result using passed print fn (print data, format, On error each function
returns nonzero value and set * errmsg to allocated string corresponding to
error found.

7.3 GM model, do gm.c module

This model uses the following calculations algorithm:

1. call to prepare function which checks input data and constructs
gm data t model specific data structure. That structure contains plain
arrays instead of glib specific GList and GHashTable data structures
which is hard to use in calculation functions.

2. call to init function which initializes random numbers generator and
creates root DNA sequence.

3. call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

do mutation function:

1. calls data mutator function, passing to it bounds vector and DNA
sequence of current node, DNA sequence of parent node.

2. prints DNA sequence of current node.

3. call to glib’s g node children foreach function which calls do muta-
tion function for each child node of current one.

7.3.2. Mixture model, do mix.c module

This model uses the following calculation algorithm:

1. Check input data

2. Allocate memory and initialize variables.

3. For each of nested models construct Q̃i matrix using data make q ma-
trix for model.

4. Construct Q matrix:

Q =







Q̃1 0 0 . . .

0 Q̃2 0 . . .

0 0 Q̃3 . . .

. Q̃n







5. Construct µ vector using class root distribution π and root elements of
nested models:

µ = [π1α1,1, π1α1,2, . . . , π2α2,1, π2α2,2, . . .]

where αi,j is j-th root element of i-th model.

43

6. Construct T , T−1 matrices and λ vector using data make t from q -
matrices function of data.c module.

7. Initialize model specific structure mix data t.

8. Construct amino acid states array.

9. Construct model specific tree by calling make mix node function for
each node of source tree.

10. Create root DNA sequence.

11. Use glib function g node children foreach call do mutation function
for each node of tree root.

12. Free allocated memory.

make mix node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.3 Scaled Covarion, do cov.c module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

3. From state relative rates and state root distribution construct Q̃ matrix
using data make q matrix function of data.c module.

4. From class relative rates and class root distribution construct S̃ matrix
using data make q matrix function of data.c module.

5. From class root distribution σ and state root distribution π construct µ
vector:

µNi+j = σi ∗ πj

where N is number of states.

6. Construct Q matrix:

Q =







r1Q̃ + S̃1,1I S1,2I S1,3I . . .

S2,1I r2Q̃ + S̃2,2I S2,3I . . .

S3,1I S3,2I r3Q̃ + S̃3,3I . . .

. rnQ̃ + S̃n,n







44

7. Calculate ν = −
∑

i Qi,iµi

8. Rescale Q matrix with ν:

Qi,j ← Qi,j/ν

9. Initialize model specific structure cov data t.

10. Construct states array.

11. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

12. Construct model specific tree by traversing source tree using g node -
copy deep function of glib and calling make cov node function for each
source tree node.

13. Create root DNA sequence

14. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make cov node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.4. Equal Stationary Distribution Covarion, do ecov.c

module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

3. From class root distribution σ and state root distribution π construct µ
vector:

µNi+j = σi ∗ πj

where N is number of states.

4. From class relative rates and class root distribution construct S̃ matrix
using data make q matrix function of data.c module.

45

5. Construct Q matrix:

Q =







Q̃1 + S̃1,1I S1,2I S1,3I . . .

S2,1I Q̃2 + S̃2,2I S2,3I . . .

S3,1I S3,2I Q̃3 + S̃3,3I . . .

. Q̃n + S̃n,n







where Q̃i constructed from state root distribution π and relative rates of
i-th nested class using data make q matrix function of data.c module.

6. Calculate ν = −
∑

i Qi,iµi

7. Rescale Q matrix with ν:

Qi,j ← Qi,j/ν

8. Initialize model specific structure ecov data t.

9. Construct states array.

10. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

11. Construct model specific tree by traversing sourse tree using g node -
copy deep function of glib and calling make ecov node function for
each sourse tree node.

12. Create root DNA sequence

13. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make ecov node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.5. GTR+Γ,do gtr+r.c module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

46

3. Construct Q matrix using gtr r make q checked:

Q =







r1Q̃ 0 0 . . .

0 r2Q̃ 0 . . .

0 0 r3Q̃ . . .

. rnQ̃







where ri calculated using data get r function of data.h module, and
Q̃i constructed from root distribution π and relative rates using
data make q matrix function of data.c module.

Same function returns ~µ = {
~π

k
, . . .

︸ ︷︷ ︸

k

}, where k is number of classes.

4. Initialize model specific structure gtr r data t.

5. Construct states array.

6. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

7. Construct model specific tree by traversing source tree using g node -
copy deep function of glib and calling make gtr r node function for
each source tree node.

8. Create root DNA sequence

9. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make gtr r node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.6. GTR+Γ+I,do gtr+r+i.c module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

47

3. Construct Q matrix using gtr r i make q checked:

Q =









r1Q̃ 0 0 0 . . .

0 r2Q̃ 0 0 . . .

0 0 r3Q̃ 0 . . .

. rnQ̃ 0

. Z









where Z - zero matrix, ri calculated using data get r function of data.h
module, and Q̃i constructed from root distribution π and relative rates
using data make q matrix function of data.c module.

Same function returns ~µ = {~π
q

k
, . . . ,

︸ ︷︷ ︸

k

Pinv~π}, where k is number of classes,

q = 1− Pinv .

4. Initialize model specific structure gtr r i data t.

5. Construct states array.

6. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

7. Construct model specific tree by traversing source tree using g node -
copy deep function of glib and calling make gtr r i node function for
each source tree node.

