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1. ABSTRACT 
We describe a reliable and accurate method 
for detecting least significant bit (LSB) non-
sequential embedding in digital images. The 
secret message length is derived by inspecting 
the lossless capacity in the LSB and shifted 
LSB plane. An upper bound of 0.005 bits/pixel 
was experimentally determined for safe LSB 
embedding. 
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2. Motivation 
Steganography is the art of secret communication. Its 

purpose is to hide the very presence of communication as 
opposed to cryptography which aims to make communica-
tion unintelligible to those who do not posses the right keys 
[2]. We can use digital images, videos, sound files, and 
other computer files that contain perceptually irrelevant or 
redundant information as “covers” or carriers to hide secret 
messages. After embedding a secret message into the 
cover-image, we obtain a so-called stego-image. It is im-
portant that the stego-image does not contain any detect-
able artifacts due to message embedding. A third party 
could use such artifacts as an indication that a secret mes-
sage is present. Once a third party can reliably identify 
which images contain secret messages, the steganographic 
tool becomes useless. 

Obviously, the less information we embed into the 
cover-image, the smaller the probability of introducing 
detectable artifacts by the embedding process. Another 
important factor is the choice of the cover-image. The se-
lection is at the discretion of the person who sends the mes-
sage. Images with a low number of colors, computer art, 
images with a unique semantic content, such as fonts, 
should be avoided as cover images. Some steganographic 
experts recommend grayscale images as the best cover-
images [3]. They recommend uncompressed scans of pho-

tographs or images obtained with a digital camera contain-
ing a high number of colors and consider them safe for 
steganography. 

In previous work [4], we have shown that images stored 
previously in the JPEG format are a very poor choice for 
cover images. This is because the quantization introduced 
by JPEG compression can serve as a "watermark" or a 
unique fingerprint, and you can detect even very small 
modifications of the cover image by inspecting the com-
patibility of the stego-image with the JPEG format. 

In [5], we developed a steganographic method for detec-
tion of LSB embedding in 24-bit color images (the Raw 
Quick Pairs – RQP method). We based it on analyzing 
close pairs of colors created by LSB embedding. It works 
reasonably well as long as the number of unique colors in 
the cover image is less than 30% of the number of pixels. 
The RQP method can only provide a rough estimate of the 
size of the secret message. The results become progres-
sively unreliable once the number of unique colors exceeds 
about 50 percent of the number of pixels. This frequently 
happens for high resolution raw scans and images taken 
with digital cameras stored in an uncompressed format. 
Another disadvantage of the RQP method is that it cannot 
be applied to grayscale images. 

Pfitzmann and Westfeld [6] introduced a method based 
on statistical analysis of Pairs of Values (PoVs) that are 
exchanged during message embedding. Pairs of Values that 
differ in the LSB only, for example, could form these 
PoVs. This method provides very reliable results when we 
know the message placement (such as sequential). How-
ever, we can only detect randomly scattered messages with 
this method when the message length becomes comparable 
with the number of pixels in the image. 

Johnson and Jajodia [7,8] pointed out that steg-
anographic methods for palette images that preprocess the 
palette before embedding are very vulnerable. Several steg-
anographic programs create clusters of close palette colors 
that can be swapped for each other to embed message bits. 
These programs decrease the color depth and then expand 
it to 256 by making small perturbations to the colors. This 
preprocessing, however, will create suspicious pairs (clus-
ters) of colors that can be easily detected. 



 

3. Lossless data embedding 
In our previous work on lossless (or invertible) data em-

bedding [1], we proposed an idea for a new steganalytic 
method for detection of LSB embedding in color and gray-
scale images. The method originated by analyzing the ca-
pacity for lossless data embedding in the LSBs. Randomiz-
ing the LSBs decreases the lossless capacity in the LSB 
plane, but it has a different influence on the capacity for 
embedding that is not constrained to one bit-plane. Thus, 
the lossless capacity turned out to be a very sensitive meas-
ure for the degree of randomization of the LSB plane. Note 
that for most images the LSB plane is essentially random 
and does not contain any easily recognizable structure. Us-
ing classical statistical quantities constrained to the LSB 
plane to capture the degree of randomization is very unreli-
able. The lossless capacity reflects the fact that the LSB 
plane, even though it looks random, is never the less re-
lated to the other bit-planes. This relationship, however, is 
not linear but nonlinear, and the lossless capacity seems to 
measure this relationship fairly well. This is why we pro-
posed it for steganography detection. 

