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Abstract. This paper studies software optimization of Elliptic Curve Cryptog-

raphy with 256-bit prime fields. We propose a constant-time implementation of 

the NIST and SECG standardized curve P-256, that can be seamlessly integrat-

ed into OpenSSL. This accelerates Perfect Forward Secrecy TLS handshakes 

that use ECDSA and/or ECDHE, and can help improving the efficiency of TLS 

servers. We report significant performance improvements for ECDSA and 

ECDH, on several architectures. For example, on the latest Intel Haswell mi-

croarchitecture, our ECDSA sign is 2.33x faster than OpenSSL’s implementa-

tion.  
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1 Introduction 

TLS [7] is the leading protocol for secure network communications. It supports a 

variety of symmetric ciphers and MAC algorithms for the authenticated and encrypted 

client-server communication, and a variety of public key algorithms for establishing a 

symmetric session key (for the authenticated encryption). 

Currently, the most popular key-exchange algorithm is based on RSA. Here, the 

client generates a secret value (master key) and encrypts it using the server’s public 

RSA key. The server decrypts that value, and both parties apply some agreed Key 

Derivation Function to derive the session key.  

With this approach, the confidentiality of all the sessions depends on the server’s 

private RSA key: the confidentiality of any session, with any client (even past record-

ed sessions) is lost if this key is compromised (e.g., lost, hacked, subpoenaed). In 

response to increased sensitivity to this property (e.g., due to information on the 

PRISM projects [11]
1
), some bodies and companies are migrating to a “Perfect For-

ward Secrecy” (PFS) protocol (e.g., [19]), and some have already implemented it 

                                                           
1 “Demand for encryption apps has increased dramatically ever since the exposure of massive 

internet surveillance programs run by US and UK intelligence agencies. Now Facebook is 

reportedly moving to implement a strong, decades-old encryption technique that's been 

largely avoided by the online services that need it most”; J. Kopstein, The Verge, 

http://www.theverge.com/2013/6/26/4468050/facebook-follows-google-with-tough-

encryption-standard.    

http://www.theverge.com/2013/6/26/4468050/facebook-follows-google-with-tough-encryption-standard
http://www.theverge.com/2013/6/26/4468050/facebook-follows-google-with-tough-encryption-standard
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(e.g., [14]). Here, the server-client key exchange uses ephemeral parameters, rather 

than a single fixed key. Two such key exchange algorithms are supported by TLS: 

Ephemeral Diffie-Hellman (DHE), and Elliptic-Curve Ephemeral Diffie-Hellman 

(ECDHE). These algorithms require the server and the client to (randomly) select a 

secret key, and to use it for generating and exchanging “public key parameters”. The-

se are subsequently used for deriving a shared session key. In such protocols, the 

server is required to authenticate itself (to the client) by signing the parameters that it 

sends to the client. Several signature algorithms can be agreed during the initial cli-

ent-server handshake, and the two leading ones are RSA signature and Elliptic Curve 

Digital Signature Algorithm (ECDSA). Consequently, adding support for PFS proto-

cols makes DHE+RSA, ECDHE+RSA and ECDHE+ECDSA key exchange and sig-

nature combinations important targets for optimization, especially for servers.  

From the server’s viewpoint, migration to ECC based TLS connections can be 

done in two ways. Adopting the full ECDHE+ECDSA combination requires the serv-

er to use an EC certificate. On the other hand, the ECDHE+RSA combination allows 

a server to continue using an existing RSA certificate, and use ECC only for the key 

exchange. Direct browsing indicates that current ECC adopters indeed use both com-

binations. Few examples are Google (using ECDHE+RSA and ECDHE+ECDSA), 

Facebook and Twitter (recently adopting ECDHE+RSA). 

