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ABSTRACT 

 

The aim of this project was to create a software system called PhyloSim which can generate 
complex data from a synthetic phylogeny. This new system uses multi or mixed mathematical 
models and variable input parameters for construction of phylogenetic trees. Models that were 
implemented include covarion, mixture-models, GTR+Γ, GTR+Γ+I, F84, HKY (K2P, F81 and 
JC69), JTT, WAG, PAM, BLOSUM, MTREV and CPREV. Many of these models are discussed 
in this report. 
 
These more complex mixture models are of interest because they are believed to be more 
biologically realistic than those in widespread use currently. However, in order to understand 
their performance in phylogenetic inference it is necessary to simulate data according to them 
and see how successful inference schemes are in recovering the tree. Currently available 
simulators are very limited and insufficient for studying newer phylogenetic models. PhyloSim is 
an improvement in this respect. 
 
PhyloSim was developed in accordance with a conventional software development plan. The 
software development approach uses a hybrid of a classical software engineering approach and 
an agile programming approach. The agile part entails the sequential development of a series of 
phylogenetic models. Each model was tested carefully before then next was started. The 
developments were done in accordance with good software engineering practices (i.e. 
requirement analysis, followed by design, implementation and test). This approach and its results 
are described in the report and its appendices. A portion of this source code is included in an 
appendix. Further software evolution is expected to be based on results from the future use of 
PhyloSim.  
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CHAPTER 1. INTRODUCTION 

 

The goal of this project was to create a flexible software system for simulating the evolution of biological 
sequences, such as DNA and proteins. This software incorporates mixture-models[1][2][3], 
covarion[4][5][6][7] models and other complex models of current interest in phylogenetics. It is intended 
to be useful for assessing the performance of phylogenetic inference schemes[8][9][10][11]. These more 
complex mixture models are of great current interest, as they are believed to be more biologically realistic 
than those in widespread use. Currently available simulators are very limited, and are insufficient for 
studying newer models. 

Popular phylogenetic sequence simulators such as Seq-Gen[12][13] were studied, and a system of greater 
flexibility for the models used for such program and the their output trees was proposed. The main feature 
of the proposed system was a general framework in which any of the currently used model information 
can be entered. Using this information, the system simulates evolution along a phylogenetic tree and 
produces sequences for the leaves and internal nodes of the tree. The above issues are further discussed in 
chapters 2 and 3. 

The proposed flexible system was developed and subsequently named PhyloSim. The implemented 
mathematical models for PhyloSim include DNA, protein and codon models. Specifically, the models 
have been implemented: are GTR, GM[14], F81, F84, HKY, JC, K2P, TN, CFN, GTR+Γ, GTR+Γ+I, 
TreeMixture, mixture, Invariable, BLOSUM, CPREV, DAYHOFF, DCMUT, JTT, MTMAM, MTREV, 
VT, WAG, WAGSTAR, EqualDistCovarion and ScaledCovarion[15][16][17]. These models are 
discussed further in chapters 3 and 7. Appropriate data structures were used to store the information of 
nodes and edges as the tree is being constructed. All of the models are rigorously tested with varying 
input and were checked against other popular phylogenetic inference[18][19] software such as 
PAUP*[20] and PhyML[21] for consistency. Test methods and results are discussed in chapter 8. 

PhyloSim takes required model parameters from an input file and saves the output as output.nex file. An 
advantage of the PhyloSim is that it accepts custom bases, and flexible tree and matrix sizes can be used. 
There are options for recording ancestral sequences and displaying sequences in interleaved or non-
interleaved formats. Multiple simulations or datasets can be created in the same run of the program. 
Complex model construction supports across-site rate variation & covarion models, mixture models allow 
multiple models to be used in different ratios on the gene sequence along the phylogenetic tree. 
Substitution rates are one of the most fundamental parameters in a phylogenetic analysis and are 
represented in phylogenetic models as the branch lengths on a tree. Variation in substitution rates across 
an alignment of molecular sequences is well established and likely caused by variation in functional 
constraint across the genes encoded in the sequences. Rate variation across alignment sites is important to 
accommodate in a phylogenetic analysis; failure to account for across-site rate variation can cause biased 
estimates of phylogeny or other model parameters. Traditionally, rate variation across sites has been 
modeled by treating the rate for a site as a random variable drawn from some probability distribution 
(such as the gamma probability distribution) or by partitioning sites to different rate classes and 
estimating the rate for each class independently[22]. Tree mixtures allow changes according to different 
trees simulated by different models but with the same taxa in each of them. 
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The GUI created by gtk+[23] library includes an easy to use tree creator. The GUI comes with a template 
for each of the models; the model user can make use of these to create the input file for any of the model 
data very quickly. It also allows the user to see the output below the input window. The GUI comes with 
other options and a help menu.  

The development of PhyloSim was a complex project because it requires the use of great deal of data, 
because it uses a different style of programming approach, and because of its functional and non-
functional requirements. To implement the project successfully with high quality software, a hybrid 
software engineering approach has been used. 

These software engineering issues and methods are further discussed in chapter 4 through 8. Chapter 3 
and 7 contains flowcharts and algorithms of the architecture, design and implementation of the PhyloSim 
software and the mathematical models. 

Finally, chapter 9 provides a summary and conclusions based on results from the project, which chapter 
10 provides recommendation for further work on PhyloSim development. Such further work is expected 
to be based on findings from its further use. Increased use could be expected if access were improved by 
making it web-based. Also larger models could be supported with continuing good performance by use of 
parallel programming, better mathematical models and better algorithms. 

 

 

 



CHAPTER 2. DOMAIN BACKGROUND AND RELATED WORK 

 

2.1 Introduction 

In modern molecular biology, new sources of data are present today. Biological sequences such 
as DNA and protein retain similarity to their ancestral parents. Mathematical methods can be used 
for analyzing the similarity and the differences in the sequences to infer phylogenies. Through the 
aid of mathematical thinking in biology, we nowadays have several tools to extract evolutionary 
information from sequence data. But still challenges remain to improving methods, and such 
research is ongoing. 

2.2 Molecular Evolution 

Natural selection is the main mechanism through which evolution occurs. For selection to occur 
however there must be underlying changes in genetic makeup within a species. Because selection 
acts to reduce variability, new sources of genetic variation are introduced at the molecular level, 
such as the DNA of each individual, through random mutation. 

With changes in their DNA, some offspring might be more or less capable of living than their 
parents. A particular gene’s DNA might mutate over generations and become very different than 
its ancestral form. So many species descending from the same ancestor can have different DNA 
forming the same gene. The similarity shows common ancestors while difference shows 
evolutionary divergence. 

So we can conclude that species with more similar genetic sequences are probably more closely 
related. 

But for inferring an evolutionary tree relating a large number of different species with varying 
degree of similarity of a chosen gene, we need more elaborate mathematical ideas of how the 
mutations occurred. 

First let us cover some biological background. 

2.2.1 DNA structure 

The structure of DNA is a double helix, with about 10 nucleotide pairs per helical turn. Each 
spiral strand, composed of a sugar phosphate backbone and attached bases, is connected to a 
complementary strand by hydrogen bonding (non- covalent) between paired bases, adenine (A) 
with thymine (T), and guanine (G) with cytosine (C). Adenine and thymine are connected by two 
hydrogen bonds (non-covalent) while guanine and cytosine are connected by three. This structure 
was first described by James Watson and Francis Crick in 1953. 

Because of chemical similarity, adenine and guanine are called purines, and cytosine and thymine 
are called pyrimidines. We always find A paired with a T or G paired with a C. So knowing one 
side of the ladder helps to know the other side. For example if we have sequence 
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AATTGGCC 

Then the complementary sequence would be 

TTAACCGG 

Some sections of this DNA are used to form genes that have information for creation of proteins. 
Three consecutive bases in these genes create codons, where each codon specifies a specific 
amino acid to be placed according to genetic code.  There are 43=64 different codons and 20 
amino acids. Three of the codons signal the end of the protein sequence, and it do not code for an 
amino acid. 

Not all DNA are coded into genes, 97% of human DNA is believed to be non-coding. Some of 
this may be meaningless, but other parts probably serve as controllers of some sort. It is not yet 
understood. 

2.2.2 Mutations 

A common mutation in copying sequences of DNA is called a base substitution. This happens by 
replacing one base by another base at a certain site in the sequence. An example of a base 
substitution is  

AATTGGCCC 

ATTTGGCCC 

A base substitution of A→T has happened on the 2nd site. 

In a base substitution if a purine replaces a purine or a pyrimidine replaces a pyrimidine then it is 
called transition; an interchange of these classes is called a transversion.  Transitions usually 
occur more than transversions because the chemical structure of the molecule changes less under 
a transition than a transversion. 

Special cases of base substitution are hidden mutation such as C→T→ G in which a subsequent 
mutation hides an earlier mutation. This may happen in the case where we do not have all the 
sequences of all generations, and we would not know. Back mutation C→T→C is a special case 
of hidden mutation. 

Other things that happen more rarely in natural populations are insertion or deletion of one or 
consecutive bases.  

2.2.3 Aligned Orthologous Sequences 
 
All parts of the genome are believed to be descended from one much smaller ancestral piece of 
nucleic acid. All genomes have originated from this ancestral sequence by gene duplication, loss 
of parts of resulting genomes, insertion and rearrangements of various sorts. As complete 
genomes have been sequenced, both gene family and genome structure have become available in 

9   

 



those species. Specialized methods are required to gain an understanding of the events in gene 
family and genome evolution and to assist in inferring phylogenies. 
 
One such method is sequence alignment. In order to compare two or more sequences, it is 
required to align the conserved and unconserved residues across all the sequences.  The residues 
form a pattern from which the relationship between sequences can be determined with 
phylogenetic programs. When the sequences are aligned, it is possible to identify locations of 
insertions or deletions because of their divergence from their common ancestor. There are three 
possibilities: 
 

1. The bases match: this means that there is no change since their divergence, although 
back mutation is possible 
 2. The bases mismatch: this means that there is a substitution since their divergence. 
 3. There is a base in one sequence, no base in the other: there is an insertion or a deletion 
since their divergence. 

 
A good alignment is important for the construction of phylogenetic trees. The alignment will 
affect the distances between two different species and this will influence the inferred 
phylogeny[16]. 
 
There are some good search algorithms such that when given a gene identified in one organism it 
can locate similar genes in related organisms. By experimentally verifying that these in fact are 
genes and they have similar functions, we can assume that they are orthologous, which means 
they came from a common ancestral sequence. 
For some data, we can align orthologous sequences from different organisms easily. For others, 
finding good alignment is difficult; with large variation among sequences even the best software 
may have a hard time aligning them. In particular, if many insertions or deletions have occurred, 
alignment can be difficult. So, a mix of algorithm and ad hoc human adjustment is often used for 
producing better results. 
Once aligned orthologous sequences are in hand, the next goal is to produce a phylogenetic tree 
that describes their likely decent from a common ancestral sequence.  
 

2.2.4 Newick Format[24] for phylogenetic tree representation 
 
The Newick standard for representing trees in computer readable form makes use of trees and 
nested parenthesis. It was created by in 1857 by English mathematician Arthur Cayley. 
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Fig-1: graphical representation of (B,(A,C,E),D); 

 
An example is given in Figure 1 the tree shown is represented by the following sequence of 
characters 
(B,(A,C,E),D); 
 
Here the tree ends with a semicolon. The bottom most node (shown at the left in Figure 1) is an 
interior node. Biologically, this represents the most recent common ancestor and is called the root 
of the tree. Interior nodes are represented by a pair of matched parenthesis. In between them are 
the nodes that are immediately descendents of that node, separated by comma. 
 