To explain the details of our new steganalytic technique, 
we will first briefly explore the main paradigms behind 
lossless embedding.  

Let us assume that we have a cover image with M×N 
pixels and with pixel values from the set P. For example, 
for an 8-bit grayscale image, P = {0, …, 255}. The lossless 
embedding starts with dividing the image into disjoint 
groups of n adjacent pixels (x1, …, xn). As an example, we 
can choose groups of n=4 consecutive pixels in a row. We 
further define so called discrimination function f that as-
signs a real number f(x1, …, xn)∈R to each pixel group G = 
(x1, …, xn). The purpose of the discrimination function is to 
capture the smoothness or "regularity" of the group of pix-
els G. The noisier the group of pixels G=(x1, …, xn) is, the 
larger the value of the discrimination function becomes. 
For example, we can choose the 'variation' of the group of 
pixels (x1, …, xn) as the discrimination function f: 
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We can use image models or statistical assumptions about 
the cover image for the design of other discrimination func-
tions.  

Finally, we define an invertible operation F on P called 
flipping. Flipping will be a permutation of gray levels that 
entirely consists of 2-cycles. Thus, F will have the property 
that F 2 = Identity or F(F(x)) = x for all x∈P. The permuta-
tion F1: 0 ↔ 1, 2 ↔ 3, …, 254 ↔ 255 corresponds to flip-
ping (negating) the LSB of each gray level. We further 
define shifted LSB flipping F−1 as −1 ↔ 0, 1 ↔ 2, 3 ↔ 4, 
…, 253 ↔ 254, 255 ↔ 256, or 

F−1(x) = F1(x+1) −1 for all x.          (2) 

For completeness, we also define F0 as the identity per-
mutation F(x)=x for all x∈P. We use the discrimination 
function f and the flipping operation F to define three types 
of pixel groups: R, S, and U 

Regular groups:  G ∈ R  ⇔  f(F(G)) > f(G) 
Singular groups:  G ∈ S   ⇔  f(F(G)) < f(G) 
Unusable groups: G ∈ U  ⇔  f(F(G)) = f(G). 

In the expressions above, F(G) means that we apply the 
flipping function F  to the components of the vector G=(x1, 
…, xn). We may wish to apply different flipping to different 
pixels in the group G. We can capture the assignment of 
flipping to pixels with a mask M, which is an n-tuple with 
values −1, 0, and 1. We define the flipped group F(G) as 
(FM(1)(x1), FM(2)(x2), …, FM(n)(xn)). The purpose of the flip-
ping F is perturbing the pixel values in an invertible way 
by some small amount thus simulating the act of invertible 
noise adding. In typical pictures, adding small amount of 
noise (i.e., flipping by a small amount) will lead to an in-
crease in the discrimination function rather than a decrease. 
Thus, the total number of regular groups will be larger than 
the total number of singular groups. This bias allows for 
lossless imperceptible embedding of a potentially large 
amount of information (for more details, see [1]). 

 

4. Steganalytic technique 
Let us denote the number of regular groups for mask M 

as RM (in percents of all groups). Similarly, SM will denote 
the relative number of singular groups. We have RM + SM ≤ 
1 and R−M + S−M ≤ 1, for the negative mask. The statistical 
hypothesis of our steganalytic method is that in a typical 
image, the expected value of RM is equal to that of R−M, and 
the same is true for SM and S−M : 

RM ≅ R−M and SM ≅ S−M .      (3) 
We can justify this hypothesis heuristically by inspecting 

Equation 2. Using the flipping operation F−1 is the same as 
applying F1 to an image whose colors have been shifted by 
one. For a typical image, there is no a priori reason why the 
number of R and S groups should change significantly by 
shifting the colors by one. 

Indeed, we have extensive experimental evidence that 
Equation 3 holds very accurately for images taken with a 
digital camera for both lossy and lossless formats. It also 
holds well for images processed with common image proc-
essing operations and for most scanned images. The 
relationship in Equation 3, however, is violated after 
randomizing the LSB plane (because of LSB 
steganography, for example).  

