

Run-length Encoding
on Graphics Hardware

Ruth Rutter

Project Report for completion of a
Master of Science in Computer Science.

University of Alaska, Fairbanks

Fall 2011

Committee:
Orion Lawlor
Jon Genetti
Chris Hartman

1

Table of Contents

Table of Contents
Abstract
1. NChilada

1.1 Problem
1.2 Solution
1.3 Current Performance Analysis
1.4 Parallelizing

2. GPU
2.1 CUDA
2.2 Prior Work
2.3 Process
2.4 Memory Locality

3. Results
3.1 Performance
3.2 Future Work
3.3 Conclusions

References
Code

Kernel.cu
CudaRLEEncoder.cpp

2

Abstract

In this report, we present a series of improvements to the basic run-length
encoding algorithm. Several modified algorithms are generated, from basic
CPU single-threaded compression to a highly parallelized version on NVidia
CUDA hardware. We also investigated changes to memory access locality in
the parallel versions. With a comparison of the various compression times and
their corresponding data transfer times, we conclude that despite RLE being a
sequential algorithm, parallelizing it on graphics hardware provides a decent
speedup.

3

1. NChilada

This project was a subsection of NChilada, a collaborative project between the
universities of Illinois at Urbana-Champagne, Washington, and Alaska at Fairbanks.
The Washington group, led by Tom Quinn, provided the cosmology expertise, L.V.
Kale’s Illinois group provided parallel computing expertise and the runtime system, and
Dr. Orion Lawlor’s Fairbanks group provided the rendering expertise.

NChilada is an n-body simulator focused on the simulation of galaxy and planet
formation and dark matter[1]. It produces a list of 3-dimensional floating point
coordinates that represent the locations of galaxies within the simulated universe. This
data set is several gigabytes of continuous floating point data.

The production of the data sets is time intensive, requiring approximately eight hours
to produce a single image. This means that particle data sets are typically simulated
offline, then rendered and explored interactively.

To make the data usable, the visualizer, Salsa, uses an array of graphics cards to
render the particle lists into a 3D volume [2]. This volume is a discretization of the
continuous universe provided by the simulator, and represents each galaxy as a
grayscale color point within a 512 cubed volume. Each element in the volume is a single
byte, so the volume is approximately 128MB. Each graphics card produces a sparsely
populated data structure the size of the whole volume, but with only a subset of the
data. These partial renderings are passed to a central controller and merged to produce
the final result.

1.1 Problem

The usability of the simulator is currently limited due to the latency of encoding and
transporting the data to the client. The goal of this project was to decrease the time
required by streamlining a subsection of the rendering process.

The main problem was that 128MB of data requires substantial time to transfer. On a
typical cluster with a 10MB/s connection speed, it takes 12.8 seconds. Rotation can be
executed on the client, but any other change in the viewpoint, including zooming and
changing the data content displayed, forces frequent recalculation and re-rendering

4

of the data set. At 12.8 seconds per modification, it is impossible to attain a usable
framerate, so the time required needs to be reduced.

In total, the data begins as a list of points from the simulator, then is passed to the
renderer, where it is distributed among the GPUs. They render it, and transfer it from
the graphics cards to the host, and from there to the central controller. The central
controller merges them and sends them to the client.

Figure 1. Overview of System Structure.

This many transfers accrues a sizeable time cost, impairing the user’s ability to explore
the data. For this project, we were most concerned with the time to transfer from the
rendering GPUs to the central controller.

1.2 Solution

Since the goal is to decrease the transfer time, there are two variables that could
possibly be modified. Either the transfer speed needs to increase, or the amount of data
to transfer needs to decrease. Since the latter is more easily attainable, the first obvious
improvement is to implement some form of compression for the data.

There are a limited number of options for compression. This is further restricted by
the fact that scientific data should not be modified. Some options for compression are
presented in the table below.