The currently recommended RSA key size is 2048-bit, and it is estimated to pro-

vide 112 bits of security [2] (for 128 bits security, one needs RSA3072, which is 

~3.375 times slower). The computational cost of RSA2048 can be estimated as the 

cost of two 1024-bit modular exponentiations. The DHE protocol (providing 112 bits 

of security) requires two modular exponentiations with a 2048-bit modulus, and it 

suffices to use a 224/256 bits exponent. With these parameters, the performance of 

DHE is comparable to that of RSA. Elliptic Curve algorithms for signature and key 

exchange require shorter keys of 224/256 bits for 112/128 bits of security. With such 

keys, ECDSA signatures
2
 and ECDH are significantly faster than RSA signatures and 

DH key exchange counterparts. Fig. 1 shows the performance of these signature and 

key exchange algorithms, with a comparison to the classical non-PFS key exchange 

based on RSA alone. It shows that supporting PFS key exchange, with DHE+RSA 

and ECDHE+RSA combinations, comes with a performance cost, but the 

ECDHE+ECDSA combination is actually faster than the non-PFS key exchange. 

Elliptic-Curve cryptography with a 224-bit prime (NIST P-224 curve) has been re-

cently optimized by [13], contributed to OpenSSL, and is now part of its current of-

fering. Subsequently, a similar optimized implementation was derived from [13], to 

support the 256-bit and 521-bit NIST primes
3
. These optimizations provide significant 

speedups compared to original OpenSSL implementations. However, as NSA’s Suite 

                                                           
2  RSA signature verification with the standard short public exponent remains faster than 

ECDSA verification. However, verification is done by the client, and not by the server side. 
3 An optimized implementation of P-224, P-256 and P-521 was contributed to OpenSSL by 

Emilia Käsper, Adam Langley and Bodo Moeller. To enable it, OpenSSL should be config-

ured with ‘enable-ec_nistp_64_gcc_128’. 
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B endorses only 256 and 384-bit prime curves ECC [20], the de-facto standard that is 

adopted on the web, uses the 256-bit prime.  

 

 

Fig. 1. The performance of PFS supporting algorithms, measured in CPU cycles on the latest 

Intel Haswell Microarchitecture. The RSA2048 and DH2048 numbers are based on the current-

ly fastest implementation [8]. DH2048 is shown with both 2048-bit exponent (OpenSSL’s 

default) and with 224-bit exponent (that suffices for 112 bits of security). For ECDSA and 

ECDHE, the numbers correspond to the NIST P-256 curve (OpenSSL development version of 

OpenSSL; September 9, 2013, configured with ‘enable-ec_nistp_64_gcc_128’).  Note that the 

ECDHE+ECDSA combination provides 128 bits of security, and the other combinations pro-

vide only 112 bits. For comparison, the rightmost (green) bar shows the performance of the 

RSA-based key exchange, that does not provide PFS. 

While ECC can be used with any prime, NIST specifies one prime for each curve 

with 192, 224, 256, 384 and 521 bits [16]. These are “Generalized Mersenne” primes 

[21], where modular reduction can be implemented efficiently.  

This paper studies software optimizations for ECC with 256-bit primes (NIST P-

256 curve in particular). We apply our proposed optimizations to x86-64 architec-

tures, but any 64 or 32 bit architecture may potentially benefit from them as well. Our 

implementation includes side channel protection up to the protocol level, and we use 

several optimizations for improving the performance. In particular, we propose a 

method for implementing ECC in the Montgomery domain, and optimize it to what 

we call “Montgomery Friendly” primes. The NIST P-256 curve has such a prime.  
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2 Preliminaries 

Prime field Elliptic Curves are defined by the pairs (x, y) satisfying the relation y
2
 

= x
3
 + ax + b with a, b ∈ GF(p) (satisfying 4a

3
 + 27b

2
 ≠ 0) and where p>3 is a prime.  

For any two points P, Q on a given curve, their addition (P + Q) is defined as a fun-

damental operation (using the tangent-and-chord rule), and this defines a group of 

points on the curve. The addition P + Q when P ≠ Q is called point addition, and 

addition P + Q = 2P when P = Q is called point doubling (and they are different op-

erations). Consequently, for non-negative integer k, it is possible to define the scalar 

point multiplication k·P on the curve.  

In this paper, we consider the two Elliptic Curves Cryptosystems (ECC) mentioned 

above, namely ECDHE and ECDSA. Their security relies on the difficulty of the 

Elliptic Curve Discrete Logarithm Problem, i.e., finding the value of k, when k·P is 

given. Obviously, implementation of these protocols involves (among other computa-

tions) the computation of point multiplications over the given field.   

