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Abstract— At the current state of the art, the agility of
an autonomous flying robot is limited by its sensing pipeline,
because the relatively high latency and low sampling frequency
limit the aggressiveness of the control strategies that can be
implemented. To obtain more agile robots, we need faster
sensing pipelines. A Dynamic Vision Sensor (DVS) is a very
different sensor than a normal CMOS camera: rather than
providing discrete frames like a CMOS camera, the sensor
output is a sequence of asynchronous timestamped events
each describing a change in the perceived brightness at a
single pixel. The latency of such sensors can be measured in
the microseconds, thus offering the theoretical possibility of
creating a sensing pipeline whose latency is negligible compared
to the dynamics of the platform. However, to use these sensors
we must rethink the way we interpret visual data. This paper
presents a method for low-latency pose tracking using a DVS
and Active Led Markers (ALMs), which are LEDs blinking at
high frequency (>1 KHz). The sensor’s time resolution allows
distinguishing different frequencies, thus avoiding the need for
data association. This approach is compared to traditional pose
tracking based on a CMOS camera. The DVS performance is
not affected by fast motion, unlike the CMOS camera, which
suffers from motion blur.

I. INTRODUCTION

Autonomous micro helicopters will soon play a major role
in tasks such search and rescue, environment monitoring,
security surveillance, inspection. A key problem in aerial-
vehicle navigation is pose stabilization and trajectory control
in six degrees of freedom using onboard sensors. Experiments
with prototype systems that use an external motion-tracking
systems have shown that the platform themselves allow
extreme maneuverability if the localization problem can be
assumed to be solved [1]. However, such extreme performance
is not attainable, not even in principle, with traditional robotic
sensors, such as CMOS cameras [2] or laser rangefinders [3].

The agility of an autonomous flying robot is limited by
the speed of the sensing pipeline. More precisely, “speed”
can be quantified in observations frequency and latency
(Fig. 1). For a sensing pipeline based on a CMOS camera,
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the observations are captured at a frequency on the order
of 15–30 Hz and the total latency of the pipeline, including
both image acquisition and image processing using common
visual odometry approaches is in the order of 50–250 ms [2].
To obtain more agile systems, we need to use faster sensors
and low-latency processing.

This paper presents a method for pose tracking based on the
use of a Dynamic Vision Sensor (DVS). The main difference
between a DVS and a normal CMOS camera is that the
DVS output is a stream of events that encode changes in the
brightness. Each event encodes the location of the change,
whether there was a positive or negative change in brightness.
The timestamp has a resolution in the order of 1 µs. These
events are not unlike spikes in a biological visual system;
however, while retinal ganglion cells show latencies of around
200 ms, the DVS chip has a latency of 15 µs.

Theoretically, using a DVS we could obtain sensing
pipelines with a negligible latency compared to dynamics
of the platform. We are a few years to the goal, however.
On the hardware side, the current version of the DVS that
is available commercially has a few limitations, such as the
limited resolution of 128× 128 pixels, which is the limiting
factor for robotics applications. It is projected that in a
couple of generations the technology will progress to have
comparable resolution with traditional cameras.
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Fig. 1. To improve the agility of autonomous flying robots, we need to
improve the total latency of the sensing pipeline. Using a device like a
Dynamic Vision Sensor (DVS) we can theoretically obtain a sensing pipeline
which has microsecond latency.
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On the theory side, to take full advantage of the sensor
capability we need to rethink completely the way we design
robotic sensing pipelines. In principle, it is possible to
integrate the events of a DVS camera to simulate a regular
CMOS frame, and then adapt techniques from standard image
processing. However, that is not desirable, because it would
result in the same latency of a regular camera. Ideally, to
have the lowest latency for the sensing pipeline, one would
want each single event to be be reflected in a small but
instantaneous change in the commands given to the actuators.
Therefore, our approach is to consider methods that make
use the information contained in each single event.