Randomization of the LSB plane forces the difference 
between RM and SM to zero as the length m of the embedded 
message increases. After flipping the LSB of 50% of pixels 
(which is what would happen after embedding a random 
message bit into every pixel), we obtain RM ≅ SM. This is 
like saying that the lossless embedding capacity in the LSB 



plane is zero [1]. What is surprising is that the influence of 
randomizing the LSB plane has the opposite effect on R−M 
and S−M. Their difference increases with the length m of the 
embedded message. The graph that shows RM , SM, R−M, and 
S−M as functions of the number of pixels with flipped LSBs 
appears in Figure 1 (the RS diagram).  

We have a simple explanation for the peculiar increase 
in the difference between R−M and S−M  for the mask M=[0 
1 0]. We define sets Ci = {2i, 2i+1}, i=0, …, 127, and 
cliques of groups Crst = {G | G∈Cr×Cs×Ct}. There are 1283 
cliques, each clique consisting of 8 groups (triples). The 
cliques are closed under LSB randomization. For the 
purpose of our analysis, we recognize four different types 
of cliques ignoring horizontally and vertically symmetrical 
cliques. The table below shows the four types and the 
number of R, S, and U groups under F1 and F−1 for each 
type. From the table, one can see that while randomization 
of LSBs has a tendency to equalize the number of R and S 
groups in each clique under F1, it will increase the number 
of R groups and decrease the number of S groups under 
F−1. 

 
Figure 1 RS-diagram of an image taken by a digital camera. 
The x-axis is the percentage of pixels with flipped LSBs, the y-
axis is the relative number of regular and singular groups 
with masks M and −M, M=[0 1 1 0]. 

 

 Clique type F1 flipping F−1 flipping 

r = s = t 2R, 2S, 4U 8R 
r = s > t 2R, 2S, 4U  4R, 4U 
r < s > t 4R, 4S 4R, 4S 
r > s > t 8U 8U 

The principle of our new steganalytic method, which we 
call the RS Steganalysis, is to estimate the four curves of 
the RS diagram and calculate their intersection using 
extrapolation. The general shape of the four curves in the 
diagram varies with the cover-image from almost perfectly 
linear to curved. We have collected experimental evidence 
that the R−M and S−M curves are well modeled with straight 

lines, while second-degree polynomialscan approximate  
the “inner” curves RM and SM reasonably well. (Part of our 
future effort is a theoretical explanation of their shapes.) 
We can determine the parameters of the curves from the 
points marked in Figure 1.  

If we have a stego-image with a message of an unknown 
length p (in percents of pixels) embedded in the LSBs of 
randomly scattered pixels, our initial measurements of the 
number of R and S groups correspond to the points 
RM(p/2), SM(p/2), R−M(p/2), and S−M(p/2) (see Figure 1). 
The factor of one half is because–assuming the message is 
a random bit-stream–on average only one half of the pixels 
will be flipped by message embedding.  

If we flip the LSBs of all pixels in the image and 
calculate the number of R and S groups, we will obtain the 
four points RM(1−p/2), SM(1−p/2), R−M(1−p/2), and 
S−M(1−p/2) (see Figure 1). By randomizing the LSB plane 
of the stego-image, we will obtain the middle points 
RM(1/2) and SM(1/2). Because these two points depend on 
the particular randomization of the LSBs, we should repeat 
the process many times and estimate RM(1/2) and SM(1/2) 
from the statistical samples. We can fit straight lines 
through the points R−M(p/2) R−M(1−p/2) and S−M(p/2) 
S−M(1−p/2). The points RM(p/2), RM(1/2), RM(1−p/2), and 
SM(p/2), SM(1/2), SM(1−p/2) determine two parabolas. Each 
parabola and a corresponding line intersect to the left. The 
arithmetic average of the x coordinates of both intersections 
lets us estimate  the unknown message length p.  

We can avoid the time consuming statistical estimation 
of the middle points RM(1/2) and SM(1/2) 
and,simultaneously make the message length estimation 
much more elegant by accepting two more (natural) 
assumptions: 
1. The point of intersection of the curves RM and R−M has 

the same x coordinate as the point of intersection for 
the curves SM and S−M. This is essentially a stronger 
version of Equation 3.  

2. The curves RM and SM intersect at m=50%, or RM(1/2) 
= SM(1/2). This assumption is like saying that the 
lossless embedding capacity for a randomized LSB 
plane is zero. 