8. Create root DNA sequence

9. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make gtr r i node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.7. Invariable, do inv.c module

This model constructs root DNA sequence using root distribution parameter
and copy it unchanged to all of input tree taxons.

7.3.8. Tree Mixture, do tmix.c module

This model after validating input data calls all of nested models calculations.
Next, it collects resultant sequences for each taxon depending on mode
parameter passed in the input data set.

48

Random mode

Each i-th character of resultant sequence for a taxon picked up randomly from
character with same index in sequence of same taxon of one of nested models
with probability of selecting that model is equal to class root distribution
element corresponding to that model.

Concatenated mode

Each class root distribution element multiplified to lognormal distributed
random number. New randomized class root distribution is rescaled so it keeps
to sums to 1. Resultant sequence is concatenated form subsequences of nested
models. Length of each submodel sequence is proportional to randomized class
root distribution element corresponding to that submodel.

7.3.9. GYMO, do gymo.c module

This model using 4 values of root parameters as πA, πC , πG, πT . After
validating input data, this model constructs µ vector with length of 61: µi =
πidx(i,1)πidx(i,2)πidx(i,3). Indices idx(i, j) is calculated from list of all codons
AAA, AAC, AAG, AAT, ACA, ACC, ... with TAG, TAA and TGA codons
omited. So, µ1 = π3

A, µ2 = π2
AπC , etc. Values of µ vector is rescaled so it sums

to 1.0. Next, Q matrix costructed as

Qi,j =







0, if codoni and codonj differs in 2 or more locations

µi, if codoni and codonj representing the same amino acid and change is transversion

µik, if codoni and codonj representing the same amino acid and change is transition

µiω, if codoni and codonj representing different amino acids and change is transversion

µiωk, if codoni and codonj representing different amino acid and change is transition

Where ω is value passed in model by nonsynonomous ratio keyword and k is
value passed in model by titv ratio keyword. Q matrix is used for constructing
T , T−1 matrices and eigenvalues vector using data make t from q matrices
function of data.c module. These matrices is used for constructing edge matrices
for taxons, just like in any other GTR based model.

States list for this model is array of integers in range from 1 to 61. Output
values could be printed out as codons or as amino acids. Output style is managed
by output keyword which can take values DNA or protein.

7.3.10. GTR, do gtr.c module

This model uses next calculation algorithm:

1. Initialize model specific structure gtr data t.

2. Call to prepare function which checks input data and fill model specific
structure gtr data t with data get from input parser data t.

3. Call to init function which creates root DNA sequence.

4. call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

49

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.11. GTR based models

All of these models have similar structure of code. For each model is
defined function make root. Functions check valid data, xxx make -
q and do xxx for each model is constructed by corresponding macros
DATA MAKE CHECK VALID DATA FN, DATA MAKE Q FN and
DATA MAKE DO FN defined in data.c module. For performing actual
calculations, all of these models is calling to do gtr predefined which take
model specific values of root distribution and relative rates as input parameter
instead of extracting them from parser data.

7.3.11a. CFN, do cfn.c module

Used for states length of 2. Relative rates is [1], root distribution is [0.5, 0.5].

7.3.11b. F81, do f81.c module

Used for states length of 4. Relative rates is [1, 1, 1, 1, 1, 1], root distribution
accepted from input data.

7.3.11c. F84, do f84.c module

Used for states length of 4. Root distribution accepted from input data. Relative
rates is [1, 1 + J

πR

, 1, 1, 1 + J
πY

, 1], where R - input value of titvratio,

πR = π1 + π3

πY = π2 + π4

J =
RπRπY − π1π3 − π2π4

π1π3

πR

− π2π4

πY

7.3.11d. HKY, do hky.c module

Used for states length of 4. Root distribution accepted from input data. Relative
rates is [1, K, 1, 1, K, 1], where R - input value of titvratio,

πR = π1 + π3

πY = π2 + π4

K =
RπRπY

π1π3 + π2π4

7.3.11e. JC, do jc.c module

Used for states length of 4. Relative rates is [1, 1, 1, 1, 1, 1], root distribution
is [0.25, 0.25, 0.25, 0.25].

50

7.3.11f. K2P, do k2p.c module

Used for states length of 4. Relative rates is [1, 2a, 1, 1, 2a, 1], where a - input
value of titvratio, Root distribution is [0.25, 0.25, 0.25, 0.25].

7.3.11g. TN, do tn.c module

Used for states length of 4. Relative rates is [1, 1, 1, 1, 1, 1], where a - input value
of titvratio, Root distribution is [0.25, 0.25, 0.25, 0.25].

7.3.11h. BLOSUM, CPREV, DAYHOFF, DCMUT, JTT,

LG, MTMAM, MTREV, VT, WAG, WAGSTAR

Used for states length of 20. Each of this models is GTR model with fixed root
states and relative rates parameters set.

51

CHAPTER 8. SOFTWARE TEST, TEST RESULTS AND DISCUSSION

Planning the project carefully, writing a requirement specification and making a good design are the
initial steps to produce a high quality product. Another quality assurance technique used during this
project is testing. The aim of the testing is to show that the system does what it is supposed to do. Testing
involves checking whether the system satisfies the entire requirement and does all the arithmetic and logic
correctly. Often the number of conditions that should be checked becomes quite large. So a test plan was
created to check as many conditions as possible. A test plan is also dynamic. When errors are found, they
should be removed. This elimination of errors can cause kinds of errors. So the test plan needs to be
adaptable.

8.1 Test plan

 Enough time and testing effort should be spent to ensure PhyloSim quality. The plan includes
functions to be tested and procedure and approaches to be used. However, for complex software with
extensive data calculations it is impossible to test every detail of the software. To test the software
effectively and efficiently, a test plan with well designed test cases was used.