In the above tree the immediate descendants are B, another interior node and D. Other interior 
node is given by a pair of parenthesis, enclosing representation of its immediate descendants, A, 
C, & E. In general there can be many interior nodes and results will be further nesting of 
parenthesis, to any level. 
Leaves are represented by names; such as A,B,C,D,E in the figure, a name can be any string of 
printable characters, except blanks, colons, semicolons, parenthesis and square brackets. 
 
Also trees can multifurcate at any level. We can add branch length into a tree by putting a real 
number with or without decimal point, after a node and proceeded by a colon. This represents the 
length of the branch immediately below that node. For Example 
 
((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08); 
 
is graphically represented using Dendroscope[25] as shown in Figure 2. 
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Fig-2: graphical representation of ((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08); 

 
A tree starts on the first line, and bigger trees with more branches can continue to subsequent 
lines.  Blanks can be entered anywhere, except in the middle of a species name or a branch 
length. 
 
Examples of Newick trees are  
 
(((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06); 
(((A:1, B:2):3, C:4):4, ((D:1, E:2):3, F:4):4); 
(A:0.01,B:0.02); 
(Bovine:0.69395,(Gibbon:0.36079,(Orang:0.33636,(Gorilla:0.17147,(Chimp:0.19268,Human:0.1
1927):0.08386):0.06124):0.15057):0.54939,Mouse:1.21460):0.10; 
 
Although both binary and non-binary trees are used, by using edge lengths of 0, we can represent 
non-binary trees in Newick format as if they are binary. 
There are some limitations for the representation of the Newick tree. One of them is the left right 
order of desendants of a node affects the representation, even though it is not biologically 
meaningful. So 
 
(A,(B,C),D); is same as (A,(C,B),D); 
 
Also, in phylogeny inference we generally cannot infer the position of the root. We represent the 
tree as unrooted tree. When describing inferences of such cases 
 
(B,(A,D),C); is same as unrooted tree (A,(B,C),D) 
 
Although some limitations do exist for the readability of Newick representations, this standard is 
in widespread use in phylogenetics. 
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2.3 The Software 
 
We need to use software for inferring phylogenies from molecular data. Although new software 
packages for this purpose are being written every day, two general phylogenetics inference packages 
are in widespread use: they are PAUP* and PHYLIP.  
 
Both of these use mathematical models of the substitution process in their approaches to statistical 
inference of phylogenetic trees.  Seq-Gen is a program that uses some of these models to simulate 
sequence evolution. It is an important tool for understanding how inference works, since it is almost 
impossible to produce experimental datasets where the phylogenetic tree is known beyond any 
doubt. Use of simulated data sets with known phylogenetic trees can be used to test how well 
inference can be performed. 
Many phylogenetics packages use nexus file formats and there are packages that export data to other 
formats as well. 
 
Brief descriptions of the packages are given as follows: 
 
PAUP*: Phylogenetic Analysis using parsimony and other methods. David Swofford’s package is 
probably the most widely used package for the inference of evolutionary trees[11][21]. 
 
PHYLIP: PHYLIP is a free package of programs for inferring phylogenies. It is distributed as source 
code, documentation files, and a number of different types of executables. Written by Joe Felsenstein 
of the Department of Genome Sciences and the Department of Biology at the University of 
Washington [8]. 
 
Seq-Gen:  Seq-Gen is a program that simulates the evolution of nucleotide or amino acid sequences 
along a phylogeny, using common models of the substitution process. A small range of models of 
molecular evolution are implemented including the general reversible model. State frequencies and 
other parameters of the model may be given and site-specific rate heterogeneity may also be 
incorporated in a number of ways. Any number of trees may be read in and the program will produce 
any number of data sets for each tree. Thus large sets of replicate simulations can be easily created. 
Seq-Gen is created by Andrew Rambaut & Grassly NC[12][13]. 
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CHAPTER 3. DEFINITION OF THE MODELS PROBLEM 

 

3.1 Probabilistic Models of DNA mutation 

Mutations are not always rare and hidden and back mutations may occur often. Trying to 
mathematically describe the mutation process that DNA undergoes as evolution proceeds is 
important. That is the only way we can gain insight into things we cannot observe. 

We need mathematical models that describe how mutations happen. Since there is a probability in 
this happening, we describe mutations probabilistically.  

3.1.1 A simple example: 

We shall begin our modeling approach with a basic example. 

Let us imagine a tree with only one edge, we will model one site in a DNA sequence from 
ancestral to descendant sequence. We will focus on how the sequences change classes. Here 
R=purine, Y=pyrimidines 

In our example we have ancestral and descendant sequence 

Suppose we somehow had access to an ancestral sequence S0 and a descendant sequence S1. 
 
S0 : RRYRYRYYRYYYRYRYYRRYY 
S1 : RYYRYYYYRYYYRYRYYRRYR 

To represent a site in an ancestral sequence we specify the probabilities that site may be occupied 
by R or Y. 

Here Pr, Py =0.5,0.5 would indicate an equal chance of each while Pr, Py =0.6,0.4 would indicate 
a greater likelihood of purine. But the probabilities should always add to 1. Since this is a root 
distribution of the sequence, where the two states are R,Y. 

In case of General Markov (GM) matrix it must have at least 2x2 matrix where each element 
represent the probability of change 

R→R  R→Y 

Y→R Y→Y 

For example, if we compare it with the sequence in S0 and S1, we would get the following data 

PR→R ≈ ଻
ଽ
     PR→Y ≈ ଶ

ଽ
 

PY→R ≈ 
ଵଵ
ଵ   PY→Y ≈ ଵ଴

ଵଵ
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Here PR→R indicates the probability of R base becoming R and PR→Y indicates the probability of R 
becoming a Y for the sequence (where 9 is the total number of events and 2 & 7 are the number 
of those particular events). So we can see that adding them we always get 1. 

3.1.2 A continuous-time version 

It is natural to think mutation as occurring at discrete times for an evolving organism. But the 
generation duration is usually quite small on an evolutionary time scale, so it is common to use 
continuous time. 

For this reason, we use certain rates at which the different mutations occur and then we organize 
them into a matrix such as  

   qRR  qRY 

Q =       qYR  qYY 

So here, qRY denotes instant rates at which Y replaces R states and is measured in units like 
substitution per site/year. The entries in each row of Q must add to give 0 and non-diagonals must 
be positive while diagonals must be negative. 

So we have a system of differential equation 

ௗ
ௗ௧

 pR(t) =pR(t)qRR + pY(t) qYR 

ௗ
ௗ௧

 pY(t) = pR(t)qRR + pY(t)qYY 

 

We can write this differential equation in matrix form as, 

ௗ
ௗ௧

pt =ptQ  where pt = (pR(t)  pY(t)) 

Using initial values of p0 we obtain the solution 

pt=poexp(Qt) 

We can use the Taylor series formula here, as this formula involves the exponential of a matrix, 
So for a square matrix A 

݁஺ ൌ 1 ൅
ܣ
1!

൅
ଶܣ

2!
൅

A3
3!

൅    ,ڮ

-1

A Λ -1

where eΛ is a diagonal matrix, with diagonal entries the exponential of entries of Λ 

If A can be diagonalized, A=SΛS  with Λ the diagonal matrix of eigenvalues of A and S matrix, 
whose columns are corresponding right eigenvectors  

e =Se S  
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In our model we have pt=p0eQt hence M(t)=eQt. 

As we compare sequences from time 0 to time t, the entries of M(t) are conditional probability of 
various mu gle matrix describing mutation along an edge representing 

tation process along an entire edge 

 

.2.1 Markov models of DNA base substitution 

e that can have four bases (A, G, C, T) . Here purines 
precede pyrimidines. 

e Tp. Then the GM model Tp consists of  

of all non-negative entries is 1. 
2. For each edge we have e=(u,v) a 4x4 Markov matrix M , in which each row sums to 1 

e=         p  p p  p
  

allowed are base substitutions. 
 
3.2.2 A 

ng the various edges of the tree we create a 
continuous time 4x4 rate Matrix Q, whose off diagonal entries are non negative and rows 

qAA qAG qAC qAT 

Q =       q  q q  q

ij t i is replaced by j 

 in Tp 

tation, hence, M(t) is a sin
time t. It is therefore like the matrix M given in section 3.1.1. 

In a Markov matrix, M as in section 3.1.1, we describe the mu
and all the elements of the row sum to 1. In a rate matrix Q the row sum to zero and we describe 
instantaneous mutation process. We get a Markov matrix by applying the exponential function to 
a rate matrix times the elapsed time. 

3

Let us consider a single vertex in a tre

Let us take a rooted tre

1. pρ =(pA, pG, pC, pT) root distribution vector, where sums 
 e

and values are non-negative 
So we have Mij=P(Sv=j|Su=i) 
 
  pAA pAG pAC pAT 

M GA GG GC GT 

pCA pCG pCC pCT              

              pTA pTG p  p T  TC T

 
Here the only mutations 

common rate-matrix variant of the Model 
 

In order to specify mutation process alo

add to 0 
 
    
      GA GG GC GT 

     qCA qCG qCC qCT             

               qTA qTG q   qTT  TC

 
with q the rate per site tha
 
2b) if edge lengths te≥0 are given for all edges
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the Markov Matrix 
Me =M(te) =eQte 

Can be interpreted as in (2) 

ies of Markov Matrix (M)

of  3.2.1 above for the edge e, directed away from the root. 
 

.2.3. Propert  
λ1=1 as its largest eigenvalue and all eigenvalues |λ| ≤ 1 

lue 1 with multiplicity 1 

 

.3 Jukes Cantor and Kimura models  

.3.1 Jukes Cantor 
or adds to GM that all bases occurs with equal probability in ancestral 

, ¼, ¼) 
 model, we use transition matrices of the form 

   1-a  a/3 a/3 a/3 
 

here a larger value of a denotes more mutation. 

quivalently we use the rate matrix 

   -1  1/3 1/3 1/3 

 
.3.2 Kimura Models 

uses a single parameter a to denote mutation, but Kimura may add more 

dds different probabilities of transition and transversion. 

            *  b  c  c 

3
1) A Markov matrix always has 
one eigenvector corresponding to λ1 has all non-negative entries 
2) A Markov matrix with all entries positive has largest eigenva
and the one eigenvector associated to λ1 =1 has all positive entries. 

 
 
3
 
3

Jukes Cant
sequence 
po = (¼, ¼
In the Jukes Cantor
 
  
M =        a/3  1-a  a/3 a/3 
             a/3 a/3  1-a  a/3  
             a/3 a/3 a/3 1-a   
 
w
 
E
 
  
Q =        1/3  -1  1/3 1/3  
             1/3 1/3  -1  1/3  
             1/3 1/3 1/3 -1   
 

3
Jukes Cantor 
parameters per edge. 
Kimura 2 parameter a
 
  
M =            b *  c  c 
                  c  c  * b 
                  c  c  b * 
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Wh  c=transversion and *=1-b-2c 

           where * =- β -2δ 
r is 

 
.4 General Time Reversible Model 

The continuous time version of the Jukes Cantor and Kimura Models are time –

 P is the joint 

hus time reversibility means P=PT or  

iag(p)M =(diag(p)M)T=MTdiag(p) 

o, for time-reversibility to hold we need, 

iag(p)Q=QTdiag(p) 

 p = (pA  pG   pC   pT) is the root distribution & we use a rate matrix 

       *     pGα  pCβ     pTγ 

here rows sum to zero and where the relative rates α, β, δ, Є, η, γ ≥ 0, then we use a 

ote that P Q =  O ,     so P is an eigenvector of Q with eigenvalue O.       

he General Time Reversible (GTR) assumes as parameters 

on that is stable, p is an eigenvector of Q of eigenvalue 0 

ere and b =transition 
A continuous version uses a rate matrix 
         * β   δ δ 
Q =         β  *  δ δ 
             δ  δ *  β 
            δ  δ δ  *  
Kimura assumes the root distribution vecto
po= (1/4, 1/4, 1/4, 1/4) 

3
 

reversible. For example in an edge with ancestral and descendant, if we reverse the flow 
of time, we can describe the evolution with exactly the same parameters. 
If p is the ancestral base distribution, M is the Markov matrix and
distribution of bases in ancestral and descendant sequence, then 
P(i,j) =pi M (i,j), or as a matrix equation 
P=diag(p)M. 
 