We experimentally verified these assumptions for a large 
database of images with unprocessed raw BMPs, JPEGs, 
and processed BMP images. The two assumptions make it 
possible to derive a simple formula for the secret message 
length p. After rescaling the x axis so that p/2 becomes 0 
and 100−p/2 becomes 1, the x-coordinate of the 
intersection point  is a root of the following quadratic 
equation 

2(d1 + d0) x2 + (d−0 − d−1 − d1 − 3d0) x + d0 − d−0 =0, 
where 
d0 = RM(p/2) − SM(p/2),     d1 = RM(1−p/2) − SM(1−p/2),  
d−0 = R−M(p/2) − S−M(p/2),  d−1 = R−M(1−p/2) − S−M(1−p/2). 



We calculate the message length p from the root x whose 
absolute value is smaller by 

p = x/(x−1/2).         (4) 
Because of space limitations, we omit the derivation of 

these equations. Suffice it to say that the number of R and S 
groups at p/2 and 1−p/2 define the straight lines, and the 
assumptions 1 and 2 provide enough constraints to 
uniquely determine the parabolas and their intersections.  

4.1 Accuracy 
We can use Equation 4 to estimate the size of the secret 

message embedded in the stego-image. The initial bias, the 
noise level of the cover image, and the placement of mes-
sage bits in the image are the three main factors that influ-
ence the accuracy of the estimated message length.  

Initial bias: Even original cover-images may indicate a 
small non-zero message length due to random variations. 
This initial non-zero bias could be both positive and nega-
tive and it puts a limit on the theoretical accuracy of our 
steganalytic method. We have tested this initial bias for a 
large database of 331 grayscale JPEG images and obtained 
a Gaussian distribution with a standard deviation of 0.5% 
(see Figure 2). Smaller images tend to have higher varia-
tion in the initial bias because of the smaller number of R 
and S groups. Scans of half-toned images and noisy images 
exhibit larger variations in the bias as well. On the other 
hand, the bias is typically very low for JPEG images, un-
compressed images obtained by a digital camera, and high 
resolution scans. As another rule of thumb, we state that 
color images exhibit larger variation in the initial bias than 
grayscales.  

If we can estimate the initial message length ml0 (the 
bias), we can use the following formula to correct the de-
tected message length mldet 

0
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Noise: For very noisy images, the difference between 
the number of regular and singular pixels in the cover im-
age is small. Consequently, the lines in the RS diagram 
intersect at a small angle and the accuracy of the RS Stega-
nalysis decreases.  

Message placement: The RS Steganalysis is more accu-
rate for messages that are randomly scattered in the stego-
image than for messages concentrated in a localized area of 
the image. To address this issue, we can apply the same 
algorithm to a sliding rectangular region of the image. For 
sequentially embedded messages, the method described in 
[6] is also a good alternative. 
5. Experimental results 

In our first test, we used the Kodak DC260 digital cam-
era and converted a color 1536×1024 image ‘kyoto.bmp’ to 
grayscale and down-sampled to 384×256 pixels. We cre-
ated a series of stego-images from the original image by 
randomizing the LSBs of 0−100% pixels in 5% increments. 
Using our method, we detected the number of pixels with 

flipped LSBs in each stego-image (we used groups of 2×2 
pixels with the mask [1 0; 0 1]). The result, typical for im-
ages with an initial bias close to zero, is plotted in Figure 3. 
As can be seen from the chart, the error between the actual 
and estimated percentage of flipped pixels is almost always 
smaller than 1%. 
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Figure 2 Histogram of the initial bias (in percents of the total 
number of pixels) in 331 original cover images of size 250×350 
pixels stored in the JPEG format. 

Figure 3 Estimated percentage of flipped pixels using the RS 
Steganalysis (solid line) vs. the actual number of flipped pixels 
for ‘kyoto.bmp’. The bottom part of the figure shows the mag-
nified detection error. 

The RS Steganalysis is applicable to most commercial 
steganographic software products (to see some of the steg-
anography software available for Windows, you might 
want to check out http://members.tripod.com/ steganogra-
phy/stego/software.html). Examples of vulnerable pro-
grams include, for example, Steganos, Windstorm, S-



Tools, and Hide4PGP. WbStego and Encrypt Pic incorpo-
rate LSB embedding into sequential pixels so it is better to 
use the method described in [6] to analyze them. We have 
tested the RS steganalytic method on a small sample of 
images processed with these software products with differ-
ent message sizes. In all cases, it readily distinguished 
stego-images from original cover images and the estimated 
message length was within a few percent off the actual 
message length.  

StegoDos and Hide&Seek use LSB embedding in indi-
ces to palette entries (for palette images or GIFs). Although 
testing our RS steganography for palette images remains a 
part of our future work, we believe that similar concepts 
are equally applicable to GIFs with randomly scattered 
messages. 