 Uncompressed RLE Gzip JPEG

Time (ms) 0 ~556 ~1550 ~6400

Size ~128MB ~3MB ~1.5MB ~1.7MB

Transfer time
(s) (10 MB/s)

12.8 0.3 0.15 0.17

Lossless Yes Yes Yes No

5

Of these four options, no compression is too slow on transfer time, Gzip is slow,
and JPEG is both lossy and slow. Run-length encoding, or RLE, is the best option
presented. It's relatively fast, simple, and unlike many other algorithms, lossless. It
produces compressed files consisting of pairs of values, the first holding the run of a
data value, the second holding that value. For example, a run of x bytes with a value of
0 would be compressed to two bytes: x and 0.

The most basic implementation of RLE has a worst case of producing a file twice the
size of the original, but can easily be modified to avoid this. For most data it is efficient,
and when the input file is mainly monochromatic, it performs quite well. Since the data
expected in this project is a vast majority black, RLE should produce good results.

1.3 Current Performance Analysis

The current implementation uses a single-core, single-threaded algorithm for
compression. The times for best, worst, and average case are laid out in the table
below. The best case is a completely black data set, and the average case uses an
actual volume from the renderer. Worst case is a set where each value differs from the
next, in this case a repetitive count from 0 to 254 and from 0 to 255. For comparison,
the times from compressing the same files with gzip are also provided.

File CPU Single Thread (s) Gzip (s)

Zero 0.540 1.15

Sequence254 1.292 1.16

Sequence255 1.293 1.16

Voxel3D Potential 0.556 1.55

This naive compression doesn’t scale well with noise in the data, and on this testing
system, takes over 500ms. At best, and not allowing for any other time cost, this
delivers 2 frames per second. Adding in the other time requirements would produce a
rate of seconds per frame. While this simple compression provides a great improvement
over transferring raw data, it still does not provide a sufficiently quick transfer for useful
interaction with the data.

6

1.4 Parallelizing

The next obvious improvement is to parallelize the compression algorithm. While
the RLE algorithm isn’t inherently parallel, it can be implemented parallelized with
only a small loss of compression. This may be done by segmenting the input file and
compressing each section sequentially, independent from the rest. Given that the
compressed length for each section isn’t known before compression, a secondary step
will be required to stitch the individual results together.

CPU compression was not the focus of this project, so comparable times were
generated with a parallelized algorithm that accessed each element in a correctly
sized array. This returns the same compression time of approximately 91 milliseconds
independent of data, benchmarked on an Intel Core i5-2400 3.10GHz quad-core
machine.

2. GPU

The most common and economical way to massive parallelism is the GPU. Excluding
Microsoft products, there are three major interfaces to access this parallelism: OpenGL,
OpenCL, and CUDA.

OpenGL is the oldest and most prevalent of the three [3]. It was developed for graphical
purposes, and allows easy control of individual pixels. This means that it is easily
adapted to handle data calculations that are neighbor-independent, but is not so useful
for other applications. While OpenGL is the most stable, it does not allow random
memory accesses, and therefore is greatly limited.

OpenCL was developed as a cross-platform programming standard for executing
programs on peripheral devices [4]. Unlike OpenGL, it provides flexible access to
memory. While the concept is quite interesting, at the start of this project, it was still
young and very unstable.

CUDA is Nvidia’s Compute Unified Device Architecture, developed to allow easier
computation on peripheral devices such as graphics cards [5]. At the time of this project,
CUDA was several years old, and therefore more widespread and stable than OpenCL.

7

It also provides random access to elements, and so is more flexible than OpenGL.

2.1 CUDA

For languages that are compatible with CUDA, constructs called device kernels may
be written into the main host code. They are written in the same language as the host
code, for this project C++, in which they are only distinguished from other functions by
the __global__ keyword and the syntax of the function call. These kernels are compiled
and transferred to the device for execution, instead of running on the host.

CUDA allows for the user to specify how many threads they want initialized for each
kernel. These threads are arranged in blocks, which are then organized into grids.
There is a strict limit of threads per block, which varies from card to card, but the
number of blocks per grid is presented as unlimited. In reality, it varies from GPU to
GPU; any threads beyond the limit are faked, with their work being swapped in and out
of real threads.