For the sake of optimization, the EC affine coordinates (x, y) can be converted to a 

representation where the group operations are cheaper (specifically, involve fewer 

GF(p) inversions). We use here the Jacobian point representation with three coordi-

nates (X, Y, Z), where x = X/Z
2
, y=Y/Z

3
 (modulo the relevant prime). The point dou-

bling and point addition operations in these coordinates are provided in Fig. 2.  

 
Point Doubling 

Input: (X, Y, Z)  

S = 4XY2;     M = 3X2 + aZ4   

X' = M2 - 2S 

Y' = M(S - X') - 8Y4 

Z' = 2YZ 

Output: (X', Y', Z') 

Point Addition 

Input: (X1, Y1, Z1),  (X2, Y2, Z2) 

U1 = X1Z2
2;    U2 = X2Z1

2;    S1 = Y1Z2
3;    S2 = Y2Z1

3 

if (U1 == U2) then  

  if (S1 != S2)  return POINT_AT_INFINITY 

  else return POINT_DOUBLE (X1, Y1, Z1) 

  abort 

end 

H = U2 - U1;    R = S2 - S1 

X3 = R
2 - H3 - 2U1H

2  

Y3 = R(U1H
2 - X3) - S1H

3 

Z3 = HZ1Z2 

Output:(X3, Y3, Z3) 

Fig. 2. Point doubling and point addition in Jacobian coordinates. The arithmetic operations are 

in the underlying field GF(p).  
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By definition, converting the triplet (X, Y, Z) from Jacobian back to affine coordi-

nates requires field inversion(s). This conversion needs to be carried out only once, at 

the end of the computation of the point multiplication k·P.   

Generalized-Mersenne [21] primes are of special interest. They are defined as 

primes of a special form, that allows for efficient reduction, without integer-division. 

Generalized-Mersenne primes are frequently used for ECC (all the NIST primes in 

[16] are such) because reduction modulo such primes can be carried out efficiently. 

p256 is a Generalized–Mersenne prime (see Fig. 4). 

Fig. 3 illustrates the ECDH and ECDSA flows (note that during the TLS hand-

shake, the server computes an ECDSA signature).  

 
The (public) curve parameters are:  

a, b, p (prime), G (the generator point), n (the multi-

plicative order of G). 

The private data: ds – server secret 

The signed data: z – hash(message) truncated to len(n) 

ECDSA signature 

Pick a random integer k[1,n-1] 

Compute (x1, y1) = k·G 

r = x1 mod n 

s = k-1(z + rdS) mod n 

The signature is the pair (r, s) 

ECDH 

Server picks a random integer dS[1,n-1] 

Client picks a random integer dC[1,n-1] 

Generate key:  

    Server generates it’s public key QS = dS·G 

    Client generates it’s public key QC = dC·G 

Compute key:  

    Server computes (x1, y1) = dS·QC 

    Client computes (x1, y1) = dC·QS 

The shared secret is x1 

Fig. 3. The flows for ECDSA signature and ECDH key exchange.  

In the rest of the paper, we consider only the case a=-3 mod p, and primes whose 

bit-length is 256 (i.e., satisfying 2
255

 < p < 2
256

). 

2.1 The 256-bit NIST curve’s parameters 

The results we show in this paper relate to optimizations for the NIST 256-bit curve, 

P-256, with a prime denoted by p256. The related parameters are given in Fig. 4. 
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p256 = 2
256-2224+2192+296-1 

a = p-3  

The base point G: 

x
G
 =  

0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296  

y
G
 =  

0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 

the order of G, n =  

0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 

Fig. 4. The NIST 256-bit curve parameters [16]. 

3 A Montgomery Friendly modulus  

The Montgomery Multiplication [15] (MM hereafter) is a well-known efficient tech-

nique for computing modular exponentiation [9]. Similarly, it can be used for other 

modular arithmetic intensive algorithms, such as the elliptic curve point multiplica-

tion.  