To test the performance of the RS Steganalysis on im-
ages obtained using current steganographic software, we 
used a relatively small image with a short message. The test 
image was a scanned color photograph 422×296 and the 
message was a random bit sequence with 375 kb or 20% of 
the image full capacity (100% = 3bits per pixel). Since the 
initial bias is about 2.5% in each color channel (see Table 
1), as indicated in the first row of Table 2, according to 
Equation 5 the expected detected percentage of flipped 
pixels would be about 12.25%.  
 

Image Red (%) Green (%) Blue (%) 

 Cover image 2.5 (0.0) 2.4 (0.0) 2.6 (0.0)

 Steganos 10.6 (9.8) 13.3 (9.9) 12.4 (9.8)
 S-Tools 13.4 (10.2) 11.4 (10.2) 10.3 (10.2)
 Hide4PGP 12.9 (10.0) 13.8 (10.1) 13.0 (10.0)

 Table 1 Initial bias and estimated number of pixels 
with flipped LSBs for the test image siesta.bmp'. The 
actual numbers that should be detected in an ideal case 
(zero bias assumption) are indicated in parenthesis. 
 

As another test, we took a 24-bit color photograph origi-
nally stored in the JPEG format, taken by the Kodak 
DC260 digital camera (original resolution 1536×1024) 
cropped to 1024×744 pixels, with a very short embedded 
message of length 5% (100% = 3 bits per pixel). The re-
sults shown in Table 2 demonstrate the extraordinary accu-
racy of the RS Steganalysis. 

Image Red (%) Green (%) Blue (%) 

 Cover image 0.00 (0.00) 0.17 (0.00) 0.33 (0.00)

 Steganos 2.41 (2.44) 2.70 (2.46) 2.78 (2.49)
 S-Tools 2.45 (2.45) 2.62 (2.43) 2.75 (2.44)
 Hide4PGP 2.44 (2.46) 2.62 (2.46) 2.85 (2.45)

Table 2 Initial bias and estimated number of pixels 
with flipped LSBs for the test image 'cat.bmp'. The ac-
tual numbers that should be detected in an ideal case 
(zero bias assumption) are indicated in parenthesis. 

Test images: 

 ‘kyoto.bmp’ 
 

 ‘siesta.bmp’ 

 ‘cat.bmp’ 
 

6. Conclusions and future directions 
Steganography is a tool using which the very act of 

communication can be concealed. In combination with 
cryptography, it provides a very secure mode of communi-
cation. While privacy is an important aspect of our lives, 
steganography can be and has already been misused. Re-
cently, the US Today printed an article “Terror groups hide 
behind Web encryption” by Jack Kelley, USA TODAY 
(04/13/2001 - Updated 04:41 PM ET). In his article, Mr. 
Kelley writes: “ … U.S. officials and experts say [steg-
anography] is the latest method of communication being 
used by Osama bin Laden and his associates to outfox law 
enforcement. All the Islamists and terrorist groups are now 
using the Internet to spread their messages," says Reuven 
Paz, academic director of the Institute for Counter-
Terrorism, an independent Israeli think tank. The Internet 
has proven to be a boon for terrorists." A full version of the 
article can be found at 
http://www.usatoday.com/life/cyber/tech/2001-02-05-
binladen.htm. 



The importance of techniques that can reliably detect the 
presence of secret messages in images is increasing. Images 
can hide a large amount of malicious code that could be 
activated by a small Trojan horse type of virus. Indeed, we 
believe that detection of hidden information in images 
should be a part of every virus-detection software. Because 
most of currently available software packages employ a 
form of LSB embedding information, we believe that the 
new RS Steganalysis is an important contribution that will 
find industrial numerous applications for law enforcement 
and industry in general. 

The experimental results obtained by RS Steganalysis 
also provide a new estimate on “safe” size of secret mes-
sages embedded using LSB embedding. For high quality 
images from scanners and digital cameras, we estimate that 
messages requiring less than 0.005 bits per pixel are unde-
tectable using RS Steganalysis. Higher bit rates are in the 
range of detectability using RS Steganalysis.  

We’re focusing our future research on applying RS 
Steganalysis for palette images. We’re also studying the 
possibility of estimating the initial bias from stego-images 
to improve the sensitivity of the RS detection method to 
short messages in digital images. 
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