8.2 Test case

 Test case design is an important step during software test planning. The test cases should cover
the program comprehensively and identify any weaknesses.

8.2.1 Test of the System

 The quality of the Mathematical Model Module is essential to the quality of the overall program.
To ensure that we have used the following two type of testing.

8.2.2 White Box Testing

 Basis path testing, control structure testing and loop testing were used. The main logical
conditions and paths contained in the software were tested using the debugger.

8.2.3 Black Box Testing

 Black box testing [29] is a method to test the general functions of the software. In this project all
the implemented models were tested.

Models tested were,

1. GM
2. Mixture
3. Scaled Covarion
4. Equal Stationary Distribution Covarion
5. GTR+Ѓ
6. GTR+Ѓ+I
7. Invariable

52

53

8. Tree Mixture
9. GYMO
10. GTR
11. GTR based models

11.1. CFN
11.2. F81
11.3. F84
11.4. HKY
11.5. JC
11.6. K2P
11.7. TN
11.8. GTR models with predefined parameters (BLOSUM, CPREV,
DAYHOFF, DCMUT, JTT, LG, MTMAM, MTREV, VT, WAG,
WAGSTAR)

All of these models (except model 2, 3 & 8) were tested with popular phylogenetic software
PAUP* and PhyML. The output of our program was fed into these program and they inferred the
tree back. Model 2, 3 & 8 were tested against output of MATLAB code that was written for
testing these models.

8.3 Performance Test

 Execution time was fast in comparable with other phylogenetic inference software for producing
output sequence for the models.

8.4 Test documentation

 Test documentation is the report of the testing procedure. It indicates what has been done and
what still needs to be done. An example of the Test documentation is given in appendix E.

CHAPTER 9: SUMMARY AND CONCLUSIONS

In this project the main tasks accomplished were the following:

• Software was designed for high quality and high performance
• A new Phylogenetic Software system called PhyloSim was created, implementing many models

and improved structure, with more added features than other existing inference software.
• New input commands were created to enter the description of new models in the system
• Model templates were developed and used to enter data seamlessly
• A GUI was developed for the phylogenetic tree editor
• The developed Software was tested with good results, including

Verification: The results of the program were same as those of Seq-Gen and PhyML for the
 models that they support.

Validation: The input data and the tree were in excellent agreement with the output data (they
 had the approximate same probability).

Speed: For most of the models execution time was satisfactory.

All of the modules developed were useful, and PhyloSim is a good simulation software system for
phylogeny inference. All the functional and non-functional requirements were satisfied. Some snapshots
of the program are given in Appendix G.

The PhyloSim modeling process replicates the inputs and products of the original modeling process but
optimizes the modeling process with computer automation in mind. It provides a blueprint for building
new modeling tools that advance the state of the art in modeling.

A study of some well known phylogenetic tree software has revealed that its documentation is inadequate.
Programming teams that build simulation tools should better document their corresponding simulation
processes. Because such documentation allows for analysis of the design of the tool without confusing
with the implementation of the tool. Moreover, computational biology is a still-expanding field, and
mathematical model tool builders can expect that researchers will demand support for newer phylogenetic
models and more modeling activities. If simulation tool builders do not record their modeling process, the
adaptation of such tools to new activities is difficult. For PhyloSim we have created enough
documentation so that programmers can tailor it to new needs and use the existing PhyloSim modules to
create newer models.

PhyloSim provides a flexible and efficient source of simulation for a wide range of substitution models, it
is a useful tool for researchers studying phylogenetic relationships, molecular evolution of biological
sequences, and supports the ability to infer relationship from data correctly.

During the PhyloSim development project, suitable software engineering techniques and project
management methods were used. This approach helped the project be successfully implemented. Because

54

55

of the good project plan, requirements analysis and design, a structured program was developed. The
structure of the source code is less coupled and highly cohesive, so the maintainability of the program is
excellent. Extensive testing of the PhyloSim verified its high reliability.

When complex software is developed, a software engineering approach is usually helpful regardless of
the application area. So software engineering is not only for software engineers in computer science but
also for computational biology researchers who can use it in their world. In general project planning,
requirements analysis and design methodologies avoid much trouble and save cost and time in
implementation [33].

CHAPTER 10. RECOMMENDATION FOR FUTURE WORK

The computational biology community is in sore need of tools for efficiently, reliably, and repeatedly
building large mathematical models. PhyloSim supports larger, more complex models than comparable
modeling tools. It is especially suitable for creating newer phylogenetic models. Many mathematical
models were successfully implemented and shown to produce correct output. Their execution time was
also quite small.

If higher execution speeds are required then the following possibilities should be considered

1. Try using the explicit shared memory method or the message passing method or other newer
methods for parallel programming

By using parallel programming mutation can be made to happen in different branches at
the same time. Various parallel programming methods might produce better performance.

2. Create new mathematical models

Newer mathematical models that produce more biologically realistic outputs more
quickly. If simpler equations can be found to perform the same functions, then better
performance might be possible.

3. Implement better algorithms for the software system

Newer faster algorithms for PhyloSim might be used which when coded execute faster
and minimize output time. (see chapter 7 for examples of algorithms used in PhyloSim)

Another way to improve the PhyloSim might be to make it web based. With such a system, users can
easily access it by uploading their input file and either downloading the output shown or having the link
emailed to them. However, this might requires bandwidth for file transfers.

PhyloSim was developed as a standalone system serving a single user. However, its further use could be
encouraged by making a version that would support multiple users simultaneously.