Point doubling and addition (see Fig. 2) involves a sequence of operations modulo 

the prime p. It is possible to execute them in the so-called Montgomery domain, 

where the modular multiplication A×B mod p is replaced by the Montgomery Multi-

plication operation, MM (A, B) = A×B×2
-l
 mod p, and where the positive integer l is 

some parameter. When A=B, we call the operation a Montgomery Square (MSQR), 

and this case can be optimized by leveraging the fact that A=B.  

To compute a point multiplication using MM operations, the coordinates of the in-

put point (X, Y, Z) need to be converted to the Montgomery domain. This is done by 

multiplying (modulo p) each coordinate by 2
l
, or alternatively, performing an MM by 

the constant H=2
2l

 mod p. After all the computations are completed (in the Montgom-

ery domain), they need to be converted back to the residue domain. This is done by 

MM by 1. The Word-by-Word flow for computing MM (WW-MM) is described in Fig. 

5 (left panel).  

For some cases, such as the one we discuss here, a shortcut is available, and to this 

end, we use the following definition.  

 

Definition 1: let p be an odd modulus and s be a positive integer. If p satisfies -1/p 

mod 2
s
 = 1, then p is called an s-Montgomery Friendly modulus (MF for short). 

 

For an MF modulus, the WW-MM computations can be optimized, as shown in Fig. 

5 (right  panel).  

Our study discusses a modulus which is a 256-bit prime, implying l=256. To opti-

mize code for 64-bit architectures, we use s=64. This implies that k=4. In other 

words, each field element is considered as a “4 digits number”, where each digit has 

64 bits.  
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Algorithm 1: Word-by-Word 

Montgomery Multiplication (WW-MM) 

Input: p < 2
l
 (odd modulus),  

       0 ≤ a, b < p, l=s×k 

Output: a×b×2
-l
 mod p 

Pre-computed: k0 = -p
-1
 mod 2

s
  

Flow 

1. T = a×b  

   For i = 1 to k do 

   2. T1 = T mod 2
s
 

   3. Y = T1 × k0 mod 2
s
 

   4. T2 = Y × p 

   5. T3 = (T + T2) 

   6. T = T3 / 2
s 

   End For 

7. If T ≥ p then X = T – p;  

      else X = T 

Return X 

Algorithm 2: Word-by-Word 

Montgomery Multiplication for a 

Montgomery Friendly modulus p 

(Montgomery Friendly Multiplica-

tion) 

Satisfying -p
-1
 mod 2

s
=1. 

Input: p < 2
l
  

     (Montgomery Friendly modulus)     

     0 ≤ a, b < p, l=s×k 

Output: a×b×2
-l
 mod p 

Flow 

1. T = a×b  

   For i = 1 to k do 

   2. T1 = T mod 2
s
 

   3. T2 = T1 × p 

   4. T3 = (T + T1) 

   5. T = T3 / 2
s 

   End For 

6. If T ≥ p then X = T – p;  

      else X = T 

Return X 

Fig. 5. Left panel: Word by Word Montgomery Multiplication (WW-MM). Right panel: WW-

MM for a Montgomery Friendly modulus. In our context, the relevant parameters for a 256-bit 

prime modulus (p) are l=256, s=64, and k=4.  

In the general case, where an l-bit number can be represented using k digits, MM 

requires 2k
2
 + k single-precision multiplication operations. Optimizing for an MF 

prime reduces the number of single-precision multiplications to 2k
2
. With k=4, as in 

our case, this saves more than 10% of the operations (for a large k, the saving can be 

insignificant).  

A similar optimization is employed in the NSS[17] project, for s=32. 

 

Observation 1. A 256-bit MF modulus q has the form q = 2
255-offset

 × L +2
64

-1, or the 

form q = 2
255-offset

 × L -1, where offset = floor (log2 (L)) (and it is bounded appropri-

ately, to assure that q<2
256

). 

Example 1. The first 256-bit MF prime of the first form is 2
250 

× 61+2
64

-1. The first 

256-bit MF prime of the second form is 2
247 

× 321-1. 

Observation 2. The NIST prime p256 is a MF prime.  