Threads are numbered within a block from 0 to 511. If a problem requires more than
one block, this will lead to ambiguity when assigning work, so thread identification is
also calculated using the block identification number and the block dimension number.

Memory, both host and device, must be allocated by the host, and is accessed through
host and device pointers, respectively. Data is shared between the two using a CUDA-
specific memcpy function.

There are two main drawbacks to compression on the GPU. One is that with mass
parallelization, the complexity increases. Tracking which section of data each thread
needs to access based solely on the thread id can be complicated. The second is the
data transfer time necessary to move the data to and from the GPU. In this project
specifically, transfer to the GPU is irrelevant, since the data is there already from being
rendered by the visualizer. This actually provides an automatic benefit to compressing
on the GPU, since anything it produces will cost less time to transfer to the host than the
uncompressed 128MB volume.

2.2 Prior Work

8

Prior work on similar projects includes Ana Balevic’s research into and implementation
of various parallel compression algorithms for GPUs [6]. One of her implementations
also explored RLE on the GPU, but used a different modification to allow for
parallelization of the sequential algorithm. Instead of assigning each thread a section of
data to encode, she assigned each element to a thread, which set a flag if the element
was not equal to the previous element. Running a parallel prefix sum operation on this
array of flags provides both the run lengths and the output index, at which point the
threads output the symbols and counts.

The algorithm she presents is slightly more complex than the RLE algorithms used
here, and is not targeted at arrays of the size expected in this project. While it is more
efficient to declare as many threads as possible to break down the work and hide
memory latency, there is a limit to the usefulness of this approach. At some point, more
threads are simply for the benefit of fitting the calculations neatly, and provide no real
functionality. Declaring a thread per each element of the volumes in this project may be
approaching that limit.

Another related project explored hybrid storage of large volumes of detailed data in
graphics memory. Wilson, Ma, and McCormick present a hybrid rendering technique
for maintaining the integrity of highly detailed data while decreasing the size of the data
set [7]. While this provides some interesting options, it is not entirely applicable to this
specific project, since the data expected is not large enough or sufficiently fine-grained
to require using their approach.

2.3 Process

The first step is to allocate the necessary memory on both the host and the device.
This includes an input buffer on the host and the device, an output buffer on both, and a
separate array on the device to hold values necessary for allowing parallelism. The file
is then loaded into the host buffer and memcopied to the corresponding device buffer.
This memcopy may not be the entire data set, depending on the parameters provided to
the program based on the quality of the hardware. It could instead be handled by a loop
that passes in a chunk, usually 1/512, of the set.

Conceptually, the rendered volume can be thought of as a cube with an edge length
of 512 (not necessarily). The most obvious way to break this down into manageable
sections is to create 512*512 threads, and assign each 512 bytes, or one row in the
cube, to compress.

9

The actual encoding and compression is executed in two device kernels. Kernel 1 is
initiated following the first memcopy. It defines the number of threads specified for
encoding, in most cases 512*512. It then assigns each thread a location on one face of
the cube and encodes to the width of the cube.

Figure 2. Thread assignment for one layer.

To allow for the limitations of what a single byte can store, each row is broken down into
two sections of length 256. Because of this, each thread will produce at least four bytes
of encoded data. Each thread is running independently, which means that the length of
encoded data produced by previous threads is unknown. To resolve this problem, each
thread writes the number of encoded bytes it produced into a separate array, and writes
the actual bytes into an output array at the same index it read uncompressed data
from. This produces an array double the size of the input buffer that is very sparsely
populated. At this point, kernel 1 returns control to the host.

The host runs a thrust-provided parallel prefix inclusive sum calculation on the array
containing the number of bytes written by each thread. As the inclusive sum includes
the element being summed to, the value in each element will be equal to the number of
bytes written by all previous threads as well as the corresponding thread. This provides
the number of bytes the thread will write by subtracting the preceding value, which
doubles as the output index.