56

GLOSSARY

Bioinformatics: refers to the creation and advancement of algorithms, computational and
statistical techniques, and theory to solve formal and practical problems arising from the
management and analysis of biological data.

BCRG: Biotechnology Computing Research Group. The Biotechnology Computing
Research Group at UAF provides programming and High Performance Computing (HPC)
support to the Life Sciences Community, and encourages interdisciplinary education within
Biology, Computer Science, Mathematics and Engineering.

cygwin: Cygwin is a Linux-like environment for Windows.

Covarion: The method of covarions, or concomitantly variable codons, is a technique in
computational phylogenetics that allows the hypothesized rate of molecular evolution at
individual codons in a set of nucleotide sequences to vary in an autocorrelated manner.

DNA: Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions
used in the development and functioning of all known living organisms.

GTR+Γ, GTR+Γ+I, F84, HKY (K2P, F81 and JC69), JTT, WAG, PAM, BLOSUM,
MTREV and CPREV: Widely used mathematical models for inferring phylogeneic
relationships among species.

gsl: GNU Scientific Library is a numerical library for C and C++ programmers

Gantt Chart: A chart which lists the schedule, resources allocation, critical path and other
information for the project.

Glade: Glade - a User Interface Designer for GTK+ and GNOME. Glade is a RAD tool to
enable quick & easy development of user interfaces for the GTK+ toolkit and the GNOME
desktop environment, released under the GNU GPL License.

Inferring Relationship: Finding relationships among species.

INBRE: IDeA Network for Biomedical Research Excellence.

Mathematical model: A mathematical model is an abstract model that uses mathematical
language to describe the behavior of a system.

Phylogeny: The history of species lineages as they change through time.

57

58

Phylogenetic tree: also called an evolutionary tree, which shows the evolutionary
relationships among various biological species or other entities that are believed to have a
common ancestor.

PAUP*: Phylogenetic Analysis Using Parsimony has made it the most widely used
software package for the inference of evolutionary trees.

PERT Chart (Performance Evaluation Review Techniques): A network which lists the
sequence of the main tasks in the project.

Seq-Gen: Seq-Gen is a program that will simulate the evolution of nucleotide or amino
acid sequences along a phylogeny, using common models of the substitution

WBS (Work Breakdown Structure): A chart which lists all main tasks to be done in the
project.

REFERENCES

[1] Elizabeth S. Allman and John A. Rhodes. The identifiability of tree topology for phylogenetic models,
including covarion and mixture models. J. Comput. Biol. 13:1101-1113, 2006.

[2] Mark Pagel and Andrew Meade. A phylogenetic Mixture Model for Detecting Pattern-Heterogeneity
in Gene Sequence or Character-State Data. Syst Biolo. 53:571-581, 2004.

[3] Daniel Stefankovic and Eric Vigoda. Phylogeny of Mixture Models: Robustness of Maximum
Likelihood and Non-identifiable Distributions. J. Comput.Biol. 14:156-189, 2007.

[4] Cécile Ané and Gordon Burleigh and Michelle M. McMahon and Micheal J. Sanderson. Covarion
Structure in Plastid Genome Evolution: A New Statistical Test. Mol. Biol. Evol., 22:914-924, 2005.

[5] Nicolas Galtier. Maximum-Likelihood Phylogenetic Analysis under a covarion-like Model. Mol. Biol.
Evol., 18:866-873, 2001.

[6] David Penny and Bennet J. McComish and Micheal A. Charleston and Michael D. Hendy.
Mathematical Elegance with Biochemical Realism: The Covarion Model or Molecular Evolution. J. Mol.
Evol., 53:711-723, 2001.

[7] Tuffley, Chris and Steel, Mike. Modeling the covarion hypothesis of nucleotide substitution. Math.
Biosci. 147:63-91,1998.

[8] Joseph Felsenstein. Phylip: Phylogenetic inference package. version 3.6. University of Washington.
2004.

[9] F. Ronquist and J. P. Huelsenbeck. MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics. 7(8):754-5, 2001.

[10] F. Ronquist and J. P. Huelsenbeck. Bayesian phylogenetic inference under mixed models.
Bioinformatics. 19:1572-1574, 2003.

[11] D. Swofford. PAUP: Phylogenetic analysis using parsimony (* and other methods). Version 4.0.
Sinauer Associates, 2002.

[12] Seq-Gen http://tree.bio.ed.ac.uk/software/seqgen/

[13] Andrew Rambaut and Nicholas C. Grassly. Seq-Gen: an application for Monte Carlo simulation of
DNA sequence evolution along phylogenetic trees. 13:235-238, 1997.

[14] Vivak Jayaswal and John Robinson and Lars Jermiin. Estimation of Phylogeny and Invariant Sites
under the General Markov Model of Nucleotide Sequence Evolution. Syst Biol. 56:155-162, 2007.

[15] Elizabeth S. Allman and John A. Rhodes. Mathematical Models in Biology, An Introduction.,
Cambridge University Press, 2004.

59

http://tree.bio.ed.ac.uk/software/seqgen/
http://us.cambridge.org/titles/catalogue.asp?isbn=0521525861

60

[16] Joseph Felsenstein. Inferring Phylogeneies. Sinaer Associates, 2004.

[17] Edelstein-Keshet , Mathematical Models in Biology, SIAM,1988.

[18] Huelsenbeck, John P. Performance of Phylogenetic methods in Simulation. Sys. Biol., 44:17-48,
1995.