T
 
d
 
S
 
d
 
If
 
  
 Q =  pAα *      pcδ     pTЄ 
         pAβ pGδ  *        PTη 
         pAγ PGЄ PCη    * 
 
w
time reversible model.  
 
N
 
T
1) GTR rate matrix Q on all edges 
2) Scalar edge length 
3) Root base distributi
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Nice feature of GTR 

GTR is the most general neutral, independent, finite-sites, time-reversible model possible. 
It was first described in a general form by Simon Tavaré in 1986 

e for optimal trees 
2) Common rate matrix for all edges means less parameters  

ole 

        articular models, models with more 
arameters are intractable for computation with large number of taxa. Its desirable to use models 

3.5 A simple construction of a model 

1) Time reversibility ignores location of root, reducing search tim

3) Common rate matrix also imposes commonality to mutation process over the wh
tree, hence may be biologically more realistic 

 
  While nature does not necessarily follow any p

p
with few parameters provided they capture the key aspect of reality. Having a small number of 
parameters also avoids overfittting data while keeping variance of inferred trees lower. 
 

Example GM model 

The GM model takes input matrices from the user; the user can enter any number of matrices and the 

[M],2:[N]):[M1],((4:[P1],5:[P2]):[P3],3:[P4]):[L]); 

for each of the 
edge. The system allows for input of Markov matrices for each edge. The program returns sequences at 

here is a "root distribution" 
parameter that gives the probabilities that the root is in each of the possible states (four for DNA). For 

required root parameters for the model. The GM model simulates the phylogenetic tree and outputs the 
DNA sequence for each of the leaves. 

Example of an input tree would be ((1:

where 1 to 5 are different leaf numbers and M,N,M1,P1,P2,P3,P4 and L are the matrices 

the leaves of the tree that have been generated according to such parameters. 

For construction of the tree the user must specify the root of the tree.  T

each edge there is a transition matrix giving the transition probabilities of various substitutions along that 
edge. The form of the matrix depends on the model of substitution chosen.   

A sample input file for GM 

A sample input file that is taken by our program is given below 

tree = (((1:[P1],2:[P2]):[M1],(3:[P3],4:[P4]):[L]):[M],5:[N]); 

 
,0.7,0.1,0.1,0.1,0.1,0.7,0.2,0.1,0.1,0.1,0.7}; 

,0.1,0.1,0.7,0.1,0.1,0.2,0.1,0.6,0.1,0.1,0.1,0.1,0.7}; 

model = GM 

states = DNA 
root = [0.2,0.3,0.2,0.3] 
nchar = 200000
P1 = {0.7,0.1,0.1,0.1,0.1
P2 = {0.6,0.2,0.1
M1 = {0.6,0.2,0.1,0.1,0.2,0.6,0.1,0.1,0.1,0.1,0.6,0.2,0.1,0.2,0.1,0.6}; 
P3 = {0.6,0.2,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.2,0.6}; 
P4 = {0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7}; 
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L  = {0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7}; 
M  = {0.6,0.1,0.2,0.1,0.2,0.6,0.1,0.1,0.1,0.1,0.6,0.2,0.1,0.2,0.1,0.6}; 
N  = {0.7,0.1,0.1,0.1,0.1,0.6,0.1,0.2,0.1,0.1,0.7,0.1,0.1,0.1,0.2,0.6}; 
 
Here, the model name is given as GM. The tree is in Newick[24] format where the capital letters inside 

e brackets “[“ and “]” indicate matrix names and the numbers are taxa names. After that we have the 

xample GTR model

th
root parameters, the probability of the four bases in the root DNA sequence, then we have the total length 
of the sequence, and last is given the edge matrix of each of the edges, this matrix gives the probability of 
one base changing to same or other base along the edge. Those are 4x4 matrices, whose 16 entries are 
listed by consecutive rows. 

 

E  

-like models, the software takes the tree, root-parameters, relative rates, transition-
transversion ratio, RYratio. The output of the file is produced as output.nex. It contains DNA bases of the 

duces the 
input tree to our program for the GTR model, as well as very close approximations of all other 

truction. The file also 
contains the number of sequences, so when simulating the tree the input and the output DNA sequence 

c compiler used). gsl[26] library 
has been used for some of the matrix computations, such as finding the exponential; of a symmetric 

For the GTR and GTR

leaves of the phylogenetic tree. The "rate matrix" is part of what is known as a "GTR" model.   

The output of the phyogenetic program (output.nex) was fed into the PAUP* program and it pro

parameters. So the GTR model is producing correct result. The Complexity Cluster service of BCRG, 
UAF was used to make use of PAUP* and check the GTR model for varying input. 

For the models all the information is read in from a file for phylogenetic tree cons

can be any bases (A,C,G,T) long. It also supports Amino acid(20) and binary(0,1) bases. In addition 
custom bases can be created and flexible input and matrix sizes be used. 

The software has been written in C language in Linux environment (gc

matrix in the GTR model. The GUI was created using GTK+/glade interface designer. 

A sample input file for GTR 

A sample input file that is taken by our program is given below 

tree=((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08); 

, 2, 1] 

ere, the model name is given as GTR. The tree is in Newick format where the capital letters indicate leaf 
names and the numbers edge length, after that we have the root parameters, the probability of the four 

model=GTR 

states = DNA 
root=[0.4, 0.2, 0.2, 0.2] 
nchar=200000 
relative-rates = [1, 2, 3, 1
 

H

bases in the root DNA sequence. Then we have the total length of the sequence and last is given the 
relative rates to construct the rate matrix Q for the GTR model, as in section 3.4. 
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3.6 Rate Variation Model 

In our past examples, Markov models of DNA mutation all assumed that all sites behave identically. But 
listic. It is desirable to model mutation processes so that some sites mutate 

quickly, other slowly and others not at all. 
in Biology this is not rea

Invariable sites Model 

For creating rate variation models, we can create two classes of sites. The first class (variable sites) 
 (invariable sites) do not mutate. 

ce it may have been variable but simply never 

For rooted tree, T relating the n taxa 

ρ

{Me}eЄE(T) a kxk Markov matrix for each edge 

variable and 1-r the probability it is 

We can implement GM+I in the PhyloSim program as a mixture model. The input file for GM+I is given 

((A:0.01, B:0.02):0.03, C:0.04):0.05, D:0.06); 
states = DNA 

ns = [0.6,0.4] 

  root = [0.1, 0.2, 0.3, 0.4] 
.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.2,0.1,0.1,0.1,0.7}; 

.1,0.1,0.1,0.7,0.1,0.1,0.2,0.1,0.6,0.1,0.1,0.1,0.1,0.7}; 
,0.1,0.1,0.1,0.6,0.2,0.1,0.2,0.1,0.6}; 

 Invariable 
  root = [0.4,0.3,0.2,0.1] 

mutates but the 2nd class

If, we examine data from such a model, if we observe mutation at a site, then it must be in the first class. 
If no mutation is observed, it may be in either class, sin
changed, or perhaps had a hidden mutation. 

Such a model is GM+I, We formulate this for characters with K states, trees relating n taxa. 

P  is a root distribution vector with k entries for the variable sites 

r is class size parameter, where r gives the probability a site is 
invariable. 

q is another distribution vector for invariable sites 

below 

model = Mixture 
tree = (

nchar = 2000 
nclasses = 2 
ClassProportio
 
begin-class 
    model = GM 
  
    A = {0.7,0
    B = {0.6,0.2,0
    C = {0.6,0.2,0.1,0.1,0.2,0.6,0.1
    D = {0.6,0.2,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.2,0.6}; 
end-class 
 
begin-class 
    model =
  



22   

 

end-class 
 
or we can implement GTR+GAMMA (using GTR instead of GM) as given below 

 sample input file for GTR+GAMMA
 
A  

 sample input file that is taken by our program is given below 

model=GTR+GAMMA 
 

states = DNA 

 [1, 2, 3, 1, 2, 1] 

 sites Models

A

tree=((((A:0.01,B:0.02):0.03,C:0.04):0.05,D:0.06):0.07,Q:0.08);

root=[0.4, 0.2, 0.2, 0.2] 
nchar=200 
relative-rates =
alpha=0.5 
nclasses=4 
 

Rates across  

 GM+I model we use two classes, where we let one of them to not allow mutating. In practice models 
 a mixture of GM are usually used. 

scalar edge length {te}eЄE(T) 

if we have m classes of sites, we use m scalar rate parameters λ1 λ2 λ3… λm where a vector r=(r1,r2,r3…rm) 
r1+ r 2+ rm=1 

Me, i = exp( e i )

We combine the classes to get the joint distribution for the mixture model   

P = ∑  riPi 

Similarly we can get a continuous distribution of rates 

P= ׬ ሻ  Pߣሺݎ dλ 

It is common to use a Ѓ-distribution of rates  

rα(ߣሻ =  αα/ Ѓ(α) λ α-1 e-αλ 

arameter to our model, but allows flexibility in distribution 
elihood fit. 

We can use a mixture model or we can implement GTR instead of GM as GTR+GAMMA+I. A sample 
input file is given below 

In
with fewer parameters than

For a fixed tree T, and rate matrix Q, with root distribution vector ρ 

gives the sizes of the classes so 

For ith rate class, we will use rate matrix λiQ on an edge e of the tree we have Markov matrix. 

t  λ Q  

௠
௜ୀଵ

ఒ λ

The shape parameter α then adds only one p
for a better maximum lik
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A sample input file for GTR+GAMMA+I 

A sample input file that is taken by our program is given below 

.03,C:0.04):0.05,D:0.06):0.07,Q:0.08); 
model=GTR+GAMMA+I 
tree=((((A:0.01,B:0.02):0
states = DNA 
root=[0.4, 0.2, 0.2, 0.2] 
nchar=1000 
relative-rates = [1, 2, 3, 1, 2, 1] 
alpha=0.5 
nclasses=4 
Pinv=0.2 
 

n ModelThe Covario  

In evolution, some sites are unable to change because they code for a part of protein that is essential for 
 to live. After some evolution, those proteins might not be necessary. So they are free to 

 different parts of the tree. Fitch and Markowitz called the sites that were free to vary at a 
articular time “covarions” which indicates some characters of switching between free and not free as 

he tree. 

e S1 at which “on” state switch to “off” state and 
2 

t

1 1

ty matrix. 

Now letting  

σ1= ௌଶ
ௌଵାௌଶ

the organism
change in
p
evolution proceeds across t

For a DNA model, instead of 4 states, we have 8 states 

Aon , Gon , Con , Ton , Aoff , Goff , Con , Toff , 

where on means the site can vary and off means currently that site is invariable 

So we have additional parameters, an instantaneous rat
instant rate S at which “off” state switch to “on” state. 

So we get 8x8 rate ma rix 

Q~ =    Q – s I        s I 

            s2I          -s2I         

Where I denotes 4x4 identi

                       σ2= ௌଵ
ௌଵାௌଶ

  

p~=( σ1p, σ2p) 

p~ is a stable distribution for Q~. The rate matrix Q~ and root distribution vector p~ form a time 
reversible model. 

