
CS 441 Homework 0

		ites, background material, and survey.
Name:	OAI Elliali.	alaska.cuu
		uts that will make the "select" line true.
Get .circ mes for <u>Logisim</u> : <u>r</u>	nttps://www.cs.uar.edu/media/filer_	public/2014/09/04/hw0_problems.zip
hw0_0: Basic logic circuit.		
		Select O
hw0_1:		
		© B Select
hw0_2:		
		© B Select
hw0_3: This is a three input	decoder.	
		© Select
hw0 4: This is a tristate bus	s, with non-inverting tristate drivers.	
	,	A 1 Select
		O
		B
hw0_5: This is a "D" type fl	lip-flop.	
		Select
		en T
		cik
hw0_6: This is a logic circu	it built from analog FET transistors.	
		select

hw0_7: This is a two-input decoder, driving some downstream logic.

hw0_8.) You're building a new ultra-fast cellphone charger to deliver 25 amps at 5 vdc.

- a.) How many amps will it need at 120 vac?
- b.) Will the charger need a heatsink?

hw0 9.) Write some assembly code on the left, to implement the C language function on the right:

Assembly code:	extern int bar(int y); /* function prototype */
Tissemory code.	int foo(int x,int y) {
	return 7+bar(y);
	return / toar(y),
	}

(Pick any real CPU you like: x86, x64, ARM, MIPS, PIC, ...)

Survey.) Which of these things would you like to hear more about? Please rate your interest from 0 (not at all interested) through 3 (worth about a week) through 10 (willing to devote your life to this subject).

(please suggest an interesting topic!)

at all interested) through 3 (worth about a week) through 10 (willing to devote your lifhands on breadboard/PCB style home fabricated circuits, e.g., for robotics	
mechanics of semiconductor fabrication (photolithography, etching, masking)	
high performance computing: supercomputers, cloud, big data	
GPU performance tuning generally, and graphics card massively parallel programming models	
SIMD performance tuning generally, and the single instruction multiple data programming models	
multithreaded machine programming models	
multithreaded correctness: memory consistency models, locking, atomic operations	
cloud computing, such as Amazon's Elastic Compute Cloud	
processor virtualization support, such as VT-x CPU extensions	
latest and greatest CPU designs (e.g., Intel Core, AMD FX)	
biological computing (computing using DNA nucleotides, protein soups, etc.)	
quantum computing (computing with "qubits", which can store the "superposition" of 0 and 1)	