[19] Huelsenbeck, John P. and David M. Hillis. Success of phylogenetic methods in the four-taxon case.
Sys Biol. 42:247-264, 1993

 [20] PhyML - A simple, fast, and accurate algorithm to estimate large phylogenies by maximum
likelihood. Guindon S, Gascuel O. Systematic Biology. 2003 52(5): 696-704

[21] PAUP* http://paup.csit.fsu.edu/

[22] John P Huelsenbeck and Marc A Suchard. A nonparametric method for accommodating and testing
across-site rate variation. Syst Biol. 56 (6):975-87, 2007

[23] GTK+ - The GIMP Toolkit, http://www.gtk.org/

[24] James Archie, William H.E. Day, Wayne Maddison, Christopher Meacham, F. James Rohlf, David
Swofford, and Joseph Felsenstein, Newick Tree format
http://evolution.genetics.washington.edu/phylip/newicktree.html

[25] Daniel H. Huson, Dendroscope ‐ An interactive viewer for large phylogenetic trees, http://www‐
ab.informatik.uni‐tuebingen.de/software/dendroscope/welcome.html

[26] GSL - GNU Scientific Library http://www.gnu.org/software/gsl/

[27] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Second Edition, 2004.

[28] Md Muksitul Haque, Phylogeny++:A Software System for Phylogenetic Tree Simulation based on
Complex and Mixed Models CS 674 Software Architecture Fall 2007

[29] Pressman, Roger S., “Software Engineering, A Practitioner’s Approach”, Mcgraw-Hill, New-York,
1992.

[30] Glade - a User Interface Designer for GTK+ and GNOME http://glade.gnome.org/

[31] Maddison DR, Swofford DL, Maddison WP., NEXUS: an extensible file format for systematic
information. http://www.ncbi.nlm.nih.gov/pubmed/11975335

[32] Steward, D.,V., “Software Engineering with Systems Analysis and Design”, Brooks/Cole publishing
Company, Monterey, California, 1987.

[33] Shu Li, Development of Parallel Simulation Software for the Study of Thermal Process in Kuparuk
River Basin in Alaska, Thesis, UAF, August 1996.

http://paup.csit.fsu.edu/
http://www.gtk.org/
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://www-ab.informatik.uni-tuebingen.de/software/dendroscope/welcome.html
http://www-ab.informatik.uni-tuebingen.de/software/dendroscope/welcome.html
http://www.gnu.org/software/gsl/
http://glade.gnome.org/
http://www.ncbi.nlm.nih.gov/pubmed/11975335

APPNEDIX A: SOFTWARE PROJECT PLAN

I. Introduction

es

ks

le

ces

ms

This document is the project plan. A phylogenetic tree simulator PyloSim is a C program to
be developed for Linux and MacOSx machines. It simulates the phylogenetic inference
scheme using different mathematical models.

II. Project Objectiv
1. Objectives:

A. Simulator with 27 different mathematical models for simulating the phylogeny
inference scheme

B. A simulator that would allow creation of newer models with variable input and
custom bases

C. Easy to use GUI with default template for each models
2. Major functions:

A. Parser that parses input data to the models requirement
B. GUI model that helps user by giving easy to use and default template and allows user

to view output data
C. Mathematical Model loader allows existing and new custom and complex model to

be created as given input by the user.

III. Main project ris
1. Insufficient main memory space
2. Insufficient disk space

The above two risk occur because of existing data requirements for larger trees and large
number of bases.

IV. Schedu
1. Work Breakdown Structure (Appendix B)
2. Task Network – PERT (Appendix C)
3. Gantt Chart (Appendix D)

V. Project Resour

1. Software: gcc, gsl, gtk, glade
2. Hardware: IBM T60

VI. Tracking and Control Mechanis

WBS PERT and Gantt chart are the basic tracking and control mechanism.

VII. Appendices
WBS, PERT, Gantt.

Project planning &
Requirement
Analysis

Project Plan

Requirement
Specification

User Interface

Mathematical
Models

Format of input data

Parser

Scope
recognizer

Scope
reader

string

Real number

Integer number

tree

Sequence of real numbers

Nested classes

Preference dialog

Template dialog

Tree editing dialog

Vector editing
dialog

Main window

GUI Models

Data test

Input /

output file

Speed
Test

Design
Software Implementation

Test

Modules

User Guide

GM

Mixture

Scaled Covarion

Equal Stationary Distribution

GTR+ Γ

GTR+ Γ + I

Invariable

Tree mixture

GYMO

GTR

GTR based models
with predefined
parameter

CFN

F81

F84

HKY

JC

K2P

TN

BLOSUM

CPREV

DAYHOFF

DCMUT

JTT

LG

MTMAM

MTREV

VT

WAG

WAGSTAR

Documentation

Models

PhyloSim

APPENDIX B: WORK BREAKDOWN STRUCTURE (WBS)