So, for any tree T, with root ρ, we have 8 state model with root distribution vector p~, rate matrix Q~, 
eЄE(T) where Markov matrix Me=etQ~ is assigned to the edge e[15]. edge length {te}
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h base) but when we go to the leaves the program only shows the A, C, G, T bases as 
output. 

Although inside the program different variation of each of the bases is used, so we have a total of 8 bases 
(on and off for eac

A sample input file for Covarion 

A sample input file that is taken by our program is given below 

model =
states = 

 ScaledCovarion 
DNA 

tree = (((A:0.01, B:0.02):0.03, C:0.04):0.05, D:0.06); 
.4, 0.3, 0.2, 0.1] 

ates = [1, 2, 3, 1, 2, 1] 
istribution = [0.75, 0.25] 

Rates = [1] 

nchar = 20 
nclasses = 2 
ScalingFactors = [1, 0.5] 

StateRootDistribution = [0
StateRelativeR
ClassRootD
ClassRelative



CHAPTER 4.  PROJECT PLANNING 

 

Some kind of project planning is the initial step for any project. It usually includes determining objectives 
of the project, scheduling information, obtaining resources of the project and determining main tasks to be 
completed. Risk analysis is also an important component of most project plans. Here risks are identified 
and risk monitoring procedures are defined. 

4.1 Objective 

Software projects that are finished late, over budget and with poor quality software are common. 
In software engineering this has been called “Software Crisis”. To avoid such problems, a project 
plan was created for PhyloSim. The main tasks to be completed were identified, with sequences 
and schedules.  

4.2 Resources needed 

1. Hardware needed 

The system runs fairly fast on most machines, but for higher number of sites recommended 
systems for the product are as following. 

Recommended for running the software, the user should have the minimum following 
hardware configuration: 

800MHz Pentium 3 processor  

With 512 MB of RAM 

10 MB of free hard disk space 

And a display resolution of 1024x768 with 24-bit color (to support the GUI) 

2. Operating System needed 

The operating system must be running is Linux or MacOSX 

The code can be run on Windows98/NT/2000/XP using cygwin software (not tested yet) 

3. Tools needed 

gcc compiler 

        Dependencies of the software includes several freely available libraries for download 

They are 

gsl library 

gtk+ library 

dependencies of gtk+ 

glib 

atk 

pango 

25   

 



cairo 

most of the libraries besides gsl are already installed in popular versions of Linux and only 
required to be installed for compiling the code in Macintosh operating system. 

 

4.3 Risk Analysis 

The purpose of risk analysis is to find, evaluate and decrease the impact of foreseeable risks. This 
helps to ensure that the project can produce high quality software within the predetermined 
schedule and budget. 

Scenarios (Risk discovered from an ATAM analysis [27][28]) 

1. Invalid data is entered in the input file 

2. Invalid tree format used  

3. The hard disk of the user crashes 

4. The user tries a high mutation rate in one of the nodes 

5. The user tries to implement invalid horizontal gene transfer 

6. The user tries to save the file in an unsupported file format 

7. The GUI crashes while using in a different operating system other than Linux 

8. The software update needs to be done automated 

9. Process received from the user is put in queue for processing, all process in queue have 
the same priority 

 

4.3.1 Risk Themes 

There are four types of risks outlined in the previous page. They can be categorized 
as integrity, technical, logical and usability. 

Data Integrity Risk: These are items 1,2.  These can be addressed by making sure 
that the system goes through rigorous data checking while the user is providing 
them and keeping options disabled (In GUI) so that the user cannot enter invalid 
entry.  

Technical Risk: These are items 3,4,8,9. This should cover other system software 
and hardware to make sure that the system supports PhyloSim properly. 

Logical Risk: These are items 4,5. This should cover that by varying some 
parameters to a certain degree would result in trees and output data that be 
irrelevant and not useful. 

Usability Risk: These are items 6,7,8,9. These can be addresses by properly 
stating the functional and non-functional requirements and making sure they are 
implemented properly. 
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4.4 Schedule 

The Work Breakdown Structure (WBS) lists the main project tasks and the PERT shows 
their sequencing. The schedule for implementing each task considers both priority and 
resource requirements. The Gantt chart is for basic scheduling and tracing tool for the 
project. It was modified whenever needed depending on the progress of the project. For 
example changing the way tree data is represented in GM model. 

 

4.5 Project Plan 

The project plan is a brief document that describes the project objective, the risk analysis, 
schedule and resources. It is provided in Appendix A. Appendix B is WBS that indicates all 
the main required tasks. Appendix C is a PERT chart that shows task sequencing. Appendix 
D is a Gantt chart which lists the schedule for all tasks. 



CHAPTER 5. SOFTWARE DEVELOPMENT APPROACH 

 

This project is mainly a software development project. A sound software engineering approach is used to 
ensure high quality and timeliness of the software development. “High quality” means that the software 
meets its requirements. Software engineering is a young and rapidly maturing discipline which 
emphasizes the development of methodologies and tools to help manage the process of creating today’s 
complicated software. It is hard to define exactly. An early definition of software engineering was 
proposed by Fritz Bauer at the first major conference [29]:  

The establishment and use of sound engineering principles in order to obtain economically software that 
is reliable and works efficiently on real machines. 

There are software engineering methodologies associated with such areas as software project planning, 
software requirements analysis, software design, software implementation and software testing. The use 
of a suitable software engineering approach enhances such software attributes as correctness, reusability, 
portability and reliability. 

For PhyloSim a hybrid software development approach was used. The hybrid approach has the following 
elements: 

(1) A baseline project plan was developed initially 
(2) Project requirements were analyzed and a requirements specification was generated. The 

specification includes the model requirements and performance requirements. Best efforts were 
made to modify the software to increase the degree of performance. 

(3) The software architecture and design were developed before implementation began. The 
architecture identified the major components, while the overall design includes the I/O, program 
structure and algorithm design.  

(4) Individual phylogenetic models (discussed in chapter 3 and 7) were developed sequentially using 
an agile approach similar to extreme programming. Under this approach each phylogenetic model 
was developed and tested, followed by the next, etc. All such phylogenetic models used the same 
overall software framework or architecture. 

(5) During the software development, software tools such as glade[30], Make utilities, and debuggers 
were used to help implement the project. 

(6) Extensive testing of the software and all phylogenetic models was done using software 
verification and validation strategies. Written test plans were created. Test documentation was 
created which included the bug reports and comments on the results of the model computations. 

(7) All software was well documented. The documentation includes source code with complete 
comments, structure and flowcharts of the program, project plan, requirement specification, test 
plan, and test documentation. These documents should make the software easy to read, maintain 
and change in the future. 

Details of approach followed are provided in subsequent chapters. The software engineering approach 
helped to ensure project success. 
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In order to implement the software a hybrid model combining classical software engineering model 
and the Agile model with Extreme Programming approach was used. Each of the mathematical 
models were implemented and tested against other similar programs used for phylogenic inference. 
After the test showed satisfactory results the next model was implemented. This continued until all 
the models were implemented and then the entire system was tested. 



CHAPTER 6. SOFTWARE REQUIREMENTS ANALYSIS 

 

For complex systems, a complete understanding of software requirements is probably impossible to 
achieve at the beginning of the project. However, good understanding of the software requirements is 
usually the basis for a successful product. If we cannot understand the requirements of a particular 
software, then the output product will probably not satisfy the user and so the project can fail even if the 
project plan, the software design, implementation and testing are good. So, we need requirements analysis 
because it is the first step for ensuring that right product is developed. At this point, a requirements 
specification can be created. It describes the system, its main functions, its system environment, 
performance and constraints. 

6.1 Technical requirements for the PhyloSim programmer 

To implement this software the programmer needs to have a basic knowledge about genetics, 
computational biology, bioinformatics and especially mathematical modeling. This includes 
knowledge of how to parse Newick format trees, how to use glib data structure to get that 
information, how to store the tree data in appropriate data structures, and how to use them for 
computations.  The use of multiple free libraries like gsl, glib, pango, atk, cairo is needed. The 
use of the glade GUI creator and corresponding gtk+ library can save a lot of time for 
implementation. 

The development of software for Phylogenetic inference software is quite different from the 
development of other general software. It requires special skills and knowledge. I needed to learn 
how to design and write programs using gtk+, and other libraries to minimize execution time. 

6.2 Input and Output requirements for PhyloSim 

Input:  The input data consists of a file with required parameters for each target model. Those 
parameters can be root distribution, relative rates, number of states, titv ratio, etc and a tree that 
describes the lineage and the branch length. 

Output:  The output data consists of the sequence of each of the leaves after the mutations have 
occurred down the tree according to the model parameters applied on the root sequence. These 
sequences can be DNA, amino acid, protein or custom made sequences. The program also 
supports having ancestral sequences; ancestral sequences are the sequences that are in the nodes 
of the tree. 

6.3 Requirement specification 

After analyzing the requirements, a formal requirements specification was done. The requirement 
specification is given as follows: 

1. Introduction 
The document is the requirement specification for the software system for phylogenetic tree 
simulation based on complex and mixed models. 
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A GUI based software is to be developed for this purpose. This program will simulate the 
phylogenetic tree based on input model and its parameters. The program should be fast in 
execution and produce accurate results. 
 

2. System Stakeholders 

The main stakeholders are INBRE, advising committee members, and future PhyloSim users 
(expected to be). 

The Committee 

The committee consists of the developer and three committee members who are assisting the 
developer in making this product by giving computational biology, programming and 
software engineering advice. 

Biotechnology Computing Research Group (BCRG) 

The BCRG group at UAF’s West Ridge is associated with the biotechnology and 
bioinformatics research at UAF. This software will add to the other software that the BCRG 
group has created and supports to the BioComputing research at UAF. 

The BCRG existing portal could host the PhyloSim software, and make use of the parallel 
processing, that the Bioinformatics core already provides. 

IdEA Network for Biomedical research excellence (INBRE) 

INBRE is funding some of the bioinformatics research at UAF. PhyloSim development is 
funded by INBRE and supports the INBRE’s goals. 

Fairbanks Community 

UAF is well known for its Biology research. PhyloSim helps UAF broaden and grow its 
research. It will help the ongoing research effort at UAF and also the biology and 
bioinformatics community in general. 

Computational Biologist / Bioinformatics researchers  

Phylogenetic Inference programs are widely used and needed by Computational Biologist and 
Bioinformatics researchers. New, user friendly, flexible and accurate phylogenetic inference 
software like PhyloSim helps this group in their pursuit of new ideas and assists in 
implementing them. 

 

           2.1 Functional Requirements 

1. Simulation Function: 

Provides a way to generate a phylogenetic tree from the input Model parameters. 
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2. Multi Model or Model Mixer Function 

Allows the use of more than one model at different parts (nodes) of the same tree. 

3. File formats 

Support popular file formats such as PHYLIP, NEXUS[31] and PAUP. 

4. Model loader 

Supports the loading of different kinds of models. 

5. Complex Model initiator 

Support options such as across site / lineage rate variation and other complex features. 

6. Tree creator 

Allows the user to create trees and enter edge length and leaf names easily. 

 

2.2 Non-Functional Requirements 

2.2.1 Flexibility 

The system must have flexibility in supporting variable input parameters. It can support 
variable matrix sizes which are considered very important for phylogenetic inference 
schemes. Other variable parameters are the relative-rates, custom bases and root 
parameters. The product also allows entering the matrix parameters directly in case of 
General Markov models. 

