CS 463 Take-Home Midterm (Dr. Lawlor)
0.) YOUR NAME: ____Answer Key (Jr.)______

Your finished electronic version of this exam document is due back by midnight 2013-03-06 as a PDF file. Please write clearly and professionally, using correct spelling and complete sentences, but keep things to the point. You are encouraged to use hyperlinks where appropriate. Everything you write should be your own work, in your own words.

This is an exam, but it is open web, open books, and open notes. In fact, you may use any non-living reference material—thus the spirit world is OK; but classmates, friends, or faculty are not, even if reached via email or SMS.
—
1.) After the fiasco last year where Phil sold our ATM software update private key on eBay, and the Baltislavonian mafia were able to push that malware card skimmer update out to most of our customers' ATMs, our new CTO has been pretty anxious about preventing that sort of thing from happening again. She's from the air force, where they enforced a “no lone zone” around their nuclear missile launch controls, and is convinced something similar should be able to work to protect our RSA private key, where no single computer has access to the key.

She thinks it could work where instead of keeping the whole private key exponent d on one single machine, after generating the key normally you split it up by choosing a random number k, keep k on one machine, and keep d-k on the other machine. Then to sign an update's hash m we somehow run it through both machines to end up with the usual RSA signature md just like normal.
1.a.) Can we make the math work out? How?
Yes! The key observation is that adding exponents corresponds to multiplying products:
 d = k + (d-k)
 md= mk * m(d-k)

This eliminates the need to store the secret key d on any single machine. Of course, all our arithmetic here is modulo the RSA public prime modulus, but this holds regardless.

1.b.) What data needs to go between the two machines, and what do the machines need to compute?
First machine: holds k
Second machine: holds d-k
We first calculate mk on the first machine, then send it and m to the second machine.

The second machine calculates m(d-k) and multiplies it by mk, giving md the result.

(Or a third machine sends m out to both machines, and multiplies the result.)

1.c.) If an attacker, or a rogue sysadmin, has total control of one of the machines but not the other, could they sign updates? We don't want them to be able to sign updates, so we're hoping the answer is “NO”.
Well, for the answer to be “NO” you need to make sure the first machine can't just ask the second machine to finish a signature. For example, you could route the partial signatures through a third machine, although that machine has to be trusted. Or you could make it so each machine will only sign when you perform a physical act like turning a key, ensuring there are people in the loop on both sides.
—
2.) Diffie-Hellman key exchange is normally implemented using modular exponentiation or elliptic curve point multiplication, both of which sound hard. So it's often described in terms of color mixing, where for example we might blend various quantities of CMY pigments (Cyan, Magenta, and Yellow, the primary pigments) to achieve a color mixture, and we can set it up so we can blend the pigments in any order and we'll arrive at the same color.

Mathematically, we can use vector notation to describe the amount of C, M, and Y pigments. So we might start with a public agreed start color like magenta, C=0, M=1, and Y=0:
 startCMY=(0,1,0) magenta
Each side would blend this color half and half with their secret colors, say
 aSecretCMY=(1,0,0) cyan
 bSecretCMY=(0,1,1) brick red
giving these public colors, which are exchanged publicly as the mixture:
 publicCMY = 1/2 * startCMY + 1/2 * secretCMY
 aPublicCMY=1/2 * (0,1,0) + 1/2 * (1,0,0) = (0.5,0.5,0) purple
 bPublicCMY=1/2 * (0,1,0) + 1/2 * (0,1,1) = (0,1,0.5) red
Each side would then blend the other's public color with 1/3 of their own secret color to give an even three-way blend of the start color and both secret colors, in this case resulting in:
 sharedCMY = 2/3 * yourPublicCMY + 1/3 * mySecretCMY
 aSharedCMY = 2/3 * (0,1,0.5) + 1/3 * (1,0,0) = (0.33, 0.66, 0.33) muddy brown
 bSharedCMY = 2/3 * (0.5,0.5,0) + 1/3 * (0,1,1) = (0.33, 0.66, 0.33) muddy brown
2.a.) If the public colors exchanged are:
 aPublicCMY = (0.5,0.5,0.5) gray
 bPublicCMY = (0.5,1,0) blue-purple
What are each side's secret colors, and what is the shared secret color?
Assuming the start color is again (0,1,0) magenta, the only way to output (0.5,0.5,0.5) is by blending with the complement color (1,0,1) which is a's private key. You can get (0.5,1,0) by inspection by blending the start color with (1,1,0) which is b's private key. We can now trivially compute the shared secret color:
 1/3 * (0,1,0) + 1/3 * (1,0,1) + 1/3 * (1,1,0) = (0.66,0.66,0.33)

In general, we can just mix the public colors and subtract off the extra copy of the public start color:
 sharedCMY = 2/3 * aPublic + 2/3 * bPublic – 1/3 * startCMY
2.b.) Is it a good idea to use linear functions for cryptographic operations?
Nope. The big problem here is you have efficient inverse operations for your forward operations.

—
3.) A company's sales flier says, in part: “Our proprietary encryption algorithm is so advanced, even we don't understand how it works! The core operation is called binary bitwised [sic] rotation, invented by Ronald Rivest the father of modern cryptography, and so complex it's beyond the standard C++ operators. And our algorithm repeats this provably mathematical secure operation a dozen times per int!”
3.a.) Manager: What are the advantages and drawbacks of doing business with this company?
Advantages: they're clearly idiots, so you can charge them high prices for magic beans. They would make excellent customers for as long as they stay in business, and as long as your contract disclaims liability for their inevitable mistakes.

Disadvantages: you can't trust their technology. They would make terrible suppliers.

