CS 493 / 693 Final Exam

Your Name:

Exam terms & conditions

· This is a take-home, open web, open book, open notes exam. You are expected to prepare your answers by yourself. You may use any non-living reference material, but you must not communicate about the exam with any human besides Dr. Lawlor. This including fellow students, CS faculty, 1-900-PRO-CODER, etc. On forum sites such as stack overflow: asking questions or making comments about the exam is not allowed, but reading answers to other people's questions is OK.

0.) This C++ code processes a bank account, and is vulnerable to a buffer overflow attack.

class bank_account {
public:
 char full_name[35];
 int account_number;
 int enroll_date;
 long account_class;
 long balance_cents;
 bank_account();
};
bank_account::bank_account()
{
 account_number=0x12345678;
 enroll_date=0x76543210;
 account_class=1; // normal
 balance_cents=0;
}
void strcpy_to_name(char *dest,const char *src) {
 strcpy(dest,src);
}
typedef void (*greeting_t)(bank_account *acct);
void greeting_VIP(bank_account *acct) {
 puts("Anything we can do, *truly* anything, let us know. We'll make it happen.");
}
void greeting_normal(bank_account *acct) {
 puts("Thank you for shopping with us.");
}
void greeting_overdraft(bank_account *acct) {
 puts("Look, we haven't called the cops on you. Yet.");
}
void greeting_err(bank_account *acct) {
 puts("Error: greeting not found.");
}
greeting_t greetings[3]={
 greeting_VIP,
 greeting_normal,
 greeting_overdraft
};
greeting_t fallback_greeting=greeting_err;
long foo(void) {
 bank_account account;
 std::string name="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
 strcpy_to_name(account.full_name,name.c_str());
 std::cout<<"After strcpy:\n";
 std::cout<<" name has "<<strlen(account.full_name)<<" chars\n";
 std::cout<<" account number=0x"<<std::hex<<account.account_number<<"\n";
 std::cout<<" enroll date=0x"<<account.enroll_date<<"\n";
 std::cout<<" account class=0x"<<account.account_class<<"\n";
 std::cout<<" account balance=0x"<<account.balance_cents<<"\n";
 greetings[account.account_class](&account); // run greeting code
 return account.balance_cents;
}
(Try this in NetRun now!)
Assume this code is running on a 64-bit Linux machine (like NetRun), where sizeof(long)==8 bytes, and you can provide arbitrary name strings, but not modify the program in any other way.

0.a.) How many bytes in memory from the start of the account.full_name string to the start of:

account_number: bytes

account_class: bytes

balance_cents: bytes

0.b.) Are there any bytes used for alignment padding in the account class? Where?

0.c.) Is it possible to change your account_number by providing a name? If so, give the name string (in any C++ readable format) to set your account_number to 0x61616161. If not, say why not.

0.d.) If you were writing a metasploit module for this bug, what would be listed in Payload BadChars?

0.e.) Is it possible to set account_class to binary zero (making yourself a VIP) while keeping the same account number? If so, give the name string to do this. If not, say why not.

0.f.) Is it possible to overwrite balance_cents, while having the function still return? If so, give the name string to set a nonzero balance. If not, say why not.

0.g.) Are there ways to take control of program execution to accomplish arbitrary tasks by providing a name string? If so, describe an approach to do so, giving as much detail as possible (such as byte offsets). If not, say why not.

1.) A variety of programs are susceptible to direct memory manipulation attacks, including web browsers, games, apps, etc. Briefly, which of these defenses against direct memory manipulation attacks do you think would be worth the effort? Why?

	Defense
	How much effort to enable this defense?
	How effective is this defense? Why?
	Is the effect worth the effort? Why?

	The compiler adds code to bounds check every array index or pointer arithmetic operation.
	
	
	

	malloc is modified to randomize the order of heap allocations using a cryptographic random number source.
	
	
	

	All program string operations use a random end-of-string marker char, not always 0x00.
	
	
	

	Kernel's program loader inserts random number of nops between each function.
	
	
	

	Randomly allocate unreadable memory areas on the heap and stack.
	
	
	

CS 693 students only:

Perform the same effort / effective / worthwhile analysis on the defense presented in this Binary Rewriting paper:

 http://blough.ece.gatech.edu/6102/presentations/prasad_chiueh.pdf
2.) You're considering deploying your web application using one of these technologies. For each technology listed, which statements are true, which are false, and which depend on the details?

	
	chroot jail
	Docker Container
	Virtual Machine

	You can deploy a new version of your application from development to production in a few seconds.
	
	
	

	The application can customize system libraries, such as libc.
	
	
	

	The application can customize the OS kernel, such as loading custom modules.
	
	
	

	The application can customize the format of the HTTP protocol, such as switching to a binary HTTP header.
	
	
	

	The application can customize the JavaScript libraries used, such as replacing jQuery with plain JavaScript.
	
	
	

3.) After the hypothetical passage of the Digital Clint Eastwood (DCE) law, it became legal for a network intrusion detection system to “immediately and automatically counterattack” any IP address that sends it “malicious
 data”.

3.a.) Under the DCE, would “snort | nmap | metasploit” be legal?

3.b.) What technical problems would you expect in making an automatic counterattack?

3.c.) How would an attacker choose to change their attack strategy given the DCE?

3.d.) Briefly list the primary advantages and disadvantages of installing a DCE-legal counterattack system to protect a hospital's network. On balance, would you recommend installing this system?

3.e.) On balance, is a DCE law a good idea? Why or why not?

4.) Read metasploit's modules/exploits/windows/browser/samsung_security_manager_put.rb

4.a.) List the general outline of the exploit, using one line per main step. Use terse “Dem Bones” style, like “HTML is sent over HTTP when the iframe loads.”

4.b.) A coworker says “C and assembly are the only languages you really need to understand for computer security.” Based on the above, do you agree or disagree, and why?

�	The DCE statute is silent on the exact definition of “malicious.”