2.2.2 Modifiability 

PhyloSim must be able to implement new phylogenetic modules with minimal change 
costs. The way to achieve this requirement is to keep different mathematical models in 
different PhyloSim sub-modules; any of these modules can be changed to further enhance 
those models. Another desirable modification is to allow higher computational speeds 
with minimal software changes. Enhancement can be in the form of increasing 
computational speed such as creating a faster matrix-matrix multiplication for example. 

2.2.3 Performance 

PhyloSim must create phylogenetic trees using large DNA, codon, amino acid and 
protein bases quickly, for example, it should generate the output of a five taxon tree with 
a million bases in few seconds.  

2.2.4 Usability 

PhyloSim must be easy to use for its targeted primary users, who are computational 
biology and phylogenetics researchers. One way to achieve this is to support GUI, which 
enhances the capability of easier data entering and modifying. This viewing of input and 
output also supports changing of the different parameters.  
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2.2.5 Scalability 

PhyloSim must install and run on a single computer system, such as a modern laptop. 
However, better performance could result by a further enhancement of the system by 
making it run on a parallel machine. This could be a future requirement for an advanced 
PhyloSim.  

2.2.6 Extensibility 

Many possible extensions could make PhyloSim more useful. Examples could be to add 
code to support newer models and a graphical representation of the output data. 

2.2.7 Testability 

Testability verifies the ease of testing the system. PhyloSim takes data and outputs files 
that can be used in other program to verify the accuracy of the program. Such programs 
are PAUP* and PhyML. They take the output file from this product and produce the same 
tree that was entered in our program. The Complexity Cluster service of BCRG, UAF 
was used to make use of PAUP* and check the GTR & GTR-like models for varying 
input. The web interface of PhyML was used for testing models as it is freely available 
online.  

2.2.8 Compatibility 

The system must be compatible with the different NEXUS, PHYLIP files available 
online for existing data of different species. The PhyloSim output file may be utilized by 
other phylogenetic inference software. 

2.2.9 Reliability and Accuracy 
 

Reliability and accurate results are major software design constraints. 
 

2.2.10 Constraints on time and resources 
 

PhyloSim must run on any Linux and MacOSX machine. 
PhyloSim should be finished and ready for release by the end of July, 2008. 
 

2.3 User Characteristics 

User- A user is a person who can load input files, modify the existing parameters and make 
use of the output file. Targeted primary users are computational biology and phylogenetic 
researchers. 

For benefit to some user who wants to modify PhyloSim themselves the entire source code 
will be made available under the GNU license so that they can change it according to their 
need. 

  



CHAPTER 7. SOFTWARE ARCHITECTURE, SOFTWARE
DESIGN AND SOFTWARE IMPLEMENTATION

7.1 Software Architecture

At this phase PhyloSim enters into the second stage of development.
This part is the architecture part. The Architecture should lend itself to
incremental implementation via the creation of a ”skeletal” system in which the
communication paths are exercised but which at first has minimal functionality.
This skeletal system can then be used to ”grow” the system incrementally,
easing the integration and testing efforts[27]

Also, PhyloSim software architecture should be such as to faciliate
achievement of the non-functional requirements(flexibility, modifiability) that
were discussed in chapter 6.

Software architecture is much concerned with software structure, i.e. the
identification of the main software componenet and their inter-relationships.

The divide and conquer technique is used to make the project easy to
implement, it consists of the identification of the PhyloSim project tasks. These
are shown below in several categories.

In its simplest form, the PhyloSim Software system consists of

1. Parser: This is the one of core Module of the system, it takes input data
and parses it and feeds the models the required input.
2. GUI Module: This Module helps user create input file using template reads
in model data from input text file and views or saves output as user desires.
3. Mathematical Model loader: This module loads any mathematical model
according to the description of the Input txt file. It simulates the phylogenetic
tree and outputs the DNA sequences in different branches and produces the
resultant leaf nodes with DNA sequences.

The system was chosen to be built, because it is a somewhat unique system
that mixes up new and complex models that other available systems do not
support. The system helps biologists to create new trees that are supposed to
be more biologically realistic.

PhyloSim has major software components (modules) which are identification
in the table below.
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The Program modules are:

Module name Functions
PhyloSim.c Program entry point. GUI load and initialization.
interface.c GUI management.
interface.glade XML description of GUI elements, for using with libglade.
parser.c Input data parsing.
data.c Common-used model descriptions and matrix operations.

7.2 Software Design

After Architecture part starts the design part. Software design is a process
through which requirements are translated into a representation of software[29].
Good design involves making the simplest system that will satisfy the
requirements of the project[32].

The description of some of the these modules is provided below

7.2.1 Design of PhyloSim.c

This module contains program entry point function main(). It initializes
GTK+2, creates and maximizes main window and enters GTK+2 event loop.
After initialization, program execution is controlled by interface.c module.

7.2.2. Design of interface.c

This module allows user to control the program execution. Using corresponding
GUI controls, user can start calculations on currently loaded text data.
We can see the algorithm of the execution function in Figure 1 in next page.
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Begin

Call to parser scan text

Error
condition

Display error message

Call to data evaluate

Error
condition

Display error message

Show confirmation

End

No

No

Yes

Yes

Fig 1: Common algorithm of execute function:

7.2.3. Design of parser.c

This module contains lexical scanning and parsing related functions. Parsing
process of entire input text is controlled by function int parser scan text
(const char * text, parser data t * data). It takes input data text as const
char * text and scanning over it using GScanner lexical scanner included in
glib software library.

The parser data t structure contains parsed parameters as dynamically
allocated variables of corresponding type. Before scanner find a token
corresponding to particular data entry in parser data t structure, the
structure entry keeps NULL value. After finding a token, parser dynamically
allocates memory area, fills it with value read from input and stores pointer
to the allocated memory in parser data t structure. If corresponding slot is
already filled with some data, parser generates error state due duplicated data
entries is not allowed.

Common algorithm of parsing process is shown in Figure 2 as flowchart.
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Begin

Initializations

End of input
or

error condition

Find entry of the scopes array
corresponding to current

scope identidier

Call to parser function stored
at found scopes entry

Error
condition is set

Setup structure fields
corresponding to error

handling

Current parser
structure has

parent

Setup structure fields
corresponding to error

handling (unfinished nested
model)

End

Yes

No

No

Yes

No

Yes

Fig 2. Common algorithm of parsing process is shown on flowchart.
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7.2.4 Design of data.c

This module controls data integrity checking, calculations execution and con-
tains auxiliary mathematical functions. Internally, it contains static structures
describing models and states sets. const data model t data models [] array
contains model information, such as internal identifier, model name, calculations
function and Q matrix constructing function. Last one can be NULL if such
model cannot make Q matrix.

Static array of anonymous structures data parser items contains enu-
merated set of data fields and corresponding names. It used in int
data check valid parser set (parser data t * p, unsigned long int set,
unsigned long int mayset, int ms, char ** msg) function which checks
that given parser data contains only desired fields but not other ones.

The data flowchart is shown in next page as Figure 3:
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Fig 3. Common algorithm of data.c process is shown in flowchart

Next page in Figure 4. shows the overall structure of the PhyloSim program
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PhyloSim

parser

scope recognizer

scope readers

string

real number

integer number

tree

sequence of real numbers

nested classes

GUI

main window

preferences dialog

template dialog

tree editing dialog

vector editing dialog

models

GM

Mixture

Scaled Covarion

Equal Stationary Distribution Covarion

GTR+Γ

GTR+Γ+I

Invariable

Tree Mixture

GYMO

GTR

GTR based models

CFN

F81

F84

HKY

JC

K2P

TN

GTR models with predefined parameters

BLOSUM

CPREV

DAYHOFF

DCMUT

JTT

LG

MTMAM

MTREV

VT

WAG

WAGSTAR

Fig 4. Overall structure of the Software Architecture of PhyloSim
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7.3 Software Implementation

Currently PhyloSim supports the following phylogenetic models:

1. GM

2. Mixture

3. Scaled Covarion

4. Equal Stationary Distribution Covarion

5. GTR+Γ

6. GTR+Γ+I

7. Invariable

8. Tree Mixture

9. GYMO

10. GTR

11. GTR based models

(a) CFN

(b) F81

(c) F84

(d) HKY

(e) JC

(f) K2P

(g) TN

(h) GTR models with predefined parameters (BLOSUM, CPREV,
DAYHOFF, DCMUT, JTT, LG, MTMAM, MTREV, VT, WAG,
WAGSTAR)

Code implementing models is placed on models subdirectory. There is a
pair of C source code file and it’s header file for each model named do xxx.c
and do xxx.h, where xxx is signature related to model name. For each
model module exports function int do xxx (parser data t * data, void (*
print fn) (void *, const char *, ...), void * print data, char ** errmsg)
which performs calculation for model. Some models also exports function int
xxx make q (parser data t * data, long int ms, double ** ret, double *
root) which calculates Q matrix for that model. These functions are enlisted in
states array const data model t data models [] of data.c module with model
name used in the input data. Function int do xxx (parser data t * data,
void (* print fn) (void *, const char *, ...), void * print data, char
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** errmsg) uses parser data t * data as input data, prints out calculation
result using passed print fn (print data, format, .... On error each function
returns nonzero value and set * errmsg to allocated string corresponding to
error found.

7.3 GM model, do gm.c module

This model uses the following calculations algorithm:

1. call to prepare function which checks input data and constructs
gm data t model specific data structure. That structure contains plain
arrays instead of glib specific GList and GHashTable data structures
which is hard to use in calculation functions.

2. call to init function which initializes random numbers generator and
creates root DNA sequence.

3. call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

do mutation function:

1. calls data mutator function, passing to it bounds vector and DNA
sequence of current node, DNA sequence of parent node.

2. prints DNA sequence of current node.

3. call to glib’s g node children foreach function which calls do muta-
tion function for each child node of current one.

7.3.2. Mixture model, do mix.c module

This model uses the following calculation algorithm:

1. Check input data

2. Allocate memory and initialize variables.

3. For each of nested models construct Q̃i matrix using data make q ma-
trix for model.

4. Construct Q matrix:

Q =







Q̃1 0 0 . . .

0 Q̃2 0 . . .

0 0 Q̃3 . . .

. . . . . . . . . . . . . Q̃n







5. Construct µ vector using class root distribution π and root elements of
nested models:

µ = [π1α1,1, π1α1,2, . . . , π2α2,1, π2α2,2, . . .]

where αi,j is j-th root element of i-th model.
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6. Construct T , T−1 matrices and λ vector using data make t from q -
matrices function of data.c module.

7. Initialize model specific structure mix data t.

8. Construct amino acid states array.

9. Construct model specific tree by calling make mix node function for
each node of source tree.

10. Create root DNA sequence.

11. Use glib function g node children foreach call do mutation function
for each node of tree root.

12. Free allocated memory.

make mix node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.3 Scaled Covarion, do cov.c module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

3. From state relative rates and state root distribution construct Q̃ matrix
using data make q matrix function of data.c module.

4. From class relative rates and class root distribution construct S̃ matrix
using data make q matrix function of data.c module.

5. From class root distribution σ and state root distribution π construct µ
vector:

µNi+j = σi ∗ πj

where N is number of states.

6. Construct Q matrix:

Q =







r1Q̃ + S̃1,1I S1,2I S1,3I . . .

S2,1I r2Q̃ + S̃2,2I S2,3I . . .

S3,1I S3,2I r3Q̃ + S̃3,3I . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rnQ̃ + S̃n,n






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7. Calculate ν = −
∑

i Qi,iµi

8. Rescale Q matrix with ν:

Qi,j ← Qi,j/ν

9. Initialize model specific structure cov data t.

10. Construct states array.

11. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

12. Construct model specific tree by traversing source tree using g node -
copy deep function of glib and calling make cov node function for each
source tree node.