The host initiates kernel 2, which will stitch together the sections of encoded data in the
output buffer and produce the final compressed data. It defines the same number of
threads as kernel 1, and each thread is responsible for writing one row of encoded data

10

to the output location provided by the buffer of output addresses. The location and the
amount of data to copy is handed to a memcpy, which inserts the data into the correct
spot in the output buffer. The output buffer is copied back to the host and staged for
transfer to the client.

2.4 Memory Locality

When visualizing traversing a file as a two dimensional construct, access switches from
a linear stream to a series of rows. The problem with compressing in rows in parallel is
that the memory accesses have no locality. When an algorithm is parallelized, locality
becomes a balance between local thread locality and a more global inter-thread locality.
Increasing thread locality does not necessarily benefit global locality; in fact, if the
thread locality is too high, loss of synchronicity between threads will decrease the global
locality.

In this case, each thread’s memory access is 512 bytes from its neighbours, so on
every read, each thread will have to wait for its memory to be loaded again. Given the
absolute simplicity of the calculations, this is obviously a bottleneck.

In order to streamline this, the memory the threads access must be more compact. One
method of obtaining this effect is to pass each thread a column rather than a row. For
each set of 512 threads, their memory accesses are adjacent, decreasing the wait time.

If this compression pattern handles the output in the same manner as row-based
compression, the final data is transposed from how it should be. This occurs because
the individual encoded chunks, which are now produced from columns, are still written
into rows in the first output buffer before being stitched together.

3. Results
3.1 Performance

These timing runs were mostly performed on an NVIDIA GeForce GTX 460M,
with an Intel Core i7-2630QM. The CPU parallel approximation was timed on the
Intel Core i5 detailed previously.

11

As shown in the table below, modifying the pattern to allow for higher memory access
locality provided a decent speed up.

File Row-compressed (ms) Column-compressed (ms)

Zero 328 51

Sequence254 2009 1865

Sequence255 2008 51

Voxel3D potential 338 60

For comparison between the parallelized CPU version and the CUDA column-oriented
version, the relevant times are presented below.

File CUDA column-compressed
(ms)

CPU, OpenMP (ms)
(Intel Core i5-2400)

Zero 51 91

Sequence254 1865 91

Sequence255 51 91

Voxel3D potential 60 91

The transfer time from the GPU to the host for the GPU-compressed file is
approximately 1.5ms. The same transfer for the CPU-compression algorithm is pre-
compression, and is approximately 32ms. The transfer time from the host to the
central controller is similar for both, allowing comparison to remain simply between the
accumulated compression and GPU-host transfer time. For the GPU version, the final
time is 61.5ms, and for the CPU version, the final time is 123ms. This provides us a
speedup of 2x on this testing system.

3.2 Future Work

There are several improvements that could be made to this specific approach. It
currently uses a call to the THRUST library, which, like any generic templated function,

12

requires extra time. This might be possible to avoid by writing a custom parallel
prefix sum function that uses assumptions about the incoming data. Another possible
improvement would be to switch the compression pattern from columns back to rows,
but assign threads their data starting at the front face of the cube, so all memory
accesses are adjacent. This would provide the strongest locality for each read, but
might prove problematic by increasing the complexity.

There are also improvements that could be made beyond this subsection. One further
improvement could be to streamline the merging of the compressed files. It might be
worth exploring if parallelization would benefit this process. Another option might be to
try a volume-focused compression algorithm. Since the data produced is known to be
mostly black, compressing it by filling the inter-point spaces with small volumes might
be more efficient.

3.3 Conclusions

Parallel RLE on the GPU is faster than the equivalent algorithm on the CPU, as long
as memory access locality is high, in this case by accessing columns instead of
rows. Modifications must be made to allow such a sequential algorithm to function
parallelized, but the speedup is sufficient to compensate for the transfer time between
the device and host and the increased space requirement. There are several
modifications to the final algorithm presented here that could be explored in the future,
but overall, this project has met its goal of streamlining this stage of the renderer.

References

[1] Gioachin F, Kale L.V., (2009) Dynamic High-Level Scripting in Parallel Applications. In:
IEEE International Symposium on Parallel & Distributed Processing, 2009, pp. 1-11.