3.b.) Mathematician: Briefly explain to them how “binary bitwised [sic]” rotation actually works, using appropriately simple words.
No. Read Wikipedia.
3.c.) Theoretical Cryptanalyst: Explain an operation equivalent to a series of a dozen fixed-bitcount rotations.
I think the key fact about bit rotation most folks missed is that the bit count isn't necessarily one: a single rotation can rotate by any number of bits. The saving grace is there are only 32 possible rotations, and this number is constant regardless of how many times you repeat the bit rotation step (a la RC5, but without the mixing).
3.d.) Applied Cryptanalyst: The company has “encrypted” a four-letter ASCII message as the little-endian integer 0x2DEAE42C. What is the message?

Rotating by 13 bits gives “Woa!”. Lots of folks managed to fail converting between bytes and integers too, compounding the problem.
—
4.) Create an RSA private key and signing request with a subject field that includes your real name in the CN field.
4.a.) Record the process you used here, from installation to creating the key:
First, look up a decent HOWTO online:
 http://stackoverflow.com/questions/21297139/how-do-you-sign-openssl-certificate-signing-requests-with-your-certification-aut
Now, follow what it says:
 sudo apt-get install openssl
 openssl req -nodes -days 999 -newkey rsa:2048 -keyout lawSER.key -out lawSER.crt -subj '/O=My First Server/OU=Clueless Noob Division/CN=Dr. Orion Lawlor Memorial Malware/C=US/ST=Alaska/L=Fairbanks'

4.b.) Upload the key signing request to crApto to get it signed by my CA “lawCA”, and paste the resulting signed PEM file here:
To avoid the hassles with line breaks and such in a PDF, I'm likely to just pull the CN field from the server's stored signatures, and ignore what you enter here!
-----BEGIN CERTIFICATE-----

MIIDjjCCAvegAwIBAgICBmcwDQYJKoZIhvcNAQELBQAwgZ8xCzAJBgNVBAYTAlVT

MQ8wDQYDVQQIDAZBbGFza2ExEjAQBgNVBAcMCUZhaXJiYW5rczEOMAwGA1UECgwF

TGF3Q0ExGTAXBgNVBAsMEE1hbHdhcmUgRGl2aXNpb24xHjAcBgNVBAMMFUxhd0NB

IE1hbHdhcmUtT25seSBDQTEgMB4GCSqGSIb3DQEJARYRbGF3bG9yQGFsYXNrYS5l

ZHUwHhcNMTUwMjIzMjIwMjMyWhcNMTcxMTE5MjIwMjMyWjCBmDELMAkGA1UEBhMC

VVMxDzANBgNVBAgMBkFsYXNrYTESMBAGA1UEBwwJRmFpcmJhbmtzMRgwFgYDVQQK

DA9NeSBGaXJzdCBTZXJ2ZXIxHzAdBgNVBAsMFkNsdWVsZXNzIE5vb2IgRGl2aXNp

b24xKTAnBgNVBAMMIERyLiBMYXdsb3IgTWVtb3JpYWwgTWFsd2FyZSwgSW5jMIIB

IjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxPHwxTn4fmqDPoJ7o8x/71kV

W7clxUKlxtjNzrefLMricp4fZ4KeWBLbj9ULalyONUjJZS5btGeCBgElEC6K9VFe

F08VVBwY1zPkYDRjMbLEJU/yzKs/8WUb19Koyr6rlsO87GmLuOCP9kElepOR5arQ

A7GDGwJFVM9Z9Z0VBhuaG9/cuLuLzf4rKxKhFyuWMRpf1ZRX0HYnkG+beJjzT8ze

/eBKd5pp48F3sHssuR77EsPpgcJBQbZx2NQ3FFl7aVXp2IU/kWiV1+AffCdxU0Oz

FVBVWBskvCG9Y65d216wKlaFtrKBKyp5UPmQQxqavFo19qXY+tw1fnn0ZR1yUQID

AQABo1owWDAdBgNVHQ4EFgQUx+hytkEna6NPPs87q3Btj4B7J4wwHwYDVR0jBBgw

FoAUcHnd0VMnqiaaMlRtEGXPflr0g1IwCQYDVR0TBAIwADALBgNVHQ8EBAMCBaAw

DQYJKoZIhvcNAQELBQADgYEAWGIw5Y3FAMZOhGEePWK7s227yfP/NNQNeePGaJ5V

wMrTmBjYj4y7e7LSREkTnD6JUM89vc4Dxi3t6of3t4D+0JvckrFvVN/vqtX9XZsS

/QDVVw0n+7KJsX3eZjndmcq5YDu+gT9kCM6iNf4dXZcBiDMH4DuUC/Yd5qMdG5rt

1xs=

-----END CERTIFICATE-----

—
5.) Currently, your company's active directory (AD) passwords are stored using “reversible encryption”, which allows them to be synchronized to your PHP bulletin board system, which stores them in a MySQL database.
5.a.) Is this a bad idea? If so, how would you change it? If not, why not?
Yes, storing passwords unencrypted, or reversibly encrypted in a database is a very bad idea. The most likely attack is:

· SQL injection or other PHP vulnerability (e.g., upload executable script) gets attacker into your database.

· Attacker pulls all your passwords from the database.

· Attacker decrypts the passwords (this is the hardest part—if they still have the AD encryption they need to steal the LSA secret from active directory to do this, which isn't connected to PHP). If they're not encrypted, the attacker gets to skip this step.

· Attacker uses the passwords, which include admin passwords, to wreak never-ending havoc on your active directory system. You eventually find this, and need to do a company-wide password reset (on your last day of employment there.)

The solution is to make it so an attacker can get your database, but can't use it against anything but the PHP system (which they already own). The way to do this is by hashing the passwords, for example using PBKDF, the HTTP Digest scheme, or never storing the passwords on the PHP side at all and using LDAP to authenticate users when needed.
Page 8 of 8