The pose-tracking method presented in this paper is based
on using Active LED Markers (ALMs). These are infrared
LEDs which are controlled to blink at given known high
frequencies, in the range of 1–2 kHz. The DVS is fast enough
to be able to distinguish different blinking frequencies, so
that, with proper processing, it is possible to also uniquely
assign an observable identity to each marker. We envision
that this system could be used for inter-robot localization
for high-speed acrobatic maneuvers, or that, in applications
such as rescue robotics, these markers could be left in the
environment to facilitate cooperative mapping.

One approach to using the DVS data is to cluster the
events in order to find spatio-temporal features, like points or
lines, that are then tracked through time [4–6]. This approach
works well when the camera is static, because the output
is spatiotemporally sparse. The algorithm presented in this
paper uses a different approach. We found out that mounting a
DVS camera on a flying robot creates a new set of challenges.
Because of the apparent motion of the environment, the events
are not spatiotemporally sparse anymore. Moreover, while
in controlled conditions the DVS camera parameters can be
tuned to obtain the best performance, a robot must be able
to work in a wider range of environmental conditions and be
robust to interferences. To achieve this robustness we have
developed an approach that sacrifices some latency to be more
robust to noise and unmodeled phenomena. We accumulate
the events perceived in thin slices of times corresponding
to the blinking frequency (1 ms slice for 1 kHz data). This
allows to do detection of the ALMs position in image space.
On top of this, we use a particle filter for tracking the position
in image space of each detection, and a disambiguation stage
to obtain coherent hypotheses on the joint position of the
markers. Finally, we reconstruct the pose using a standard
approach to rigid reconstruction.

Our method is evaluated in the application of tracking the
pose of a drone during an aggressive maneuver (a flip), and it
is compared to a more traditional approach, based on using a
CMOS camera and a feature-based visual odometry method.
Experiments show that our method, with a latency of 1 ms,
is able to reacquire tracking instantaneously regardless of
the fast motion, while the CMOS data is unusable for visual
odometry because it is corrupted by motion blur. We evaluate
the reconstruction accuracy using an OptiTrack system and
find values that are compatible with the low spatial resolution
(128×128) of the DVS, which proves to be the current

limitation of this approach.
Software, datasets, and videos illustrating the method are

available at the website http://purl.org/censi/2013/dvs.

II. THE DYNAMIC VISION SENSOR (DVS)

A regular CMOS camera records a visual scene by taking
a stroboscopic series of still frames. Computer vision and
robot perception methods work on the analysis of each frame
separately. This established approach has some fundamental
drawbacks: each pixel gets sampled and processed over and
over again at each frame, independently of its relevance
to the decision to be taken, or whether its value changed.
Much processing power is used for considering redundant
information, which translate into high latencies and low frame
rates. In contrast to this, we observe that in biological systems
there is redundancy suppression already on the “sensor”: as
recordings of nerve cells coming from the eye show, the retina
mostly responds to changes in the perceived brightness.

The field of neuromorphic engineering tries to reproduce
the main characteristics of the computations done by nervous
systems as VLSI circuits. The computation is analogic:
currents, voltages and charges are used for computing, rather
than binary representations. The resulting circuits are also
asynchronous: like nervous cells, they operate independently
of an external clock for state transitions. There has been a
large amount of research in neuromorphic sensory systems
of different scale and complexity [7]. The first system to be
commercially available is the so-called “silicon retina” or
Dynamic Vision Sensor (DVS) [8].

Each pixel in the DVS operates independently and asyn-
chronously from the others. The photons that reach a
photodiod produce a photocurrent, which is converted into a
voltage. This voltage gets continuously compared to the last
sampled voltage. As soon as the difference between these two
voltages is larger than a certain threshold, the pixel requests
to send an event off chip. After the address and the timestamp
of this event has been registered from a CPLD at the chip
periphery, the pixel is reset, and the most recent voltage gets
sampled to be compared against successive voltages. All of
this computation is done without digitizing the signal.

Each event carriers the following information: a timestamp,
which has a 1 µs resolution, the address of the pixel that
observed the change (equivalent to its x, y coordinates), and
the polarity of the change ( on or off ). The polarity depends on
the sign of the difference. on events indicate that the brightness
increased, while off events indicated that it decreased.