[2] Quinn T, Kale L, Gioachin F, Lawlor O, Lufkin G, Stinson G (2004) Salsa: a parallel,
interactive, particle-based analysis tool. Poster at Supercomputing 2004. http://
charm.cs.uiuc.edu/posters/CosmologySC04.pdf

13

http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf
http://charm.cs.uiuc.edu/posters/CosmologySC04.pdf

[3] The Khronos Group (2011) The OpenGL Graphics System: A Specification
(Version 4.2 (Core Profile) - August 8, 2011). http://www.opengl.org/registry/doc/
glspec42.core.20110808.pdf

[4] NVidia (2011) OpenCL Programming Guide for the CUDA Architecture. http:/
/developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/
OpenCL_Programming_Guide.pdf

[5] NVidia (2011) NVidia CUDA C Programming Guide, Version 4.0. http:/
/developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/
CUDA_C_Programming_Guide.pdf

[6] Balevic, Ana (2009) Fine-Grain Parallelization of Entropy Coding on GPGPUs. http://
tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf

[7] Brett Wilson, Kwan-Liu Ma, Patrick S. McCormick (2002) A Hardware-Assisted Hybrid
Rendering Technique for Interactive Volume Visualization. http://maxradi.us/documents/
volvis2002/

14

http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://www.opengl.org/registry/doc/glspec42.core.20110808.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/HIPEAC-ShortPaper-AnaBalevic.pdf
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/
http://maxradi.us/documents/volvis2002/

Code

Kernel.cu

Excerpts from the program showing the kernels and the compression
calculations.

// Kernel 1, Row-oriented
__global__ void rleEncode(const char* inBuff, char* outBuff, int* lengthBuff)
{
 int rowLen = blockDim.x;
 int block_offset = blockDim.x * blockDim.x * blockIdx.x;
 int thread_offset = block_offset + (threadIdx.x * rowLen);
 int bytes_offset = blockDim.x * blockIdx.x + threadIdx.x;

 int b_data_offset = (rowLen*2)*(blockDim.x * blockIdx.x + threadIdx.x);

 int out_bytes=0;//total bytes written out by this thread

 char value = inBuff[thread_offset]; //current value
 int count = 1; //count for current value

 for (int pos = 1; pos < rowLen; pos++) {
 char new_value = inBuff[pos + thread_offset];
 if ((new_value == value) && (count < 255)) {
 count++;
 } else {
 outBuff[b_data_offset + out_bytes++] = count;
 outBuff[b_data_offset + out_bytes++] = value;
 value = new_value;
 count = 1;
 }
 }
 outBuff[b_data_offset + out_bytes++] = count;
 outBuff[b_data_offset + out_bytes++] = value;
 lengthBuff[bytes_offset] = out_bytes;
}

15

// Kernel 1, Column-oriented
__global__ void rleEncodeTransposed(const char* inBuff, char* outBuff, int* lengthBuff)
{
 int rowLen = blockDim.x;
 int block_offset = blockDim.x * blockDim.x * blockIdx.x;
 int thread_offset = block_offset + threadIdx.x;
 int bytes_offset = blockDim.x * blockIdx.x + threadIdx.x;

 int b_data_offset = (rowLen*2)*(blockDim.x * blockIdx.x + threadIdx.x);
 int out_bytes=0;//total bytes written out by this thread

 char value = inBuff[thread_offset]; //current value
 int count = 1; //count for current value

 for (int pos = 1; pos < rowLen; pos++) {
 char new_value = inBuff[pos * rowLen + thread_offset];
 if ((new_value == value) && (count < 255)) {
 count++;
 } else {
 outBuff[b_data_offset + out_bytes++] = count;
 outBuff[b_data_offset + out_bytes++] = value;
 value = new_value;
 count = 1;
 }
 }
 outBuff[b_data_offset + out_bytes++] = count;
 outBuff[b_data_offset + out_bytes++] = value;

lengthBuff[bytes_offset] = out_bytes;

}

//kernel 2
__global__ void Defrag(char* inBuff, char* outBuff, int* lengthBuff){

 int read_block_offset = blockDim.x * blockDim.x * 2 * blockIdx.x; //squared or not?