13. Create root DNA sequence

14. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make cov node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.4. Equal Stationary Distribution Covarion, do ecov.c

module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

3. From class root distribution σ and state root distribution π construct µ
vector:

µNi+j = σi ∗ πj

where N is number of states.

4. From class relative rates and class root distribution construct S̃ matrix
using data make q matrix function of data.c module.
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5. Construct Q matrix:

Q =







Q̃1 + S̃1,1I S1,2I S1,3I . . .

S2,1I Q̃2 + S̃2,2I S2,3I . . .

S3,1I S3,2I Q̃3 + S̃3,3I . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q̃n + S̃n,n







where Q̃i constructed from state root distribution π and relative rates of
i-th nested class using data make q matrix function of data.c module.

6. Calculate ν = −
∑

i Qi,iµi

7. Rescale Q matrix with ν:

Qi,j ← Qi,j/ν

8. Initialize model specific structure ecov data t.

9. Construct states array.

10. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

11. Construct model specific tree by traversing sourse tree using g node -
copy deep function of glib and calling make ecov node function for
each sourse tree node.

12. Create root DNA sequence

13. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make ecov node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.5. GTR+Γ,do gtr+r.c module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.
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3. Construct Q matrix using gtr r make q checked:

Q =







r1Q̃ 0 0 . . .

0 r2Q̃ 0 . . .

0 0 r3Q̃ . . .

. . . . . . . . . . . . . . . . rnQ̃







where ri calculated using data get r function of data.h module, and
Q̃i constructed from root distribution π and relative rates using
data make q matrix function of data.c module.

Same function returns ~µ = {
~π

k
, . . .

︸ ︷︷ ︸

k

}, where k is number of classes.

4. Initialize model specific structure gtr r data t.

5. Construct states array.

6. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

7. Construct model specific tree by traversing source tree using g node -
copy deep function of glib and calling make gtr r node function for
each source tree node.

8. Create root DNA sequence

9. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make gtr r node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.6. GTR+Γ+I,do gtr+r+i.c module

This model uses the following calculation algorithm:

1. Check input values.

2. Allocate memory.

47



3. Construct Q matrix using gtr r i make q checked:

Q =









r1Q̃ 0 0 0 . . .

0 r2Q̃ 0 0 . . .

0 0 r3Q̃ 0 . . .

. . . . . . . . . . . . . . . . rnQ̃ 0

. . . . . . . . . . . . . . . . . . . . . . Z









where Z - zero matrix, ri calculated using data get r function of data.h
module, and Q̃i constructed from root distribution π and relative rates
using data make q matrix function of data.c module.

Same function returns ~µ = {~π
q

k
, . . . ,

︸ ︷︷ ︸

k

Pinv~π}, where k is number of classes,

q = 1− Pinv .

4. Initialize model specific structure gtr r i data t.

5. Construct states array.

6. Construct T , T−1 matrices and eigenvalues vector using data make t -
from q matrices function of data.c module.

7. Construct model specific tree by traversing source tree using g node -
copy deep function of glib and calling make gtr r i node function for
each source tree node.

8. Create root DNA sequence

9. Call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.

make gtr r i node function does next:

1. Allocate memory for node.

2. Construct edge matrix for node using data make edge function of data.c
module.

3. Construct bounds matrix using data make bounds function of data.c
module.

do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.7. Invariable, do inv.c module

This model constructs root DNA sequence using root distribution parameter
and copy it unchanged to all of input tree taxons.

7.3.8. Tree Mixture, do tmix.c module

This model after validating input data calls all of nested models calculations.
Next, it collects resultant sequences for each taxon depending on mode
parameter passed in the input data set.
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Random mode

Each i-th character of resultant sequence for a taxon picked up randomly from
character with same index in sequence of same taxon of one of nested models
with probability of selecting that model is equal to class root distribution
element corresponding to that model.

Concatenated mode

Each class root distribution element multiplified to lognormal distributed
random number. New randomized class root distribution is rescaled so it keeps
to sums to 1. Resultant sequence is concatenated form subsequences of nested
models. Length of each submodel sequence is proportional to randomized class
root distribution element corresponding to that submodel.

7.3.9. GYMO, do gymo.c module

This model using 4 values of root parameters as πA, πC , πG, πT . After
validating input data, this model constructs µ vector with length of 61: µi =
πidx(i,1)πidx(i,2)πidx(i,3). Indices idx(i, j) is calculated from list of all codons
AAA, AAC, AAG, AAT, ACA, ACC, ... with TAG, TAA and TGA codons
omited. So, µ1 = π3

A, µ2 = π2
AπC , etc. Values of µ vector is rescaled so it sums

to 1.0. Next, Q matrix costructed as

Qi,j =







0, if codoni and codonj differs in 2 or more locations

µi, if codoni and codonj representing the same amino acid and change is transversion

µik, if codoni and codonj representing the same amino acid and change is transition

µiω, if codoni and codonj representing different amino acids and change is transversion

µiωk, if codoni and codonj representing different amino acid and change is transition

Where ω is value passed in model by nonsynonomous ratio keyword and k is
value passed in model by titv ratio keyword. Q matrix is used for constructing
T , T−1 matrices and eigenvalues vector using data make t from q matrices
function of data.c module. These matrices is used for constructing edge matrices
for taxons, just like in any other GTR based model.

States list for this model is array of integers in range from 1 to 61. Output
values could be printed out as codons or as amino acids. Output style is managed
by output keyword which can take values DNA or protein.

7.3.10. GTR, do gtr.c module

This model uses next calculation algorithm:

1. Initialize model specific structure gtr data t.

2. Call to prepare function which checks input data and fill model specific
structure gtr data t with data get from input parser data t.

3. Call to init function which creates root DNA sequence.

4. call to glib’s g node children foreach function which calls do muta-
tion function for each child node of root of the input tree.
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do mutation function is standard function constructed for this model by
DATA MAKE GTR LIKE MUTATION FN macro declared in data.h.

7.3.11. GTR based models

All of these models have similar structure of code. For each model is
defined function make root. Functions check valid data, xxx make -
q and do xxx for each model is constructed by corresponding macros
DATA MAKE CHECK VALID DATA FN, DATA MAKE Q FN and
DATA MAKE DO FN defined in data.c module. For performing actual
calculations, all of these models is calling to do gtr predefined which take
model specific values of root distribution and relative rates as input parameter
instead of extracting them from parser data.

7.3.11a. CFN, do cfn.c module

Used for states length of 2. Relative rates is [1], root distribution is [0.5, 0.5].

7.3.11b. F81, do f81.c module

Used for states length of 4. Relative rates is [1, 1, 1, 1, 1, 1], root distribution
accepted from input data.

7.3.11c. F84, do f84.c module

Used for states length of 4. Root distribution accepted from input data. Relative
rates is [1, 1 + J

πR

, 1, 1, 1 + J
πY

, 1], where R - input value of titvratio,

πR = π1 + π3

πY = π2 + π4

J =
RπRπY − π1π3 − π2π4

π1π3

πR

− π2π4

πY

7.3.11d. HKY, do hky.c module

Used for states length of 4. Root distribution accepted from input data. Relative
rates is [1, K, 1, 1, K, 1], where R - input value of titvratio,

πR = π1 + π3

πY = π2 + π4

K =
RπRπY

π1π3 + π2π4

7.3.11e. JC, do jc.c module

Used for states length of 4. Relative rates is [1, 1, 1, 1, 1, 1], root distribution
is [0.25, 0.25, 0.25, 0.25].
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7.3.11f. K2P, do k2p.c module

Used for states length of 4. Relative rates is [1, 2a, 1, 1, 2a, 1], where a - input
value of titvratio, Root distribution is [0.25, 0.25, 0.25, 0.25].

7.3.11g. TN, do tn.c module

Used for states length of 4. Relative rates is [1, 1, 1, 1, 1, 1], where a - input value
of titvratio, Root distribution is [0.25, 0.25, 0.25, 0.25].

7.3.11h. BLOSUM, CPREV, DAYHOFF, DCMUT, JTT,

LG, MTMAM, MTREV, VT, WAG, WAGSTAR

Used for states length of 20. Each of this models is GTR model with fixed root
states and relative rates parameters set.
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CHAPTER 8. SOFTWARE TEST, TEST RESULTS AND DISCUSSION 

 

Planning the project carefully, writing a requirement specification and making a good design are the 
initial steps to produce a high quality product. Another quality assurance technique used during this 
project is testing. The aim of the testing is to show that the system does what it is supposed to do. Testing 
involves checking whether the system satisfies the entire requirement and does all the arithmetic and logic 
correctly. Often the number of conditions that should be checked becomes quite large. So a test plan was 
created to check as many conditions as possible. A test plan is also dynamic. When errors are found, they 
should be removed. This elimination of errors can cause kinds of errors. So the test plan needs to be 
adaptable. 

8.1 Test plan 

 Enough time and testing effort should be spent to ensure PhyloSim quality. The plan includes 
functions to be tested and procedure and approaches to be used. However, for complex software with 
extensive data calculations it is impossible to test every detail of the software. To test the software 
effectively and efficiently, a test plan with well designed test cases was used. 

8.2 Test case 

 Test case design is an important step during software test planning. The test cases should cover 
the program comprehensively and identify any weaknesses. 

8.2.1 Test of the System 

 The quality of the Mathematical Model Module is essential to the quality of the overall program. 
To ensure that we have used the following two type of testing. 

8.2.2 White Box Testing 

 Basis path testing, control structure testing and loop testing were used. The main logical 
conditions and paths contained in the software were tested using the debugger. 

8.2.3 Black Box Testing 

 Black box testing [29] is a method to test the general functions of the software. In this project all 
the implemented models were tested. 

Models tested were, 

1. GM 
2. Mixture 
3. Scaled Covarion 
4. Equal Stationary Distribution Covarion 
5. GTR+Ѓ 
6. GTR+Ѓ+I 
7. Invariable 
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8. Tree Mixture 
9. GYMO 
10. GTR 
11. GTR based models 

11.1. CFN 
11.2. F81 
11.3. F84 
11.4. HKY 
11.5. JC 
11.6. K2P 
11.7. TN 
11.8. GTR models with predefined parameters (BLOSUM, CPREV, 
DAYHOFF, DCMUT, JTT, LG, MTMAM, MTREV, VT, WAG, 
WAGSTAR) 

All of these models (except model 2, 3 & 8) were tested with popular phylogenetic software 
PAUP* and PhyML. The output of our program was fed into these program and they inferred the 
tree back. Model 2, 3 & 8 were tested against output of MATLAB code that was written for 
testing these models. 

 

8.3 Performance Test 

 Execution time was fast in comparable with other phylogenetic inference software for producing 
output sequence for the models. 

8.4 Test documentation 

 Test documentation is the report of the testing procedure. It indicates what has been done and 
what still needs to be done. An example of the Test documentation is given in appendix E. 

 

 



CHAPTER 9: SUMMARY AND CONCLUSIONS 

 

In this project the main tasks accomplished were the following: 

• Software was designed for high quality and high performance 
• A new Phylogenetic Software system called PhyloSim was created, implementing many models 

and improved structure, with more added features than other existing inference software. 
• New input commands were created to enter the description of new models in the system 
• Model templates were developed and used to enter data seamlessly 
• A GUI was developed for the phylogenetic tree editor 
• The developed Software was tested with good results, including 

 
Verification:  The results of the program were same as those of Seq-Gen and PhyML for the  
  models that they support. 

Validation:  The input data and the tree were in excellent agreement with the output data (they                
  had the approximate same probability). 