Project Planning Stage
1 45d

05/01/07 06/15/08

Design Stage
5 30d

07/18/07 08/18/07

Software Implementation
10 220d

08/20/07 04/01/08

Test Stage
14 90d

03/01/08 05/20/08

Documentation
19 30d

06/10/08 07/10/08

Requirement Analysis Stage
3 30d

06/15/07 07/15/07

Requirement Spec
4 30d

06/15/07 07/15/07

Mathematical model
7 10d

07/18/07 07/28/07

Format of Input data
6 12d

07/18/07 08/01/07

User Interface
8 10d

08/01/07 08/10/07

Design Integration
9 8d

08/10/07 08/18/07

Parser
11 85d

08/20/07 11/15/08

GUI
13 100d

11/15/07 02/25/08

Models
12 220d

08/20/07 04/01/08

Data Test
16 45d

03/15/08 05/01/08

Test Plan
15 45d

03/15/08 05/01/08

Input/output file test
17 45d

03/15/08 05/05/08

Speed Test
18 10d

05/20/08 06/01/08

Models
20 30d

06/10/08 07/10/08

Modules
21 20d

06/10/08 06/30/08

User Guide
22 8d

07/02/08 07/10/06

Project
23 60d

04/25/08 07/15/08

Name
ID Duration

Start Finish

Appendix C: Task Network –PERT Chart

Project Plan
2 45d

05/01/07 06/15/07

Appendix D: Gantt Chart

APPENDIX E: TEST DOCUMENTATION

Methods used for testing various models

During the development of the software, each model was tested as it was implemented. Methods of
testing varied with the model, depending on the complexity of the model and the availability of other
software to make inferences of parameters from the sequences produced by PhyloSim.

For special choices of parameters of the GM model, the form of the sequence output could be easily
predicted. For instance, on a tree relating 6 taxa, one edge could be chosen to have some non-identity
Markov matrix describing substitutions on it, with all other edges having the Markov matrices set to be
the identity. Then all sequences for taxa on one side of the chosen edge would have the same sequences,
and similarly for the other side. By comparing a sequence from one side to one from the other, it was
possible to recover an approximate value for the Markov matrix, much as was done in the description of
the GM model in an earlier chapter of this project report. Using similar ideas, it was possible to test the
GM model thoroughly.

For the GTR model and many variants such as JC, Kimura, HKY, GTR+Gamma+I, additional testing was
done using PAUP*. Sequences could be simulated for some parameter choice, and then PAUP* could be
used to infer the parameters from the sequences. For long sequences, the inferred parameters would
closely match the ones used to generate the simulation, as random probabilistic errors would be small. For
shorter sequences, the errors would be larger, as predicted by statistical theory. All though this is a
probabilistic confirmation that PhyloSim behaves correctly, that is the best that can be done since it
implements a probabilistic model.

For covarion models, mixture models, and tree-mixture models, the output of PhyloSim was compared
with that of limited implementations of sequence simulators in MATLAB. Again, the output from
PhyloSim behaved as it should statistically, offering better and better agreement as the sequence length
grew longer.

After the development of the software, more extensive testing for all the models was performed by Dr.
Elizabeth Allman. As Dr. Elizabeth had not been involved in any of the initial testing, this provided a
strong independent test. While her testing methods were similar, she performed simulations with a
broader range of parameter values and trees and used both PAUP* and PhyML for inference since these
share no code, and wrote new MATLAB codes to independently confirm many of the calculations done
as intermediate steps in PhyloSim.

Finally, it should be noted that the structure of the program PhyloSim is such that testing one model
actually tests features of many. For instance, all model implementations require use of most of the GM
code, so that confirming the GTR model is implemented correctly provides evidence that GM is as well.

The Simulation results obtained from Dr. Elizabeth Allman is tests of PhyloSim are shown in the next
page.

SIMULATION CHECK

Model Seq-gen PhyloSim comments
JC Okay
K2P GTR vs K2P analysis –

check titvratio
consistent with sg results

F81 Okay
F84 Okay should check with PAUP

for value of k
HKY Okay should check with PAUP

for value of titv
TN look into phyml (and

other) parameterizations
CFN
GTR okay Okay Sg branch lengths are

scaled by Pvar see GTR+I
comment

GTR+I Okay Okay
GTR+G4+I Okay Okay
GTR+G4 okay Okay
JTT okay Okay,phyml on 4 taxarecovers tree Max(Psg-

Pphylo)~0.0015
WAG phyml on 4-taxa recovers tree Max(Psg-

Pphylo)~0.0025
BLOSUM phyml on 4-taxon tree is accurate Max(Psg-

Pphylo)~0.0018
mtREV phyml on 4-taxon tree is

accurate

WAG* okay WAG and user input ok
PAM
cpREV
DAYHOFF phyml on 4-taxa recovers tree
DCMut phyml on 4-taxa recovers tree
mtMAM phyml on 4-taxa recovers tree
VT phyml on 4-taxa recovers tree
LG phyml on 4-taxa recovers tree
codon

Dr. Allman’s Test Results

APPENDIX F: Sample Source Code

Source Code of Tree GUI

static void dialog_treeedit_setup (GtkWidget * win, void * user_data) {
 GtkWidget * mt = intf_get_widget (win, "layout_main");
 GtkWidget * elab = intf_get_widget (win, "entry_label");
 GtkWidget * eval = intf_get_widget (win, "entry_value");
 draw_data_t * dd = g_new (draw_data_t, 1);
 char * tree = user_data;
 GNode * root;

 if (strlen (tree)) {
 parser_scan_tree (tree, &root);
 dd->tree = g_node_copy_deep (root, make_draw_node, dd);
 parser_free_tree (root);
 } else {
 dd->tree = g_node_new (make_draw_node (NULL, NULL));
 }
 dd->border = 10;
 dd->cell_width = 30;
 dd->cell_height = 30;
 dd->dialog = win;
 dd->layout = GTK_LAYOUT (mt);
 dd->max_width = 0;
 setup_draw_data (dd);
 g_object_set_data (G_OBJECT (win), "draw_data", dd);
 move_widgets (GTK_LAYOUT (mt), dd->tree, dd);
 if (dd->cell_width < dd->max_width) {
 dd->cell_width = dd->max_width;
 dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border;
 dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border;
 gtk_layout_set_size (dd->layout, dd->width, dd->height);
 move_widgets (GTK_LAYOUT (mt), dd->tree, dd);
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height);
 }
 gtk_widget_show_all (mt);
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, find_select_node, ((draw_node_data_t *) (dd-
>tree->data))->wid);
 g_signal_connect (G_OBJECT (mt), "expose_event", G_CALLBACK (te_lo_expose_cb), dd);
 g_signal_connect (G_OBJECT (elab), "changed", G_CALLBACK (te_current_label_changed), dd);
 g_signal_connect (G_OBJECT (eval), "changed", G_CALLBACK (te_current_value_changed), NULL);
 g_signal_connect (G_OBJECT (win), "destroy", G_CALLBACK (dialog_treeedit_destroy_cb), dd);
}