 

Observation 3. Another property of p256, can be used for optimization in Step 3 (on 

the right pane of Fig. 5). We use it to optimize the multi-precision multiplication by 

p256. When writing p256 in hexadecimal notation (64-bit “quad-words”), we note that 

quad-word 0 is: 0xffffffffffffffff. Since T1×0xffffffffffffffff=T1×2
64

- T1, it follows that 
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the multiplication by this quad-words can be replaced by a (quicker) subtraction. In 

addition, quad-word 2 of p256, is 0 (i.e., no multiplication is needed at all).  

4 Point doubling and point addition in the Montgomery domain  

The operations in Montgomery domain correspond to operations in the Residue do-

main as follows: if OP(a, b) is the operation in the Residue domain, it corresponds to 

MOP(a×2
-n

, b×2
-n

) = OP(a, b)×2
-n

 in the Montgomery domain. Unlike modular-

exponentiation that has only multiplications, Point Addition and Point Doubling in-

volve addition, subtraction, and also multiplications by some small constants. These 

can be performed using regular modular (modulo p) operations: 

 

Addition: a×2
-n

 + b×2
-n

  = (a+b) ×2
-n

     (mod p) 

Subtraction: a×2
-n

 - b×2
-n

  = (a-b) ×2
-n

    (mod p) 

Multiplication by constant c: c×(a×2
-n

) = (c×a)×2
-n 

(mod p) 

 

The relevant constants for Point-Doubling are 2, 4, 8, and 3. However we use an 

equivalent flow that requires multiplication by 2 and 3, and a division by 2. Multipli-

cation and division by two is implemented using bit shift to the left/right, and a con-

stant time conditional subtraction/addition of the modulus, similarly do the addition 

and subtraction operations.  Multiplication by 3 is implemented as multiplication by 

two followed by an addition. 

5 Optimizing at the protocol level  

This section describes the methods we applied in order to optimize the ECDSA and 

the ECDH at the protocol level.  

5.1 The four computational problems for optimizing EDSA and ECDH 

ECDSA and ECDH implementations include four independent algorithmic flows: 

ECDSA sign, ECDSA verify, ECDH generate key, ECDH compute key. The efficien-

cy of these flows depends on optimization of the following four Computational Prob-

lems (CP hereafter): 

 

CP 1: multiply the point G (the generator) by a scalar. 

CP 2: multiply an arbitrary point P by a scalar. 

CP 3: extract the affine coordinate x (and y). We use here the Jacobian coordinates, so 

the back-conversion involves a 256 bit modular inverse (modulo p256).  

CP 4: Compute a 256-bit modular inverse, with the modulus n = Order(G). 
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These problems are used in the following combinations.  

 ECDSA sign uses: CP1, CP3 and CP4. 

 ECDSA verify uses: CP1, CP2, CP3 and CP4. 

 ECDH generate key uses: CP1 and CP3. 

 ECDH compute key uses: CP2 and CP3. 

6 The different components of the optimization  

Obviously, CP1 and CP2 dominate the computations, so they are the first optimiza-

tion target. For CP1, we note that the generator (G) is part of the pre-defined curve 

parameters (i.e., fixed). We implement the scalar multiplication (by G) with a win-

dowing method and Booth encoding [3], using a window of size 7, and avoid MSQR’s 

via pre-computation. There are 256/7 = 37 windows, and hence 37×2 tables (stor-

ing the X and the Y coordinate; Z is implicitly 1). The values stored in the tables are  

 

Table[i][j] = 2
7i

× (j×G) (mod p256) 

 

Each table is stored, and fetched in a side-channel protected manner: accessing a 

table does not employ memory access patterns that depend on the (secret) scalar, in-

stead, for a given window all elements are loaded sequentially, and masked based on 

the secret window value. The mask is such, that all values but the required one are 

zeroed. To optimize this flow we make use of SIMD instructions. 

The pre-computed (fixed) tables require slightly more than 150KB of storage, 

which exceeds the size of the first level cache in modern CPU’s. However, our tests 

indicate that using these large tables yields better performance than the performance 

obtained with smaller tables. For completeness, our implementation includes a func-

tion that generates the tables, but a server can choose to just hold a static-fixed value 

for P-256.  