The parameters that modulate the pixel behavior are
dynamically programmed using a set of bias currents. Some
of the parameters that can be dynamically changed are the
temporal contrast frequency cutoff, the on & off threshold,
and the event frequency cutoff.

The sensor therefore only produces output if the observed
scene changes. This is not only the case if the intensity of
a light source gets modulated (as with a blinking LED), but
also if a static scene moves relative to the sensor. If the sensor
itself is moved it perceives all the edges and contours in its
visual field.
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Sensing the world with a set of autonomous, change-
sensitive pixels has various advantages compared to traditional
image sensors:
• Since the photocurrent gets converted to a voltage on

pixel level, the brightness measurement does not require
a uniform exposure time for all pixels. This leads to the
high dynamic range of 120dB which is capped by the
exposure time in conventional image sensors.

• By only sensing changes, the sensor performs on-chip
data compression. This does not only make the amount
of output data dependent on the activity in a scene, but
it also focuses the processing effort on the region of
interest where it is changing. This focusing allows to
create controllers that have update intervals of down to
125 µs [5].

• Redundant information does not occupy the output bus
and therefore relevant information can be signaled very
fast. The sensor chip itself has a latency of 15 µs. In
practice the main limitation to the latency of prototype
systems is not the DVS, but USB communication. Round-
trip latencies of the whole systems using off-the-shelf
computer architectures are in the order of 3 ms [4].

• The high resolution of the event timestamps can be used
to investigate highly dynamics elements in a scene, such
as fast motion or, like in this paper, blinking LEDs.
Moreover, because events are asynchronous, it is not
necessary to commit to use a given sampling frequency
like in a conventional sensors.

The main drawbacks of the current generation of DVS are
its low resolution of 128× 128, and the inability to sample
the absolute brightness levels like a normal camera. The
low resolution is due to the prototype fabrication process
used (350 nm) and the fact that each pixel is associated to
a complex circuit carrying on the analog computation. The
absolute brightness levels cannot be accessed because the
according technology was not ready for the first series of
sensors. But since the field of event-based vision sensors is
steadily growing [9], these limitations will soon be overcome.
Some of the latest developments include higher temporal
contrast sensitivity of 1.5% [10] and higher spatial resolution
of 240×180 or 304×240, accompanied with a readout channel
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Fig. 2. Example event sequence from a DVS looking at an Active LED
Marker (ALM). Subfigure (a) shows the histogram of events seen from a
fixed camera looking at three ALMs. The difference in numbers is due to the
different frequencies of the ALMs. Subfigure (b) shows a slice of the events
seen at a particular pixel near the center of one of the ALMs which has a
blinking frequency of 1 KHz. The data is a series of events with positive
( on ) and negative ( off ) events. (c) The sequence of off on transitions are highly
regular; in this data we observed that the distribution of the intervals is well
approximated by a Gaussian with mean 1000µs and standard deviation
σ = 6µs.

for pictures and movies that simulates a CMOS camera [11,
12].

Other ongoing efforts include increasing the availability of
the embedded version of the sensor (eDVS, used in [5]), which
weighs only a few grams and measures 30 × 50 × 50 mm.
Furthermore, future versions of event based vision sensors
are expected to include a USB 3.0 interface for higher data
transmission rates.

III. HARDWARE SETUP AND EVENT DATA

This section describes the hardware setup and gives an
intuition of the event data that a DVS produces.

A. DVS and its interface

The DVS has a standard USB 2.0 interface. The sensor is
distributed with a portable software framework written in Java
called jAER [13]. For this project we used C++ for maximum
efficiency. So we developed a special driver to be developed,
based on the Thesycon USB device driver [14]. The events
are transmitted from the sensor in packets of up to several
hundred events; however, each event is still independently
tagged at the source with its proper timestamp.

B. Active LED Markers (ALMs)

We used infrared LEDs since the DVS is most sensitive
in the infrared spectrum. The LED controller is based on
the Bronze Board [15] from inilabs, which is based on an
AVR32. The controller drives the LEDs using PWM.

