Data Structures for Scientific Computing

Orion Sky Lawlor www.cs.uaf.edu 2011/04/14

Overview

- Introduction and Motivation
- Structured Grids
 - Adaptive structured grids
- Unstructured Grids
 - Adaptive unstructured grids
- Particles and Spatial Search
 - Regular grids
 - Trees

Introduction / Motivation

- There are only a few ways to represent the problem domain:
 - Structured Grids
 - Unstructured Grids
 - Particles

Knowing the basic terms helps you talk to application folks, and understand their code

Grids in General

4

Grids: Introduction

- So you're trying to represent some physical situation, like heat flow
- You decide to divide up space into a bunch of little pieces:

Grids: Location of Data

Element Centered Data

Fluid Dynamics, most PDEs

between nodes

Node Centered Data Structural dynamics/FEM "Shape function" interpolates

Arakawa C-grid

Grids: Motion of Grid and Data

Eulerian: non-moving grid

E.g., pressure waves move <u>through</u> the grid in CFD

- Lagrangian: moving grid
 - E.g., grid deformation follows the structure deformation in FEM

Structured Grids

Structured Grids: Introduction

- AKA "Regular Grid", since grid cells lie in regular rows and columns
- Cells are stored in a 3D array
- Cells can lie along axes ("rectilinear grid"); or curve through space

Structured Grids: Terminology

- Stencil" of source cells to compute a destination cell
 - Classic GPU algorithm
 - Common in fluid dynamics
 - Also found in PDE solvers

Read-only "Ghost" or "Dummy" cells around boundary

Χ

Structured Grids: Applications

- Fluid Dynamics
 - Classical fluid dynamics grid
- Jacobi and other PDE solvers
 - Finite Difference" formulation
- Level set methods
 - E.g., fluid solidification phase field
- Image processing
 - Just a 2D pixel array!

Adaptive Structured Grids

Adaptive Structured Grids: Intro

- Adaptive Mesh Refinement"/AMR
- Cells are stored in small 3D arrays, linked together with pointers
- For regular refinement, use quadtree (2D) or octree (3D); can be irregular "block structured AMR"

from LLNL SC98 SAMRAI flier

Adaptive Structured Grids: Terms

- Refinement" and "Coarsening" criteria control evolution of mesh
 - Basically simulation error estimates
- "Hanging Node Constraint"
 - Neighbors must have similar (±1) refinement level

Adaptive Structured Grids: Apps

- Adaptive physics solvers
- LLNL SAMRAI C++ Framework
- NASA GSFC PARAMESH
- AMRITA (James Quirk)
- INRIA GPU Gems 3:5

Unstructured Grids

Unstructured Grids: Introduction

- AKA "Mesh"
- Cells are stored in 1D array
- Vertices ("nodes") of each cell ("element") are listed explicitly
- Mesh consists of triangles and/or quadrilaterals (2D); tetrahedra, cubes/hexahedra, prisms, pyramids (3D)

Unstructured Grids: Terms

Ghost regions", like structured grids

(a)

(a)

- Shared nodes" along partition boundaries:
- Run computation on separate pieces
- Add up node forces along boundaries

Unstructured Grids: Terms

"Conformality"

- Nodes never land in middle of element
- Enforced during mesh generation/modification

Unstructured Grids: Applications

- Structural Mechanics
 - This is the classic finite element mesh
- Fluid Dynamics
 - In strange domains, where structured grids are tough to automatically generate
- Can be extended to Adaptive Meshes!

Adaptive Unstructured Grids

Adaptive Unstructured Grids: Intro

- AKA "Mesh Refinement", shades into from-scratch "Mesh Generation"
- Cells still stored in 1D arrays, but the cells can now change
- Must respect conformality
- Must ensure element "quality"
- Must work in parallel

Adaptive Meshes: Applications

- Almost every unstructured mesh program wants to be adaptive.
- Charm++ Triangle Mesh Refinement (Wilmarth)
- Charm++ PMAF3D (Wilmarth)
- Charm++ Tet Data Transfer Library (Lawlor)

Particle Methods and Spatial Search

Particles and Spatial Search

- To work on a particle, you need nearby particles
 - E.g., all particles within cutoff r
 - Used for molecular dynamics (NAMD)
 - or, all k nearest particles
 - Used by Smoothed Particle Hydrodynamics (SPH) methods
- Search for neighboring particles is spatial, so need a "spatial search structure"
 - Can use: structured grid, adaptive search tree, unstructured grid,

... using Structured Grids

E.g., NAMD molecular dynamics

Particles are Atoms

Search structure is based on "Patches" of space in regular, rectilinear grid

....never talk to atoms over here

E.g., Charm++ Collision Library

Search structure is based on regular rectilinear voxel grid

... using Search Trees

- E.g., Cosmology simulations
 - Particles are stars, galaxies
 - Search structure is a spatial octree

Conclusions

Conclusions

- There are only a few ways to represent the problem domain:
 - Structured Grids
 - Unstructured Grids
 - Particles
- There are a lot of specialized <u>terms</u>, but very few concepts