Note that for this usage, a server needs a single table for all the connections (unlike 

RSA’s modular exponentiation computations, where the tables depend on the expo-

nentiation base, and are different for each connection).  

To speed up point multiplication (for a general point P and also by G) we wrote 

MM and MSQR assembly routines that are specifically optimized for the MF prime 

p256. We also use windowing method with Booth encoding, but with a smaller win-

dow size of 5. 

The aggressive optimization of CP1 and CP2 increases the relative weight of CP3, 

which becomes the next optimization target. To implement modular inversion (modu-

lo p256) we used the Fermat’s Little Theorem and wrote a dedicated modular-

exponentiation function (optimized for the Generalized-Merssene p256). It computes 

the modular inverse at the cost of 255 MSQR’s and 13 MM’s. When only the x coor-

dinate is required, thus only Z
-2

 (mod p) needs to be computed, we can reduce the 

number of MM’s to 12.  

We did not prepare a dedicated function for CP4, because n is neither a Pseudo-

Mersenne nor a MF prime. Instead, we used the already highly-optimized constant 
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time implementation of Montgomery modular exponentiation, that is present in the 

OpenSSL (this implementation was recently improved by incorporating some con-

tributed ideas from [9]).  

7 Side channel protection  

Cryptographic software implementations are nowadays expected to be protected 

against side channel leakage. Specifically, a protected implementation must not in-

clude branches, memory access patterns and instructions flows that depend on secret 

information.  

Side-channel information in an ECC implementation can potentially leak from two 

sources. The first is the scalar multiplication k·P, where k is secret (i.e., a key). This 

happens if the implementation accesses tables in a way that depends on the value of k, 

or if it has branches that depend on k. However, we point out that closing this poten-

tial leak is not sufficient for generating a fully protected ECDSA implementation: the 

step (z + rdS)/k mod n (see Fig. 3) can also leak secret information if the modular 

inverse 1/k mod n is computed in an unsafe manner.  

The recent optimized implementation [13] and the subsequently derived implemen-

tation for P-256, have a constant-time point multiplication. By comparison, our im-

plementation addresses both side channel leak sources via constant-time point multi-

plications, as well as constant time modular inversion. To this end, we modified the 

OpenSSL ecdsa_sign_setup routine so that it uses OpenSSL’s constant time modular 

exponentiation function based on Fermat’s Little Theorem (rather than the original 

OpenSSL BN_mod_inverse that is based on Extended Euclidean Algorithm and is 

implemented with branches that can potentially give away k ; see [1] for details dis-

cussing this leak). As a result, our software patch makes the entire ECDSA sign func-

tion constant time.  

8 Results 

This section details the performance results that we obtain through our proposed op-

timizations. We compare them to the performance of the latest development branch of 

OpenSSL (from September 9, 2013; retrieved from the “git” repository of OpenSSL 

[18]).  We configured OpenSSL with both the default parameters (denoted ‘OpenSSL 

default’ here), and with ‘enable-ec_nistp_64_gcc_128’ (denoted ‘OpenSSL NISTP 

enabled’).  

Fig. 6 shows the performance gains in CP1, CP2, CP3 (see Section 5 for the defini-

tions). The computation of k∙G gains a speedup factor of more than 3x on the new 

Haswell microarchitecture. Most of this gain can be attributed to the pre-computations 

that we use. Recall that the computation of k∙G is used for both ECDSA signature and 

ECDHE generate key routines. These are computed by the server side during a TLS 

handshake.  

The k∙P computation shows significant speedup as well: on the Haswell microar-

chitecture it is 1.8x times faster than the optimized implementation of OpenSSL 
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NISTP. This performance gain is due to our MM and MSQR implementations that are 

also optimized for the MF p256 prime.  

Finally, conversion from Jacobian to affine coordinates is sped up by a factor of  

2.11x on the Haswell microarchitecture, thanks to using optimized MM and MSQR 

routines and a reduced number of operations (using (p256)-2 as the exponent).  