In our setup we could easily change the PWM frequency
to the LEDs. An upper bound on the detectable frequency
depends on the power of the LEDs and the distance to the
sensor. A DVS is not magic: there must be a large enough
change in the number of photons reaching the photoreceptor
to trigger an event. In our setup we found 2 KHz to be an
adequate value as an upper bound. The frequencies for each
LEDs were then decided in the interval 1–2 KHz making sure
we did not choose frequencies with common harmonics. A
reasonable lower bound on the blinking frequency was found
experimentally to be 1 KHz, so that those frequencies would
not be confused with the events triggered by the background
motion.

C. Statistical properties of event sequences

Fig. 2 gives an intuition of how the stream of events looks
like. In this scenario both the ALMs and the DVS are fixed.
Fig. 2a shows the histogram of the number of events coming
from a particular pixels. The three peaks are three ALMs at
frequencies f = 500, 700, 1000 Hz. The number of events is
different for each peak because the frequencies differ. The halo
in Fig. 2a cannot be explained by the refractive properties of
the optics, and is probably due to non-ideal local interactions
among neighbors in the sensing array.

Fig. 2b shows the sequence of events obtained from one
particular pixel, corresponding to the ALM with a frequency
of 1 KHz. There is a different number of on and off events.
This implies that it is not possible to interpret these events
as the derivative of the image.
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For this particular data, the on events arrive noisily, while
the off events arrive more regularly. Note that the what we
observe here is the combination of the LED dynamics with
the dynamics of the photoreceptor and the nonlinear detector.
Experimentally, we found that the interval between successive
on / off transitions is repeatable. For this data, the jitter is well
approximated by a Gaussian with standard deviation equal
to 6 µs (Fig. 2c).

D. Effects of sensor motion

If the sensor is moving, events are generated from the
apparent motion of the environment as well as the ALMs.
However, we have found that we can discriminate between
the two types of events based on their temporal statistics.

Fig. 3 shows the histogram of frequencies of the on / off

transitions in three scenarios: a) a stationary camera looking
at stationary ALMs; b) a moving camera looking at stationary
ALMs; c) a moving camera with no LEDs. From this data
we can see that the sensor motion generates a large number
of events and transitions, but the corresponding frequencies
are low (< 600 Hz in this case), so that we can still clearly
see the peaks originated from the ALMs-generated events.
Therefore, by choosing the blinking frequencies high enough,
it is possible to filter out the sensor motion just by ignoring the
events corresponding to frequencies under a certain threshold.

50 1000500 700

Hz

50 1000500 700

Hz

50 1000500 700

Hz

(a)

ALMs, no motion ALMs, motion no ALMs, motion

(b) (c)

Fig. 3. This figure shows the statistics of the intervals between on / off

transitions, in three different scenarios. The upper row shows the number of
events generated by each pixel over in an interval of a few seconds. The
bottom row shows the histograms of the inverse of the interval between
successive on / off transitions at each pixel. (a) In the first case, both ALMs
and sensor are stationary. The observed frequencies correspond to the three
ALMs. (b) In the second case, the sensor is moving with respect to the
ALMs and the environment. (c) In the third case the sensor is moving and
the ALMs have been switched off. In (b) and (c) the motion of the camera
creates apparent motion of the environment which generates a large number
of events and transitions. However, those transitions have low frequency. In
this case, the events generated from the background motion are negligible
after 700 Hz, though this depends on the statistics of the environment and
the speed of the motion. We can choose the frequencies of the markers high
enough such that they are not confused with the background motion.

IV. DVS-BASED ACTIVE LED MARKER TRACKING

This section describes our method for tracking the position
of a set of ALMs from the output of a DVS. The input to
the algorithm is a sequence of events representing the change
of luminance in a single pixel. The output is an estimate
of the pose of the quadrotor. We describe the algorithm as
a sequence of stages that process asynchronous events; in
principle, several of them could be implemented in hardware.

events

transitions

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

�1 = t7 � t3 �3 = t11 � t7

intervals

�2 = t9 � t6

�3�2�1

time

off on off on

offon offon offon

on on on on onoff off off off off off

Fig. 5. A single pixel produces an irregular series of raw events, each
consisting of a timestamp, a location, and a polarity, either on or off polarity.
The first stage of processing consists in extracting the off on or offon transitions.
The second stage consists at looking at two successive transitions of the same
kind. For example, in this figure, two successive off on transitions at time t3
and t7 generate a hyper-transition with interval ∆ = t7− t3. Assuming that
these events are generated by a blinking ALM, the value of ∆ is a good
robust estimator of the blinking period.