static void tree_add_node_cb (GtkButton * button, gpointer user_data) {
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (button), "dialog_treeedit");
 draw_data_t * dd = g_object_get_data (G_OBJECT (dialog), "draw_data");
 GNode * node = g_object_get_data (G_OBJECT (dialog), "cur_node");
 draw_node_data_t * nd = g_new (draw_node_data_t, 1);
 GNode * ch;

 nd->wid = NULL;
 nd->label = g_strdup ("<new>");
 nd->value = g_strdup ("<new>");
 ch = g_node_new (nd);
 g_node_append (node, ch);
 nd = g_new (draw_node_data_t, 1);
 nd->wid = NULL;

 nd->label = g_strdup ("<new>");
 nd->value = g_strdup ("<new>");
 ch = g_node_new (nd);
 g_node_append (node, ch);

 setup_draw_data (dd);
 dd->max_width = 0;
 move_widgets (dd->layout, dd->tree, dd);
 if (dd->cell_width < dd->max_width) {
 dd->cell_width = dd->max_width;
 dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border;
 dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border;
 gtk_layout_set_size (dd->layout, dd->width, dd->height);
 move_widgets (dd->layout, dd->tree, dd);
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height);
 }
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, find_select_node, ((draw_node_data_t *) (node-
>data))->wid);
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height);
}

static void tree_remove_node_cb (GtkButton * button, gpointer user_data) {
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (button), "dialog_treeedit");
 draw_data_t * dd = g_object_get_data (G_OBJECT (dialog), "draw_data");
 GNode * node = g_object_get_data (G_OBJECT (dialog), "cur_node");
 int w = dd->width;
 int h = dd->height;

 g_node_children_foreach (node, G_TRAVERSE_ALL, free_draw_node_data, NULL);
 g_node_children_foreach (node, G_TRAVERSE_ALL, (GNodeForeachFunc) g_node_destroy, NULL);
 setup_draw_data (dd);
 move_widgets (dd->layout, dd->tree, dd);
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, find_select_node, ((draw_node_data_t *) (node-
>data))->wid);
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, w, h);
 gtk_widget_queue_draw_area (gtk_widget_get_parent (GTK_WIDGET (dd->layout)), 0, 0, w, h);
}

static void button_fit_clicked_cb (GtkButton * button, gpointer user_data) {
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (button), "dialog_treeedit");
 draw_data_t * dd = g_object_get_data (G_OBJECT (dialog), "draw_data");

 dd->max_width = 0;
 move_widgets (dd->layout, dd->tree, dd);
 dd->cell_width = dd->max_width + 10;
 dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border;
 dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border;
 gtk_layout_set_size (dd->layout, dd->width, dd->height);
 move_widgets (dd->layout, dd->tree, dd);
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height);

}

static void te_current_label_changed (GtkEntry * entry, gpointer user_data) {
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (entry), "dialog_treeedit");
 GNode * node = g_object_get_data (G_OBJECT (dialog), "cur_node");
 draw_node_data_t * nd = node->data;
 GtkLabel * lab = GTK_LABEL (gtk_bin_get_child (GTK_BIN (gtk_bin_get_child (GTK_BIN (nd->wid)))));
 GtkRequisition req;
 draw_data_t * dd = user_data;
 const char * text = gtk_entry_get_text (entry);

 gtk_label_set_text (lab, text);
 gtk_widget_size_request (nd->wid, &req);
 if (req.width > dd->max_width) {
 dd->cell_width = 30 + req.width;
 dd->max_width = 30 + req.width;
 dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border;
 dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border;
 gtk_layout_set_size (dd->layout, dd->width, dd->height);
 move_widgets (dd->layout, dd->tree, dd);
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height);
 }
 g_free (nd->label);
 nd->label = g_strdup (text);
}

static void draw_tree (GtkLayout * lo, GNode * n, draw_data_t * dd) {
 GNode * nc = NULL;
 draw_node_data_t * nd, * ndn;
 int xc, yc, xcn, ycn;

 if (!n) n = dd->tree;
 nd = n->data;
 xc = dd->border + (nd->x - dd->min_x) * dd->cell_width;
 yc = dd->border + dd->cell_height * nd->y;

 yc += nd->wid->allocation.height / 2;
 xc += nd->wid->allocation.width / 2;
 if ((nc = g_node_nth_child (n, 0))) {
 ndn = nc->data;
 xcn = dd->border + (ndn->x - dd->min_x) * dd->cell_width;
 ycn = dd->border + dd->cell_height * ndn->y;

 ycn += ndn->wid->allocation.height / 2;
 xcn += ndn->wid->allocation.width / 2;
 gdk_draw_line (lo->bin_window, GTK_WIDGET (lo)->style->fg_gc[GTK_STATE_ACTIVE], xc, yc, xcn,
ycn);
 draw_tree (lo, nc, dd);
 }
 if ((nc = g_node_nth_child (n, 1))) {
 ndn = nc->data;
 xcn = dd->border + (ndn->x - dd->min_x) * dd->cell_width;
 ycn = dd->border + dd->cell_height * ndn->y;

