CS 441/641 Final Exam
0.) NAME: ___________________________
2014-12-11 through 18. Your answers should be yours alone, after consulting with any written or online reference material. References that substantially influence your answer should be cited. Do NOT consult with any living sources, even if you kill them afterwards. This prohibition includes professors or fellow students, and people contacted via the internet.
1.) The network-accessible “Robot Operating System (ROS)” is designed to exchange robot control data, such as allowing the pilot to send a command with speeds for each motor and actuator, and allow the robot to send out sensor data like LIDAR scans and telemetry data like battery charge state. In particular, this data tends to nest in a treelike fashion, so an overall value like battery charge state might have detailed sub-parts describing each battery pack, and in turn voltages for each cell.

Currently, ROS uses a tangle of TCP sockets for communication: XMLRPC (remote procedure calls over HTTP) for directory information from the Master, and a binary protocol (TCPROS) for actual data. This protocol stack has no security, does not work over firewalls or NAT, and requires a large amount of support code, which makes it difficult to debug, extend, or port.

Your three-person team is charged with designing a replacement robot communication subsystem that performs well even on cellphones and web browsers from behind firewalls, and is easy to understand and extend. The two other members of your team have recommended the following technology choices:

	Person
	H.M. Graybeard
	Y.U. Hipster
	You

	Encoding
	Raw binary structs
	QuickTime
	

	Transport
	TCP sockets
	Cloud?
	

	Language
	Plain C and Assembly
	Objective-C and Python
	

Please briefly (one paragraph) justify your technology choices, including a discussion of latency and bandwidth:

2.) This CUDA application computes polyphonic sound: a chord composed of sine waves at many different frequencies added together. The program currently computes 16 thousand sound samples, representing 0.36 seconds of sound at 44KHz, but it takes over 1 second to do this, so it is almost 3x slower than real time. Without changing the answer, speed up the GPU kernel to take less than 0.36 seconds (it is actually possible to make this kernel take less than 0.001 seconds!).

#include <iostream>
#include <iomanip>

#include <cuda.h>

#include "lib/inc.c" /* netrun timing stuff, time_in_seconds() */
/**
 A soundSample represents the sound at one moment in time.

*/

class soundSample {

public:
 float L,R; // left and right audio channels: sound pressure levels
 // Default constructor: initialize to silence
 __device__ __host__ soundSample() :L(0.0), R(0.0) {}
 // Create a soundSample from two values:
 __device__ __host__ soundSample(float L_,float R_) :L(L_), R(R_) {}
 // Add this soundSample to us:
 __device__ __host__ void add(const soundSample &s) {
 L+=s.L; R+=s.R;
 }
 // Atomically add this soundSample to us. Works across multiple threads.
 __device__ void atomicAdd(const soundSample &s) {
 ::atomicAdd(&L,s.L);
 ::atomicAdd(&R,s.R);
 }
 // Return true if these two sounds are similar
 bool similarTo(const soundSample &s) const {
 return (abs(L-s.L)+abs(R-s.R))<0.0001;
 }

};
/* Compute the sound contribution at this time, of this frequency. */

__device__ __host__ //<- this function runs on CPU or GPU

soundSample getSound(int time,int freq,float amp,float phaseShift) {
 double freqHz=40+20.0*freq; // sound frequency, in cycles/second
 double freqRads=freqHz*2.0*M_PI; // sound frequency, in radians/sec
 double audioRate=44.1e3; // 4.1 KHz audio (CD quality), samples/sec
 double timePerSample=1.0/audioRate; // seconds/sample
 double timeSec=time*timePerSample; // time in seconds
 float phase=timeSec*freqRads; // current sound phase, in radians
 return soundSample(sin(phase)*amp,sin(phase+phaseShift)*amp);

}
/* GPU kernel: fill this array with sound.
 Each thread adds a different frequency to the output.

*/

__global__ void make_sound(soundSample *sound,
 int ntime,int nfreq,
 float amp,float phaseShift)

{
 int thread=threadIdx.x + blockIdx.x*blockDim.x; // <- my thread index
 // Zero the sound array first
 if (thread==0)
 for (int time=0;time<ntime;time++) {
 sound[time]=soundSample();
 }
 __syncthreads(); // wait until the whole array is zeroed out
 // Add my octave's contribution to the whole sound
 for (int time=0;time<ntime;time++) {
 sound[time].atomicAdd(getSound(time,thread,amp,phaseShift));
 }

}
// The "chk" function checks for runtime errors, and shows performance.