A. Raw events

The input to the algorithm is the sequence of generated
events. We use k to index the events. Each event can be
represented by a tuple

〈tk, pk, 〈xk, yk〉〉,

where:
• The scalar tk is the timestamp of the event. Timestamps

are not equispaced in time, as events are asynchronously
generated by each pixel.

• The value pk ∈ { on , off } is the polarity. The on polarity
implies a positive change in brightness, while the off

polarity a negative change. This value can be interpreted
as the sign of the instantaneous brightness change.

• The coordinates 〈xk, yk〉 identify the pixel that triggered
the event.

B. Transitions

The first stage of our algorithms transforms the sequence
of the raw { on , off } events into a sequences of transition
events { off on , offon }. This is done independently for each
pixel. Consider the events that are produced by a given pixel
at coordinates 〈x, y〉 and let k be the sequence index for the
events of that pixel only.

At all times, we remember the last event timestamp tk−1 and
its polarity pk−1 ∈ { on , off }. Every time the polarity of the
current event pk is different than the previous polarity pk−1,
we create a transition event. If the polarity is the same, no
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Fig. 4. The first stage of our method consists in buffering the raw events, which have either on or off polarity, as to find the transitions, either off on or offon .
Then, we look at the intervals ∆ between two transitions of the same type. These will be converted into votes in an evidence map tuned to each frequency.
From the evidence map we extract local maxima, which are the instantaneous detections of where is each ALM. The rest of the method is standard: for
each frequency we use a particle filter to be robust to missed detections; then we choose the combination of particles that gives a coherent global estimate
for all ALMs.

transition event is generated. This is described by the rules
in Table I.

A transition event is a tuple

〈tk, qk, 〈xk, yk〉〉,
where:
• The scalar tk is the timestamp of the second event that

triggered the transition.
• The value qk ∈ { on , off } is the transition polarity,

which is either positive-to-negative ( offon ) or negative-
to-positive ( off on ).

• 〈xk, yk〉 are the pixel coordinates.

C. Hyper-transitions

The next stage of processing looks at the interval between
successive transitions of the same type. For each pixel, we
remember the last transition of either type ( off on or offon ) in
a separate storage; then, for each transition, we generate a
“hyper-transition”, which is a tuple of the kind

〈tk, ∆k, 〈xk, yk〉〉,
where ∆k is the interval between transitions of the same
kind, and 〈xk, yk〉 are the coordinates (Fig. 5). Note that we
dropped the polarity of the transitions, as they are not needed
in the following stages.

D. Evidence maps

We suppose to have been given a set of n frequencies {fi},
i ∈ {1, n} corresponding to the n ALMs to track. For
each frequency separately we construct an “evidence map”
Ii(〈x, y〉 , t) over the visual field corresponding to the prob-
ability that the ALM is at that pixel. Each hyper-transition
contributes to all evidence maps, but with a different weight,

TABLE I
FROM RAW EVENTS TO TRANSITIONS

last event current event transition event

〈tk−1, on , 〈x, y〉〉 〈tk, on , 〈x, y〉〉 none
〈tk, off , 〈x, y〉〉 〈tk, off on , 〈x, y〉〉

〈tk−1, off , 〈x, y〉〉 〈tk, on , 〈x, y〉〉 〈tk, offon , 〈x, y〉〉
〈tk, off , 〈x, y〉〉 none

so that we can integrate all information and do not commit
to assigning an event to a given frequency. This approach is
robust to noisy data and background motion. For non-noisy
data, an alternative approach that uses clustering of events
works just as well [6].