 

 

Fig. 6. The performance (in 1000s of CPU cycles) on the NIST P-256 curve, of the fundamen-

tal EC operations k∙G , k∙P and Jacobian-to-affine coordinates transformation. The left panel 

shows the performance on the Haswell Microarchitecture, and the right panel shows the per-

formance on the Sandy Bridge Microarchitecture. 

Fig. 7 and Fig. 8 demonstrate the performance, at the protocol level, of ECDSA 

signing, verifying, and the ECDH Compute Key. This performance is measured via 

OpenSSL’s built-in benchmarking utility “openssl speed”. Note that this utility 

benchmarks only the Compute Key part of the ECDH key exchange (and not the 

Generate Key part), although in a real application, the ECDH parameters are ephem-

eral, and the Generate Key routine is also performed for every connection.  

For ECDSA signature, we point out that only our implementation is entirely con-

stant-time. For ECDH, both ours and OpenSSL’s optimized NISTP implementations 

are constant-time. 

On a Haswell CPU, in a single threaded run, our implementation is 2.33x faster for 

ECDSA sign, 1.86x faster for ECDSA verify, and 1.8x faster for the key computation. 

The Hyper-threaded performance shows an even larger gap, with the respective 

speedup factors of 2.46x, 1.91x and 1.81x (all compared to OpenSSL’s optimized 

NISTP implementation).  
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Fig. 7. The performance of ECDSA sign, ECDSA verify, and ECDE Compute key, measured 

by ‘openssl speed’, for P-256, at the frequency of 3.4GHz, for a single core, and a single 

threaded run. The left panel shows the performance on the Haswell Microarchitecture, and the 

right panel shows the performance on the Sandy Bridge microarchitecture. 

 

Fig. 8. The performance of ECDSA sign, ECDSA verify, and ECDE Compute key, measured 

by ‘openssl speed’, for P-256, at the frequency of 3.4GHz, for a single core, and a Hyper 

Threaded run. The left panel shows the performance on the Haswell Microarchitecture, and the 

right panel shows the performance on the Sandy Bridge microarchitecture. 
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8.1 System level effects 

We show here the impact of our optimizations at the system level. We measured the 

actual performance of a Haswell based server machine, running on single core at 

1GHz, using the ECDHE-ECDSA-AES128-GCM-SHA256 cipher suite (this is the 

cipher suite selected when connecting to Gmail service with the Chrome browser 

version 31). We defined the session to download a 500KB file. More details on the 

configuration used for the experiment are described in Appendix A.  

By applying our patch, the server improved its throughput by 1.22x (from ~300 to 

~367 connections/second), compared to the original OpenSSL based connection.  Fig. 

9 shows how the time spent on the different parts of the session (with and without the 

patch). The ECC computations are reduced from 45% of the CPU time, to only 23%. 

8.2 Performance comparison of several public key handshakes  

Fig. 10 provides an update to Fig. 1. It compares the performance of several PFS 

combinations after our improved ECC implementation. From the figure we can see 

that the gap between using DHE+RSA vs. ECDHE+RSA grew significantly. In addi-

tion, using the combination of ECDHE+ECDSA is roughly five times faster than 

using RSA, while at the same time providing greater security (128 bit vs. 112 bit) and 

Perfect Forward Secrecy. 

 

 

Fig. 9. The time (and its breakdown) to service 2,000 TLS connections, each one downloading 

a 500KB file. The experiment uses an Apache server profiling tool (“ab”), and is run on a sin-

gle Haswell core that is down-clocked to 1GHz (Hyper-Threading enabled). The graph com-

pares the development version of OpenSSL to a system with OpenSSL patched with our im-

proved software. It shows that our improvements make the server’s throughput 1.2x higher.   
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Fig. 10. The performance of several signature and key exchange algorithms that can be used for 

TLS handshake, and provide PFS. The presented results are obtained after the ECC optimiza-

tions have been applied, and are to be compared to the graph shown in Fig. 1. 

8.3 Performance estimation on future processors 

A future Intel microarchitecture may introduce two new instructions, namely ADCX 

and ADOX that assist high-speed multi-precision integer arithmetic [12]. Together 

with the instruction MULX (which already exists in the Haswell microarchitecture), 

two “carry chains” can be parallelized, and this can lead to an efficient implementa-

tion of MM. We used these instructions to obtain a further optimized ECC implemen-

tation, and report our preliminary results.  