void chk(const char *whereInCode) {
 static double start=time_in_seconds();
 if (cudaGetLastError()!=cudaSuccess)
 std::cout<<"CUDA failure at "<<whereInCode<<std::endl;
 double cur=time_in_seconds();
 std::cout<<"to "<<whereInCode<<": "
 <<std::fixed<<std::setprecision(3)
 <<(cur-start)*1.0e3<<" ms"<<std::endl;
 start=cur;

}
int main(int argc,char *argv[])

{
 chk("Startup");

// Allocate space shared between CPU and GPU
 int ntime=16*1024; // total number of sound samples
 int nfreq=32; // frequencies audible at each sample
 float amp=0.01; // amplitude of each frequency
 float phaseShift=0.1234; // per-ear phase shift, radians
 soundSample *sound; // shared array of n values
 cudaMallocManaged(&sound, ntime*sizeof(soundSample));
 chk("cudaMalloc");
// Run GPU kernel to make sound
 make_sound<<<1,nfreq>>>(sound,ntime,nfreq,
 0.01,0.1234); /* run kernel on n GPU threads */
 cudaDeviceSynchronize(); /* Wait for kernel to finish filling vals array */
 chk("kernel");
// Spot-check results
 for (int time=0;time<ntime;time+=800) {
 soundSample s; // zero initialized
 for (int freq=0;freq<nfreq;freq++)
 s.add(getSound(time,freq,amp,phaseShift));
 soundSample sGPU=sound[time];
 std::cout<<"time "<<time<<": ";
 if (s.similarTo(sGPU)) std::cout<<"OK\n";
 else std::cout<<" MISMATCH!\n";
 }
 chk("readback");
 return 0;

}
(Try this in NetRun now!)
3.) Reversible computations are designed to save the Landauer bit erasure cost, by never erasing bits. Virtually all operations on Quantum computers must be reversible, but people are using them already to save energy on classical computers.

3.a.) How many Joules does one bit erasure cost during a cold Alaska winter at -40 Fahrenheit?

 Joules / bit

Is this a lot of energy?
3.b.) On a fixed-size machine, not erasing bits means the computation must be reversible, in the sense that “a+=b” can be reversed by doing “a-=b”. For each C++ operation, if it is reversible say how to reverse it; or explain why it can't be reversed.
	C++ Operation
	Reverse operation (if reversible), or why it can't be reversed

	a=b; // assignment
	

	a%=b; // modulus
	

	a^=b; // XOR
	

	send(attackistanSKT,

 &creditcard,len,0);
	

3.c.) Attached is “rev_int.h”, a C++ header with classes to simulate reversible computations. These classes complain if you don't restore the values before destroying the rev_int. See “rev_example.cpp” for an example of how to write a for loop: note you must preserve the old value of the loop counter “i”, and restore everything after each loop.

Write a fully reversible program “3c_rev_mul.cpp” containing two nested loops, to print the multiplication tables for integers from 1 through n (a hardcoded maximum), for example n==5 would list:

 1 * 1 = 1

 1 * 2 = 2

...

 5 * 5 = 25

Your program should only use rev_int, never bare int except for constants.

(Hint: you need to reverse the inner loop before continuing in the outer loop.)

3.d.) Write a fully reversible program “3d_rev_prime.cpp” that finds prime numbers using the Sieve of Eratosthenes. Your program should work for any integer n, and use only reversible variables and operations. Here is a non-reversible version of the Sieve:

int n=10; // generate all primes with value less than n
std::vector<int> factors(n);
// Temporaries:

int p; // the prime

int m; // multiples of p
// Main loop:

for (p=2; p<n; p++) {
 if (factors[p]==0) { // it's prime!
 std::cout<<p<<" is prime!\n";
 m=p+p; // skip prime itself
 while (m<n) { // mark all multiples as non-prime
 factors[m]+=1; // add one to the factor count
 m+=p;
 }
 }

}
(Try this in NetRun now!)
Hints:

· Use rev_int_array instead of std::vector<int>

· One of the trickiest parts is walking the factors array back down to zero before exiting.

3.e.) 641 students only, read this paper on reversible computing circuit synthesis, and write at least one paragraph here describing any difficulties you anticipate in implementing a CPU's memory access unit on fully reversible hardware.

Turn your completed exam in via Blackboard before midnight on Thursday, December 18:
https://classes.uaf.edu/webapps/blackboard/execute/uploadAssignment?content_id=_2116961_1&course_id=_142731_1&assign_group_id=&mode=cpview
As usual, you'll need to log in first.
Thank you for a fun semester!
Page 5 of 5