A hyper-transition with interval ∆k contributes to the evi-
dence map of frequency fi with a weight that is proportional
to p(∆k | fi); that is, the likelihood that a marker ALM with
that frequency produces a hyper-transition of that interval.
The distribution p(∆k | fi) is found experimentally to be well
approximated by a Gaussian, as seen in the data in Fig. 3b:

p(∆k | fi) = N
(

1

∆k
− fi, σ2

)
. (1)

In our experimental setting, the standard deviation is approx-
imately σ = 30 Hz. The evidence maps collect events within
a time slice corresponding to an interval of 1/fi. Therefore,
the value of the evidence map Ii(〈x, y〉 , t) for a pixel x, y
and at time t is given by the sum of the contributions of all
events at the given pixel and in the interval [t− 1/fi, t]:

Ii(〈x, y〉 , t) =
∑

tk∈
[
t− 1

fi
,t
]
∧〈xk,yk〉=〈x,y〉

N
(

1

∆k
− fi, σ2

)
.

To increase robustness at the expense of latency, it is also
possible to use multiples of 1/fi as the time slice interval.

At the end of the time slice, the evidence map Ii(〈x, y〉 , t)
can be interpreted as the likelihood that the i-th ALM with
frequency fi is at position 〈x, y〉. In our experimental setting,
this map is multimodal, with a strong peak at the true position
of the marker, and lower peaks at the positions at the other
markers, because each event contributes weakly, according
to (1), also to the evidence maps of the other frequencies.

We extract m local maxima, at least δ pixels from each
other (in our experiments m = 3, δ = 15 px). The value of the
evidence map at the local maxima is used as a weight w to be
carried forward to the next stage. The detections generated in
this way have a time t, coordinates 〈x, y〉 and the weight wi

j :

{〈t, 〈xij , yij〉, wi
j〉}, j ∈ {1, . . . ,m}.

E. Filtering and reconstruction

Once we have these detections, the method proceeds in
a conventional way, as in any tracking problem, to achieve
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robustness to missed detections and false alarms.
First we use a particle filter to evolve particles for each

frequency. Each particle has coordinates 〈x, y〉, a weight w
(carried over from the last step), as well as an isotropic spatial
uncertainty r, which starts at 1 px. The uncertainty grows
using a motion model, which should be chosen according to
how on how fast things are predicted to move on the visual
field. We have computed that for the range of motions of a
quadrotor, in our experimental setting the maximum apparent
motion is approximately 1 pixel/ms.

There is a particle filter for each frequency. The particles
in each filter represent the posterior over the pose of one
ALM. To look for a globally consistent solution, we choose
the combination of particles from all filters with the highest
combined weight such that no two markers can be too close
to each other (in our experiments, d = 15 pixels). Assuming
we have the position of the ALMs in image space, and we
know the relative position of the markers in the world, we can
reconstruct the pose of the object using established techniques
for rigid reconstruction.

V. EXPERIMENTS

The experiments evaluate the advantages of a DVS-based
tracking solution with respect to a tracking solution based
on a traditional CMOS camera. We compare the DVS-based
ALM tracking with vision-based tracking using the PTAM
algorithm, using the output of an OptiTrack system as the
ground truth. The data show that the DVS-based tracking is
able to deal with faster motions due to the minimal latency,
but the precision of the reconstructed pose is limited by the
low resolution of the sensor.

A. Hardware

1) Robot platform: We used the commercially available
ARDrone 2.0. We attached four custom-built ALMs to the
bottom of the platform (Fig. 6a). Each LED was fixed facing
downwards, one under each of the four rotors, so that the
four were lying on a plane forming a square of 20cm side
length. The USB connector available on the drone provided
power to the microcontroller and ALMs. The drone has also
a front-facing 720× 980 CMOS camera that is used in these
experiments, while the ground-facing camera is not used.

(a) ALMs configuration (b) Infrared markers

Fig. 6. The ARDrone 2.0 equipped with four ALMs (shown in a) tracked
by the DVS, and reflective markers used by the OptiTrack (shown in b).

2) DVS: The DVS128 camera was used for the tests. It
has a resolution of 128× 128 pixels. The lens attached gave
the sensor a FOV of approximately 65°, giving a resolution
of 0.5 pixels/°. For tracking the quadcopter, the DVS was
installed on the floor facing upwards. Note that the relative
motion between DVS and quadcopter would be the same if
the ALMs were on the floor and the DVS on board.