int read_offset = read_block_offset + threadIdx.x * blockDim.x * 2;

int length_block_offset = blockDim.x * blockIdx.x;
int length_offset = length_block_offset + threadIdx.x;

int thread_bytes;
int output_offset;

16

if(read_offset == 0){
output_offset = 0;
thread_bytes = lengthBuff[length_offset];

}
else{

output_offset = lengthBuff[length_offset-1];
thread_bytes = lengthBuff[length_offset] - lengthBuff[length_offset-1];

}

memcpy(outBuff+output_offset, inBuff+read_offset, thread_bytes);
}

int callIncSum(int* lengthBuff, int lengthBuffSize){

thrust::device_ptr<int> thrust_length_buff = thrust::device_pointer_cast(lengthBuff);
thrust::inclusive_scan(thrust_length_buff, thrust_length_buff+lengthBuffSize,

thrust_length_buff);

return thrust_length_buff[lengthBuffSize-1];
}

17

CudaRLEEncoder.cpp

Excerpts from the program showing the kernel calling structure.

CudaRLEEncoder::CudaRLEEncoder(int chunk_width, int chunk_count) throw (cudaError_t)
{

this->chunk_width = chunk_width;
this->chunk_count = chunk_count;
this->thread_count = chunk_width * chunk_count;
gpu_in_buff = gpu_out_buff = 0;
gpu_final_data = 0;
gpu_length_buff = 0;
gpu_in_size = chunk_width * chunk_width * chunk_count;
gpu_out_size = thread_count * (2 * chunk_width);
length_buff_len = thread_count;
total_kernel_time = total_aggregate_time = 0;

throwOnError(cudaSetDevice(0), "Failed to set cuda device 0."); throwOnError(

cudaMalloc((void**) &gpu_in_buff , gpu_in_size), "Failed to allocate gpu input buffer.");

throwOnError(cudaMalloc((void**) &gpu_out_buff , gpu_out_size), "Failed to allocate
gpu output buffer.");

throwOnError(cudaMalloc((void**) &gpu_length_buff , length_buff_len*sizeof(int)
), "Failed to allocate gpu length buffer.");

}

int CudaRLEEncoder::encodeChunkSet(char* inBuff, int inPos, char* outBuff, int outPos) throw
(cudaError_t)
{

float time;
 cudaEvent_t start, stop;

throwOnError(cudaEventCreate(&start), "Failed to create start event.");
throwOnError(cudaEventCreate(&stop), "Failed to creat stop event.");

throwOnError(cudaMemcpy(gpu_in_buff, inBuff + inPos, gpu_in_size,

cudaMemcpyHostToDevice), "Failed to copy host buffer to gpu.");

throwOnError(cudaEventRecord(start, 0), "Failed to record start event.");

18

invokeCudaKernel(chunk_count, chunk_width, gpu_in_buff, gpu_out_buff,
gpu_length_buff);

throwOnError(cudaDeviceSynchronize(), "Failed synchronizing cuda device after kernel
invocation.");

int bytesWritten = callIncSum(gpu_length_buff, length_buff_len);

throwOnError(cudaMalloc((void**) &gpu_final_data , bytesWritten), "Failed to allocate
device final data buffer.");

gpuCudaKernelDefrag(chunk_count, chunk_width, gpu_out_buff, gpu_final_data,
gpu_length_buff);

throwOnError(cudaEventRecord(stop, 0), "Failed to record stop event.");
throwOnError(cudaEventSynchronize(stop), "Failed to synchronize on stop event.");

throwOnError(cudaDeviceSynchronize(), "Failed synchronizing cuda device after defrag

kernel invocation.");

throwOnError(cudaEventElapsedTime(&time, start, stop), "Failed to compute elapsed
time.");

total_kernel_time += time;

throwOnError(cudaMemcpy(outBuff+outPos, gpu_final_data, bytesWritten,
cudaMemcpyDeviceToHost), "Failed to copy gpu out buffer to host.");

return bytesWritten;
}

19