 ycn += ndn->wid->allocation.height / 2;
 xcn += ndn->wid->allocation.width / 2;
 gdk_draw_line (lo->bin_window, GTK_WIDGET (lo)->style->fg_gc[GTK_STATE_ACTIVE], xc, yc, xcn,
ycn);
 draw_tree (lo, nc, dd);
 }
}

static gboolean te_lo_expose_cb (GtkWidget * widget, GdkEventExpose * event, gpointer data) {
 draw_tree (GTK_LAYOUT (widget), NULL, data);
 return FALSE;
}

static gboolean free_draw_node (GNode *node, gpointer data) {
 draw_node_data_t * nd = node->data;
 g_free (nd->value);
 g_free (nd->label);
 g_free (nd);
 return FALSE;

}

static void select_node (GNode *node, draw_data_t * dd) {
 draw_node_data_t * nd = node->data;
 GtkWidget * add = intf_get_widget (dd->dialog, "button_add");
 GtkWidget * rem = intf_get_widget (dd->dialog, "button_remove");
 GtkWidget * eval = intf_get_widget (dd->dialog, "entry_value");
 GtkWidget * elab = intf_get_widget (dd->dialog, "entry_label");
 GtkWidget * bval = intf_get_widget (dd->dialog, "vbox_value");
 GtkWidget * blab = intf_get_widget (dd->dialog, "vbox_label");
 int isl = G_NODE_IS_LEAF (node);

 g_signal_handlers_block_matched (elab, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_label_changed,
NULL);
 g_signal_handlers_block_matched (eval, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_value_changed,
NULL);
 if (node->parent) {
 gtk_widget_set_sensitive (bval, isl);
 gtk_widget_set_sensitive (blab, TRUE);
 gtk_entry_set_text (GTK_ENTRY (eval), nd->value ? nd->value : "");
 gtk_entry_set_text (GTK_ENTRY (elab), nd->label);
 } else {
 /* root node */
 gtk_widget_set_sensitive (bval, FALSE);
 gtk_widget_set_sensitive (blab, FALSE);
 gtk_entry_set_text (GTK_ENTRY (eval), "");
 gtk_entry_set_text (GTK_ENTRY (elab), "");
 }
 if (isl) {
 gtk_widget_set_sensitive (add, TRUE);
 gtk_widget_set_sensitive (rem, FALSE);
 } else {
 gtk_widget_set_sensitive (add, FALSE);
 gtk_widget_set_sensitive (rem, TRUE);
 }
 g_object_set_data (G_OBJECT (dd->dialog), "cur_node", node);
 g_signal_handlers_unblock_matched (elab, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_label_changed,
NULL);
 g_signal_handlers_unblock_matched (eval, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_value_changed,
NULL);
}

static void dialog_treeedit_destroy_cb (GtkObject *object, gpointer user_data) {
 draw_data_t * dd = user_data;

 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, free_draw_node, NULL);
 g_node_destroy (dd->tree);
 g_free (dd);
}

static gpointer make_draw_node (gconstpointer src, gpointer data) {
 draw_node_data_t * nd = NULL;
 const node_data_t * node = src;

 nd = g_new (draw_node_data_t, 1);
 nd->wid = NULL;
 if (node) {
 nd->label = g_strdup (node->label);
 nd->value = node->value ? g_strdup (node->value) : NULL;
 } else {
 nd->label = NULL;
 nd->value = NULL;

 }
 nd->x = -1;
 nd->y = -1;
 return nd;
}

Appendix G: Program Snapshots

Fig 1: Shows the basic template where model information is to be given

Fig 2: User finds the input file from any location in the computer

Fig 3: User loads the input file for processing

Fig 4: Shows the program has executed successfully

Fig 5: Shows the output below the input with Ancestral sequence

Fig 6: PhyloSim output shown with Ancestral sequence in interleaved form

Fig 7: Shows the basic template of TreeMixture model which is a mixture of 3 other models here

Fig 8: Shows the easy to use tree editor, entering branch length and Node label

Fig 9: Shows the GUI tree editor for a different model

Fig 10: Shows the Help Menu with Template dialog how to

Fig 11: Shows the help menu with which model needs which parameters

	FrontPage
	Title Page
	ABSTRACT
	ACKNOWLEDGEMENTS
	Table of Contents
	CHAPTER 1 INTRODUCTION
	Chapter 2 DOMAIN BACKGROUND AND RELATED WORK
	Chapter 3 DEFINITION OF THE MODELS PROBLEM
	CHAPTER 4 PROJECT PLANNING
	CHAPTER 5 SOFTWARE DEVELOPMENT APPROACH
	CHAPTER 6 SOFTWARE REQUIREMENT ANALYSIS
	CHAPTER 7
	CHAPTER 8 (SOFTWARE TEST, TEST RESULTS AND DISCUSSION)
	CHAPTER 9 (SUMMARY AND CONCLUSIONS)
	CHAPTER 10 (RECOOMENDATION FOR FUTURE WORK)
	GLOSSARY
	REFERENCES
	Appendix A SOFTWARE PROJECT PLAN
	Appendix B WBS
	Appendix C PERT
	Appendix D Gantt Chart
	APPENDIX E TEST DOCUMENTATION
	APPENDIX F SAMPLE SOURCE CODE
	Appendix G Program Snapshots