3) OptiTrack: To measure the pose estimation accuracy
we used a OptiTrack tracking system from NaturalPoint [16],
which is a marker-based optical motion tracking system using
active infrared light and reflective marker balls. Four markers
have been applied to the drone (Fig. 6b). Our lab setup
comprised 10 cameras in a 6 × 8 m area; the cost of this
system is approximately 20,000 CHF ($21,000). The sampling
frequency used was 250 Hz. The manufacturer states that
the accuracy is ∼ 1 mm, but this seems a rather optimistic
estimate based on our experience with the system; we evaluate
the accuracy to be closer to 5–10 mm.

4) Motion: The prototypical aggressive maneuver that we
use is a “flip” of the quadcopter, i.e. a 360◦ roll. During the
flip the frontal camera images are severely blurred (Fig. 7).

5) Interference OptiTrack / DVS: We encountered an
unexpected incompatibility between OptiTrack and DVS.
The OptiTrack uses high-power infrared spotlights. In the
OptiTrack’s standard configuration, the spotlights are pulsed
at a high frequency. This is of course invisible to normal
sensors and to the human eye, but it was a spectacular
interference for the DVS. Like most cameras, the DVS is most
sensitive in the infrared spectrum and is much faster than the
OptiTrack strobing frequency. This generated an overflow in
the DVS events buffer as the electronics could not handle the
large number of events to be processed contemporaneously.
Eventually we understood how to deactivate the strobing for
all the cameras prior to recording. Still there was a slight
residual interference by the infrared illumination from the
OptiTrack, but it should have relatively little impact to the
results of our experiments.

B. Methods

We compare three ways to track the pose of the quadcopter:
1) The output of our DVS-based ALM tracking method; 2) The
OptiTrack output; 3) The output of a traditional feature-based
tracker using the data from the conventional CMOS camera
mounted front-facing on the drone. The image data was
streamed to a computer via network interface, were the parallel
tracking and mapping algorithm (PTAM) [17] was employed
for pose estimation.

1) Data recording, synchronization, and alignment: Using
this setup we did several recordings, in which we recorded
the OptiTrack tracking data, using its native format, the image
data using a ROS interface, as well as the raw event data
from the DVS in the native format.

To synchronize the data from different sources we used
a motion induced cue. We moved manually the drone up
and down, generating an approximated sinusoid curve in the
position data, which allowed easy manual matching of the
sequences and estimation of the delay between the two.
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Fig. 7. Motion blur induced on CMOS image from flip motion.

After adjusting for the delay, we adjusted the sampling
frequency. As our algorithm’s output has a lower sampling
rate than the OptiTrack (1 KHz vs 250 Hz), the OptiTrack
data was resampled by linear interpolation.

As a final step, the time series were put in the same frame
of reference. Given two sequences of points xk,yk ∈ R3,
the rototranslation 〈R, t〉 ∈ SE(3) that matches them can be
found by solving the optimization problem

min
〈R,t〉∈SE(3)

∑
k

‖xk − (Ryk + t)‖2, (2)

which is a classic Procrustes problem [18].

C. Results

We recorded data from 18 flips, of which only 6 were
successful. During the recordings we met a number of
unforeseen difficulties due to our modifications to the drone.
Having attached the LEDs and microcontroller to the drone
we found that it had become unstable during flight and hard to
control due to the additional weight, so while it could hover
normally, it did not have enough thrust to stabilize itself after
a flip.

1) Tracking downtimes: During a flip, both the DVS and
PTAM lose tracking: PTAM loses tracking while the image is
blurred; the DVS loses track when the ALMs are not visible
from the ground. The comparison of these “blackout times”
gives a direct measurement of the latency of the two systems.

The length of a flip was measured by considering the roll
data from the OptiTrack, taking the interval between the last
measurement before the flip and the first measurement after
the flip when the helicopter was in a level orientation to the
floor.

To measure the onset and offset of the blackout for the DVS,
we considered the last sample before losing track (i.e. where
the interval position samples were considerably higher than the
mean sampling rate) and the first sample of reacquiring track
(regaining a steady sample rate). The equivalent operation
was performed on the PTAM data.