Speed: For most of the models execution time was satisfactory. 

All of the modules developed were useful, and PhyloSim is a good simulation software system for 
phylogeny inference. All the functional and non-functional requirements were satisfied. Some snapshots 
of the program are given in Appendix G. 

The PhyloSim modeling process replicates the inputs and products of the original modeling process but 
optimizes the modeling process with computer automation in mind. It provides a blueprint for building 
new modeling tools that advance the state of the art in modeling. 

A study of some well known phylogenetic tree software has revealed that its documentation is inadequate. 
Programming teams that build simulation tools should better document their corresponding simulation 
processes. Because such documentation allows for analysis of the design of the tool without confusing 
with the implementation of the tool. Moreover, computational biology is a still-expanding field, and 
mathematical model tool builders can expect that researchers will demand support for newer phylogenetic 
models and more modeling activities. If simulation tool builders do not record their modeling process, the 
adaptation of such tools to new activities is difficult. For PhyloSim we have created enough 
documentation so that programmers can tailor it to new needs and use the existing PhyloSim modules to 
create newer models. 

PhyloSim provides a flexible and efficient source of simulation for a wide range of substitution models, it 
is a useful tool for researchers studying phylogenetic relationships, molecular evolution of biological 
sequences, and supports the ability to infer relationship from data correctly. 

During the PhyloSim development project, suitable software engineering techniques and project 
management methods were used. This approach helped the project be successfully implemented. Because 
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of the good project plan, requirements analysis and design, a structured program was developed. The 
structure of the source code is less coupled and highly cohesive, so the maintainability of the program is 
excellent. Extensive testing of the PhyloSim verified its high reliability. 

When complex software is developed, a software engineering approach is usually helpful regardless of 
the application area. So software engineering is not only for software engineers in computer science but 
also for computational biology researchers who can use it in their world. In general project planning, 
requirements analysis and design methodologies avoid much trouble and save cost and time in 
implementation [33]. 



CHAPTER 10. RECOMMENDATION FOR FUTURE WORK 

 

The computational biology community is in sore need of tools for efficiently, reliably, and repeatedly 
building large mathematical models. PhyloSim supports larger, more complex models than comparable 
modeling tools. It is especially suitable for creating newer phylogenetic models. Many mathematical 
models were successfully implemented and shown to produce correct output. Their execution time was 
also quite small.  

If higher execution speeds are required then the following possibilities should be considered 

1. Try using the explicit shared memory method or the message passing method or other newer 
methods for parallel programming 
 

By using parallel programming mutation can be made to happen in different branches at 
the same time. Various parallel programming methods might produce better performance. 
 

2. Create new mathematical models 
 
Newer mathematical models that produce more biologically realistic outputs more 
quickly. If simpler equations can be found to perform the same functions, then better 
performance might be possible. 
 

3. Implement better algorithms for the software system 

Newer faster algorithms for PhyloSim might be used which when coded execute faster 
and minimize output time. (see chapter 7 for examples of algorithms used in PhyloSim) 

 

Another way to improve the PhyloSim might be to make it web based. With such a system, users can 
easily access it by uploading their input file and either downloading the output shown or having the link 
emailed to them. However, this might requires bandwidth for file transfers. 

PhyloSim was developed as a standalone system serving a single user. However, its further use could be 
encouraged by making a version that would support multiple users simultaneously. 
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GLOSSARY 

 

Bioinformatics: refers to the creation and advancement of algorithms, computational and 
statistical techniques, and theory to solve formal and practical problems arising from the 
management and analysis of biological data. 

BCRG: Biotechnology Computing Research Group. The Biotechnology Computing 
Research Group at UAF provides programming and High Performance Computing (HPC) 
support to the Life Sciences Community, and encourages interdisciplinary education within 
Biology, Computer Science, Mathematics and Engineering. 

cygwin: Cygwin is a Linux-like environment for Windows. 

Covarion: The method of covarions, or concomitantly variable codons, is a technique in 
computational phylogenetics that allows the hypothesized rate of molecular evolution at 
individual codons in a set of nucleotide sequences to vary in an autocorrelated manner. 

DNA: Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions 
used in the development and functioning of all known living organisms. 

GTR+Γ, GTR+Γ+I, F84, HKY (K2P, F81 and JC69), JTT, WAG, PAM, BLOSUM, 
MTREV and CPREV: Widely used mathematical models for inferring phylogeneic 
relationships among species. 

gsl: GNU Scientific Library is a numerical library for C and C++ programmers 

Gantt Chart: A chart which lists the schedule, resources allocation, critical path and other 
information for the project. 

Glade: Glade - a User Interface Designer for GTK+ and GNOME. Glade is a RAD tool to 
enable quick & easy development of user interfaces for the GTK+ toolkit and the GNOME 
desktop environment, released under the GNU GPL License. 

Inferring Relationship: Finding relationships among species. 

INBRE: IDeA Network for Biomedical Research Excellence. 

Mathematical model: A mathematical model is an abstract model that uses mathematical 
language to describe the behavior of a system. 

Phylogeny: The history of species lineages as they change through time. 
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Phylogenetic tree: also called an evolutionary tree, which shows the evolutionary 
relationships among various biological species or other entities that are believed to have a 
common ancestor. 

PAUP*: Phylogenetic Analysis Using Parsimony has made it the most widely used 
software package for the inference of evolutionary trees. 

PERT Chart (Performance Evaluation Review Techniques): A network which lists the 
sequence of the main tasks in the project. 

Seq-Gen: Seq-Gen is a program that will simulate the evolution of nucleotide or amino 
acid sequences along a phylogeny, using common models of the substitution 

WBS (Work Breakdown Structure): A chart which lists all main tasks to be done in the 
project. 
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APPNEDIX A: SOFTWARE PROJECT PLAN 

 

I. Introduction 

es 

ks 

le 

ces 

ms 

This document is the project plan. A phylogenetic tree simulator PyloSim is a C program to 
be developed for Linux and MacOSx machines. It simulates the phylogenetic inference 
scheme using different mathematical models. 
 

II. Project Objectiv
1. Objectives: 

A. Simulator with 27 different mathematical models for simulating the phylogeny 
inference scheme 

B. A simulator that would allow creation of newer models with variable input and 
custom bases 

C. Easy to use GUI with default template for each models 
2. Major functions: 

A. Parser that parses input data to the models requirement 
B. GUI model that helps user by giving easy to use and default template and allows user 

to view output data 
C. Mathematical Model loader allows existing and new custom and complex model to 

be created as given input by the user. 
 

III. Main project ris
1. Insufficient main memory space 
2. Insufficient disk space 

The above two risk occur because of existing data requirements for larger trees and large 
number of bases. 
 

IV. Schedu
1. Work Breakdown Structure ( Appendix B) 
2. Task Network – PERT (Appendix C) 
3. Gantt Chart (Appendix D) 

 
V. Project Resour

1. Software: gcc, gsl, gtk, glade 
2. Hardware: IBM T60 

 
VI. Tracking and Control Mechanis

WBS PERT and Gantt chart are the basic tracking and control mechanism. 
 

VII. Appendices 
WBS, PERT, Gantt. 
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APPENDIX E: TEST DOCUMENTATION 

Methods used for testing various models 

During the development of the software, each model was tested as it was implemented. Methods of 
testing varied with the model, depending on the complexity of the model and the availability of other 
software to make inferences of parameters from the sequences produced by PhyloSim. 

For special choices of parameters of the GM model, the form of the sequence output could be easily 
predicted. For instance, on a tree relating 6 taxa, one edge could be chosen to have some non-identity 
Markov matrix describing substitutions on it, with all other edges having the Markov matrices set to be 
the identity. Then all sequences for taxa on one side of the chosen edge would have the same sequences, 
and similarly for the other side. By comparing a sequence from one side to one from the other, it was 
possible to recover an approximate value for the Markov matrix, much as was done in the description of 
the GM model in an earlier chapter of this project report. Using similar ideas, it was possible to test the 
GM model thoroughly. 

For the GTR model and many variants such as JC, Kimura, HKY, GTR+Gamma+I, additional testing was 
done using PAUP*. Sequences could be simulated for some parameter choice, and then PAUP* could be 
used to infer the parameters from the sequences. For long sequences, the inferred parameters would 
closely match the ones used to generate the simulation, as random probabilistic errors would be small. For 
shorter sequences, the errors would be larger, as predicted by statistical theory. All though this is a 
probabilistic confirmation that PhyloSim behaves correctly, that is the best that can be done since it 
implements a probabilistic model. 

For covarion models, mixture models, and tree-mixture models, the output of PhyloSim was compared 
with that of limited implementations of sequence simulators in MATLAB. Again, the output from 
PhyloSim behaved as it should statistically, offering better and better agreement as the sequence length 
grew longer. 

After the development of the software, more extensive testing for all the models was performed by Dr. 
Elizabeth Allman. As Dr. Elizabeth had not been involved in any of the initial testing, this provided a 
strong independent test. While her testing methods were similar, she performed simulations with a 
broader range of parameter values and trees and used both PAUP* and PhyML for inference since these 
share no code, and wrote new MATLAB codes to independently confirm many of the calculations done 
as intermediate steps in PhyloSim. 

Finally, it should be noted that the structure of the program PhyloSim is such that testing one model 
actually tests features of many. For instance, all model implementations require use of most of the GM 
code, so that confirming the GTR model is implemented correctly provides evidence that GM is as well. 

The Simulation results obtained from Dr. Elizabeth Allman is tests of PhyloSim are shown in the next 
page. 

 

 



SIMULATION CHECK 

Model Seq-gen PhyloSim comments 
JC  Okay  
K2P   GTR vs K2P analysis – 

check titvratio 
consistent with sg results

F81  Okay  
F84  Okay should check with PAUP 

for value of k 
HKY  Okay should check with PAUP 

for value of titv
TN   look into phyml (and 

other) parameterizations
CFN    
GTR okay Okay Sg branch lengths are 

scaled by Pvar see GTR+I 
comment 

GTR+I Okay Okay 
GTR+G4+I Okay Okay 
GTR+G4 okay Okay 
JTT okay Okay,phyml on 4 taxarecovers tree Max(Psg-

Pphylo)~0.0015 
WAG  phyml on 4-taxa recovers tree Max(Psg-

Pphylo)~0.0025 
BLOSUM  phyml on 4-taxon tree is accurate Max(Psg-

Pphylo)~0.0018 
mtREV  phyml on 4-taxon tree is 

accurate
 

WAG* okay WAG and user input ok 
PAM   
cpREV   
DAYHOFF  phyml on 4-taxa recovers tree
DCMut  phyml on 4-taxa recovers tree
mtMAM  phyml on 4-taxa recovers tree
VT  phyml on 4-taxa recovers tree
LG  phyml on 4-taxa recovers tree
codon   

 

Dr. Allman’s Test Results 



APPENDIX F: Sample Source Code 

 