Since there is not yet any processor with these instructions, the actual performance 

of the additional optimization cannot be measured at this point. Therefore, we took a 

different approach. The code can be compiled (using gcc version 4.8.0 and above), 

and executed on an emulator (Intel Software Development Emulator - SDE
4
). We 

used the SDE tool to count the number of executed instructions. Table 1 compares the 

instructions count of three implementations: OpenSSL and the two optimizations 

discussed here. The ADCX/ADOX based implementation offers an incremental re-

duction of 22%, 9% and 18% in the instructions count for ECDH, ECDSA sign, and 

ECDSA verify, respectively (compared to our first optimization). This gives a strong 

indication for a future performance improvement in the next generation’s processor. 

 

 

                                                           
4 Available from http://software.intel.com/en-us/articles/intel-software-development-emulator 
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 Instructions count 

 OpenSSL NISTP 

enabled 

This paper, using 

ADD/ADC/MUL 

This paper, using 

ADCX/ADOX/MULX 

ECDH 2,338,113 972,520 757,114 

ECDSA sign 882,879 412,982 375,773 

ECDSA verify 2,336,523 1,077,205 880,185 

Table 1. The instructions count for three implementations (see explanation in the text). It 

shows the potential improvement available by using the future ADCX/ADOX instructions. 

9 Discussion 

Using a combination of algorithmic and software implementation improvements, we 

considerably sped up the ECC operations with the NIST P-256 curve. We also 

showed that this optimization provides a significant improvement at the server’s per-

formance level. This makes ECC with this NIST prime more attractive to use. 

One of the properties of the NIST 256-bit prime, which we used for optimizing the 

underlying computations, was that p256 is an MF prime. However, this property is not 

unique for the NIST prime, and any ECC standard that uses an MF prime can enjoy 

the same optimization (of course, with the correct pre-computed tables being used, 

but this does not affect the resulting performance). Interestingly, there is already such 

a standardized case, namely the Chinese SM2 public key standard [6]. The relevant 

SM2 parameters are shown is Fig. 11.  

 

p = 2256-2225+2224-296+264-1 

FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF 

a = p-3  

The base point G: 

x
G
 =  

0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7  

y
G
 =  

0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0 

the order of G, n =  

0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123  

Fig. 11. The recommended parameters of the State Public Key Cryptographic Algorithm SM2 

for public key [6], using a 256-bit Elliptic Curve Cryptography [5]. Note that is satisfies a=p-3, 

and that the prime is an MF prime. This implies that all of the optimizations proposed here can 

be equally applied to this standard (with the appropriate pre-computed tables).  

The implementation described in this paper can be seamlessly integrated into the 

OpenSSL library, as demonstrated in [10].  The code was contributed as a patch [10], 

for integration as a whole or in parts, for the benefit the open source community. 
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We conclude with a word of caution with regards to intellectual properties and el-

liptic curves cryptography. The information in this paper is provided as is. No license 

(expressed or implied) to any intellectual property right is granted by this paper. The 

authors and Intel assume no liability whatsoever and disclaim any expressed or im-

plied warranty, including liability or warranties relating to fitness for a particular pur-

pose, merchantability, or infringement of any patent, copyright, or other intellectual 

property rights. 
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Appendix A 

The configuration details of the platform that was used for the system profiling exper-

iment:  

 

CPU: Engineering sample of Intel microarchitecture codename Haswell, native speed 

of 2.9GHz, 4 cores 8 threads. For the experiment, we disabled 3 out of 4 cores and 

underclocked the CPU to 1 GHz, this helps eliminating the network bottleneck. 

Memory: 8GB DDR3 1600MHz, two channel configuration. 

Hard Drive: Intel SSD X25-M 80GB. 

Software: Apache server version 2.4.4; OpenSSL development version (from Sep-

tember 9, 2013). 

Network: Engineering sample of Intel 10Gbit Ethernet adapter 
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