Table II shows the mean standard deviation of the different
approaches. Our algorithm lost track during the average time
of 0.35 seconds. PTAM lost track for a mean of 0.8 seconds,
which is more than twice the time of the DVS and takes
longer than the average duration of a flip. One can clearly
see that the time where tracking is lost is much shorter with
our approach in respect to PTAM. The results emphasize that
the DVS is faster in recovering lost tracks than the PTAM
approach due to not suffering from motion blur. As verified
with our recordings, the downtimes of the DVS correspond
to losing sight of the LED markers because of their emission
angle. With a suitable configuration of either more markers or

TABLE II
TRACKING DOWNTIME INTERVALS AND THE FLIP DURATION.

DVS 0.35 ± 0.10 s
PTAM 0.80 ± 0.33 s

flip duration 0.56 ± 0.15 s

dynamic vision sensors, tracking could be maintained during
the whole flip.

2) Accuracy of estimated pose: The statistics of the esti-
mation error for DVS and PTAM, considering the OptiTrack
as the ground truth, are summarized in Table III and shown
in graphical form in Fig. 8.

As for the translation, the DVS estimation error is roughly
two times lower than PTAM (Fig. 8a). Although the spread
of outliers is higher in our approach compared to PTAM,
the translation errors of the latter technique show a broader
distribution around their median. Overall this proves that the
DVS approach has higher accuracy with less spread, if we
neglect the extreme tails of the distribution.

Fig. 8b–d show the error distribution for roll, pitch and
yaw respectively. The DVS performs worse in roll and pitch
compared to yaw. This was to be expected, because of the
position of the ALMs. As roll and pitch play a minor roll in
quadrotor pose estimation these can be neglected for finding
the drone’s orientation. The DVS performs slightly worse
than PTAM with a mean error of 6° and a deviation of 15°
(Table III). This is explained by the much lower resolution of
the DVS (128× 128 pixels) compared to the CMOS camera
used by PTAM (720× 980 pixels).

TABLE III
ESTIMATION ERROR OF DVS AND PTAM COMPARED TO OPTITRACK

(a) Translation (b) Roll (c) Pitch (d) Yaw
DVS 8.9 ± 12.6 cm 19 ± 27° 17 ± 18° 6 ± 15°

PTAM 19.0 ± 12.4 cm 7 ± 22° 5 ± 11° 3 ± 10°

VI. CONCLUSIONS

Fast robots need fast sensors. A dynamic vision sensor
(DVS) returns changes in the visual field with a latency of
a few microseconds. This technology is the most promising
candidate for enabling highly aggressive autonomous maneu-
vers for flying robots. The current prototypes suffer a few
limitations, such as a relatively low resolution, which are
being worked upon. In the mean time, the sensing pipeline
must be completely re-designed to take advantage of the low
latency.

This paper has presented the first pose tracking application
using DVS data. We have shown that the DVS can detect
Active LEDs Markers (ALMs) and disambiguate their identity
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Fig. 8. Distributions of the errors of DVS/PTAM in reference to the OptiTrack measurements. The data is synthesized in Table III.

if different blinking frequencies are used. The algorithm that
the we developed uses a Bayesian framework, in which we
accumulate evidence of every single event into “evidence
maps” that are tuned to a particular frequency. The temporal
interval can be tuned and it is a tradeoff between latency
and precision. In our experimental conditions it was possible
to have a latency of only 1 ms. After detection, we used a
particle filter and a multi-hypothesis tracker.

We have evaluated the use of this technology for tracking
the motion of a quadrotor during an aggressive maneuver.
Experiments show that the DVS is able to reacquire stable
tracking with negligible delay as soon as the LEDs are
visible again, without suffering from motion blur, which limits
the traditional CMOS-based conventional feature tracking
solution. However, the precision in reconstructing the pose
is limited because of the low sensor resolution. Future work
involving the hardware include improving the ALMs by
increasing their power and their angular emittance field, as
we have found these to be the main limitations.

In conclusion, DVS-based ALM tracking promises to be
a feasible technology that can be used for fast tracking in
robotics.
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