Source Code of Tree GUI 

static void dialog_treeedit_setup (GtkWidget * win, void * user_data) { 
 GtkWidget * mt = intf_get_widget (win, "layout_main"); 
 GtkWidget * elab = intf_get_widget (win, "entry_label"); 
 GtkWidget * eval = intf_get_widget (win, "entry_value"); 
 draw_data_t * dd = g_new (draw_data_t, 1); 
 char * tree = user_data; 
 GNode * root; 
 
 if (strlen (tree)) { 
  parser_scan_tree (tree, &root); 
  dd->tree = g_node_copy_deep (root, make_draw_node, dd); 
  parser_free_tree (root); 
 } else { 
  dd->tree = g_node_new (make_draw_node (NULL, NULL)); 
 } 
 dd->border = 10; 
 dd->cell_width = 30; 
 dd->cell_height = 30; 
 dd->dialog = win; 
 dd->layout = GTK_LAYOUT (mt); 
 dd->max_width = 0; 
 setup_draw_data (dd); 
 g_object_set_data (G_OBJECT (win), "draw_data", dd); 
 move_widgets (GTK_LAYOUT (mt), dd->tree, dd); 
 if (dd->cell_width < dd->max_width) { 
  dd->cell_width = dd->max_width; 
  dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border; 
  dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border; 
  gtk_layout_set_size (dd->layout, dd->width, dd->height); 
  move_widgets (GTK_LAYOUT (mt), dd->tree, dd); 
  gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height); 
 } 
 gtk_widget_show_all (mt); 
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, find_select_node, ((draw_node_data_t *) (dd-
>tree->data))->wid); 
 g_signal_connect (G_OBJECT (mt), "expose_event",  G_CALLBACK (te_lo_expose_cb), dd); 
 g_signal_connect (G_OBJECT (elab), "changed",  G_CALLBACK (te_current_label_changed), dd); 
 g_signal_connect (G_OBJECT (eval), "changed",  G_CALLBACK (te_current_value_changed), NULL); 
 g_signal_connect (G_OBJECT (win), "destroy",  G_CALLBACK (dialog_treeedit_destroy_cb), dd); 
} 
 
static void tree_add_node_cb (GtkButton * button, gpointer user_data) { 
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (button), "dialog_treeedit"); 
 draw_data_t * dd = g_object_get_data (G_OBJECT (dialog), "draw_data"); 
 GNode * node = g_object_get_data (G_OBJECT (dialog), "cur_node"); 
 draw_node_data_t * nd = g_new (draw_node_data_t, 1); 
 GNode * ch; 
 
 nd->wid = NULL; 
 nd->label = g_strdup ("<new>"); 
 nd->value = g_strdup ("<new>"); 
 ch = g_node_new (nd); 
 g_node_append (node, ch); 
 nd = g_new (draw_node_data_t, 1); 
 nd->wid = NULL; 



 nd->label = g_strdup ("<new>"); 
 nd->value = g_strdup ("<new>"); 
 ch = g_node_new (nd); 
 g_node_append (node, ch); 
 
 setup_draw_data (dd); 
 dd->max_width = 0; 
 move_widgets (dd->layout, dd->tree, dd); 
 if (dd->cell_width < dd->max_width) { 
  dd->cell_width = dd->max_width; 
  dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border; 
  dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border; 
  gtk_layout_set_size (dd->layout, dd->width, dd->height); 
  move_widgets (dd->layout, dd->tree, dd); 
  gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height); 
 } 
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, find_select_node, ((draw_node_data_t *) (node-
>data))->wid); 
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height); 
} 
 
static void tree_remove_node_cb (GtkButton * button, gpointer user_data) { 
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (button), "dialog_treeedit"); 
 draw_data_t * dd = g_object_get_data (G_OBJECT (dialog), "draw_data"); 
 GNode * node = g_object_get_data (G_OBJECT (dialog), "cur_node"); 
 int w = dd->width; 
 int h = dd->height; 
 
 g_node_children_foreach (node, G_TRAVERSE_ALL, free_draw_node_data, NULL); 
 g_node_children_foreach (node, G_TRAVERSE_ALL, (GNodeForeachFunc) g_node_destroy, NULL); 
 setup_draw_data (dd); 
 move_widgets (dd->layout, dd->tree, dd); 
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, find_select_node, ((draw_node_data_t *) (node-
>data))->wid); 
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, w, h); 
 gtk_widget_queue_draw_area (gtk_widget_get_parent (GTK_WIDGET (dd->layout)), 0, 0, w, h); 
} 
 
static void button_fit_clicked_cb (GtkButton * button, gpointer user_data) { 
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (button), "dialog_treeedit"); 
 draw_data_t * dd = g_object_get_data (G_OBJECT (dialog), "draw_data"); 
 
 dd->max_width = 0; 
 move_widgets (dd->layout, dd->tree, dd); 
 dd->cell_width = dd->max_width + 10; 
 dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border; 
 dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border; 
 gtk_layout_set_size (dd->layout, dd->width, dd->height); 
 move_widgets (dd->layout, dd->tree, dd); 
 gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height); 
  
} 
 
static void te_current_label_changed (GtkEntry * entry, gpointer user_data) { 
 GtkWidget * dialog = intf_get_widget (GTK_WIDGET (entry), "dialog_treeedit"); 
 GNode * node = g_object_get_data (G_OBJECT (dialog), "cur_node"); 
 draw_node_data_t * nd = node->data; 
 GtkLabel * lab = GTK_LABEL (gtk_bin_get_child (GTK_BIN (gtk_bin_get_child (GTK_BIN (nd->wid))))); 
 GtkRequisition req; 
 draw_data_t * dd = user_data; 
 const char * text = gtk_entry_get_text (entry); 
 



 gtk_label_set_text (lab, text); 
 gtk_widget_size_request (nd->wid, &req); 
 if (req.width > dd->max_width) { 
  dd->cell_width = 30 + req.width; 
  dd->max_width = 30 + req.width; 
  dd->width = (dd->max_x - dd->min_x + 1) * dd->cell_width + 2 * dd->border; 
  dd->height = (dd->max_y + 1) * dd->cell_height + 2 * dd->border; 
  gtk_layout_set_size (dd->layout, dd->width, dd->height); 
  move_widgets (dd->layout, dd->tree, dd); 
  gtk_widget_queue_draw_area (GTK_WIDGET (dd->layout), 0, 0, dd->width, dd->height); 
 } 
 g_free (nd->label); 
 nd->label = g_strdup (text); 
} 
 
static void draw_tree (GtkLayout * lo, GNode * n, draw_data_t * dd) { 
 GNode * nc = NULL; 
 draw_node_data_t * nd, * ndn; 
 int xc, yc, xcn, ycn; 
 
 if (!n) n = dd->tree; 
 nd = n->data; 
 xc = dd->border + (nd->x - dd->min_x) * dd->cell_width; 
 yc = dd->border + dd->cell_height * nd->y; 
 
 yc += nd->wid->allocation.height / 2; 
 xc += nd->wid->allocation.width / 2; 
 if ((nc = g_node_nth_child (n, 0))) { 
  ndn = nc->data; 
  xcn = dd->border + (ndn->x - dd->min_x) * dd->cell_width; 
  ycn = dd->border + dd->cell_height * ndn->y; 
 
  ycn += ndn->wid->allocation.height / 2; 
  xcn += ndn->wid->allocation.width / 2; 
  gdk_draw_line (lo->bin_window, GTK_WIDGET (lo)->style->fg_gc[GTK_STATE_ACTIVE], xc, yc, xcn, 
ycn); 
  draw_tree (lo, nc, dd); 
 } 
 if ((nc = g_node_nth_child (n, 1))) { 
  ndn = nc->data; 
  xcn = dd->border + (ndn->x - dd->min_x) * dd->cell_width; 
  ycn = dd->border + dd->cell_height * ndn->y; 
 
  ycn += ndn->wid->allocation.height / 2; 
  xcn += ndn->wid->allocation.width / 2; 
  gdk_draw_line (lo->bin_window, GTK_WIDGET (lo)->style->fg_gc[GTK_STATE_ACTIVE], xc, yc, xcn, 
ycn); 
  draw_tree (lo, nc, dd); 
 } 
} 
 
static gboolean te_lo_expose_cb (GtkWidget * widget, GdkEventExpose * event, gpointer data) { 
 draw_tree (GTK_LAYOUT (widget), NULL, data); 
 return FALSE; 
} 
 
static gboolean free_draw_node (GNode *node, gpointer data) { 
 draw_node_data_t * nd = node->data; 
 g_free (nd->value); 
 g_free (nd->label); 
 g_free (nd); 
 return FALSE; 



} 
 
static void select_node (GNode *node, draw_data_t * dd) { 
 draw_node_data_t * nd = node->data; 
 GtkWidget * add = intf_get_widget (dd->dialog, "button_add"); 
 GtkWidget * rem = intf_get_widget (dd->dialog, "button_remove"); 
 GtkWidget * eval = intf_get_widget (dd->dialog, "entry_value"); 
 GtkWidget * elab = intf_get_widget (dd->dialog, "entry_label"); 
 GtkWidget * bval = intf_get_widget (dd->dialog, "vbox_value"); 
 GtkWidget * blab = intf_get_widget (dd->dialog, "vbox_label"); 
 int isl = G_NODE_IS_LEAF (node); 
 
 g_signal_handlers_block_matched (elab, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_label_changed, 
NULL); 
 g_signal_handlers_block_matched (eval, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_value_changed, 
NULL); 
 if (node->parent) { 
  gtk_widget_set_sensitive (bval, isl); 
  gtk_widget_set_sensitive (blab, TRUE); 
  gtk_entry_set_text (GTK_ENTRY (eval), nd->value ? nd->value : ""); 
  gtk_entry_set_text (GTK_ENTRY (elab), nd->label); 
 } else { 
  /* root node */ 
  gtk_widget_set_sensitive (bval, FALSE); 
  gtk_widget_set_sensitive (blab, FALSE); 
  gtk_entry_set_text (GTK_ENTRY (eval), ""); 
  gtk_entry_set_text (GTK_ENTRY (elab), ""); 
 } 
 if (isl) { 
  gtk_widget_set_sensitive (add, TRUE); 
  gtk_widget_set_sensitive (rem, FALSE); 
 } else { 
  gtk_widget_set_sensitive (add, FALSE); 
  gtk_widget_set_sensitive (rem, TRUE); 
 } 
 g_object_set_data (G_OBJECT (dd->dialog), "cur_node", node); 
 g_signal_handlers_unblock_matched (elab, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_label_changed, 
NULL); 
 g_signal_handlers_unblock_matched (eval, G_SIGNAL_MATCH_FUNC, -1, 0, NULL, te_current_value_changed, 
NULL); 
} 
 
static void dialog_treeedit_destroy_cb (GtkObject *object, gpointer user_data) { 
 draw_data_t * dd = user_data; 
 
 g_node_traverse (dd->tree, G_IN_ORDER, G_TRAVERSE_ALL, -1, free_draw_node, NULL); 
 g_node_destroy (dd->tree); 
 g_free (dd); 
} 
 
static gpointer make_draw_node (gconstpointer src, gpointer data) { 
 draw_node_data_t * nd = NULL; 
 const node_data_t * node = src; 
 
 nd = g_new (draw_node_data_t, 1); 
 nd->wid = NULL; 
 if (node) { 
  nd->label = g_strdup (node->label); 
  nd->value = node->value ? g_strdup (node->value) : NULL; 
 } else { 
  nd->label = NULL; 
  nd->value = NULL; 



 } 
 nd->x = -1; 
 nd->y = -1; 
 return nd; 
} 
 

 

 



Appendix G: Program Snapshots 

 

Fig 1: Shows the basic template where model information is to be given 

 

Fig 2: User finds the input file from any location in the computer 



 

Fig 3: User loads the input file for processing 

 

Fig 4: Shows the program has executed successfully 



 

Fig 5: Shows the output below the input with Ancestral sequence 

 

 

Fig 6: PhyloSim output shown with Ancestral sequence in interleaved form 



 

Fig 7: Shows the basic template of TreeMixture model which is a mixture of 3 other models here 

 

Fig 8: Shows the easy to use tree editor, entering branch length and Node label 

 



 

Fig 9: Shows the GUI tree editor for a different model 

 

 

 

Fig 10: Shows the Help Menu with Template dialog how to 

 



 

Fig 11: Shows the help menu with which model needs which parameters 
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