| Sentence start | Low entropy ending | Higher entropy ending | 
| Hey, what's | going on? | on fire?! | 
| Want to | get lunch? | TiVo
            
            Le Voyage dans la Lune? | 
| How are | you doing today? | my face spiders? | 
| Probability | -log2 | bits of entropy | Why? | 
| 1 | 0 | 0 | It always happens, so there's no uncertainty. | 
| 0.5 | 1 | 0.5 | Happens half the time. | 
| 0.1 | 3.3 | 0.33 | -log is bigger, but probability shrinks
            faster. | 
| 0.01 | 6.6 | 0.066 | as above, but worse. | 
| 0 | inf | 0 | Never happens, so doesn't contribute any
            entropy. | 
| Raw | Gzip -9 | Bzip2 | 7zip | Comments | |
| Binary zeros | 1048576 | 1057 | 45 | 327 | All zeros has the lowest possible entropy:
            0 bits. | 
| Wikipedia XML | 1048576 | 359184 | 287769 | 294871 | Good compression rate, typical for
            text.  Inferred entropy is about 2.5 bits of entropy
            per byte of the file (30%). | 
| H.P. Lovecraft Text | 1048576 | 402926 | 309576 | 328106 | Similar. | 
| gdb ELF64 | 1048576 | 406290 | 386042 | 332042 | Nominally a binary file, but has ASCII
            strings, and x64 machine code and tables with lots of zeros. | 
| Random ASCII hex | 1048576 | 607628 | 544118 | 553549 | Nominally ASCII, but very
            unpredictable.  Expected value is 4 bits of entropy per
            byte of the file (50%). | 
| Base64 random data | 1048576 | 796856 | 795415 | 806685 | Expected value is 6 bits of entropy per
            byte of the file (75%). | 
| Tarball | 1048576 | 1039974 | 1050758 | 1046726 | Already gzip'd, so most entropy already
            gone. | 
| Zipfile | 1048576 | 1041544 | 1050592 | 1047977 | Similar. | 
| JPEG | 1048576 | 1047418 | 1044382 | 1055571 | After the DCT phase, JPEG uses a huffman
            encoding already. | 
| Random binary
            data | 1048576 | 1048761 | 1053340 | 1063068 | Purely random binary data is almost
            perfectly incompressible--very nearly 1 bit of entropy per
            bit of the file (100% entropy). | 
| Cipher | Key Entropy | Cryptanalysis? | 
| Rot-13 | 0 bits (no key) | Trivial | 
| Rot-K | < 5 bits (k) | Easy--brute force, known plaintext, letter
            frequency statistics, ... | 
| DES | <= 56 bits | Medium--brute force is currently
              feasible | 
| AES-128 | <= 128 bits | Very Hard | 
| OTP | 1 bit per message bit | Not possible (all plaintexts equally likely) | 
| Name | Encryption | Decryption | To crack? | 
| Rot-13 | out[i]='A'+((in[i]-'A'+13)%26); | (same) | Run decryption. | 
| Rot-K | out[i]='A'+((in[i]-'A'+K)%26); | K = 26-K; | K=(out[i]-in[i]+26)%26; // for any i | 
| XOR-fixed | out[i]=in[i]^K; | (same) | K=out[i]^in[i]; // for any i | 
| XOR-cycle | out[i]=in[i]^K[i%K.size()]; | (same) | K[i]=out[i]^in[i]; // for each i | 
| Bits-1 | out[i]=ror(in[i],K); | rol | Try the 8 possible K's. | 
| Bits-2 | x=ror(in[i],K); out[i]=x^L; | x=out[i]^L; in[i]=rol(x,K); | Try the 8 possible K's. L=ror(in[i],K)^out[i]; | 
| Bits-3 | x=ror(in[i],K); y=x^L; out[i]=ror(y,M); | y=rol(out[i],M); x=y^L; in[i]=rol(x,K); | Try the 8*8 possible M's and K's. L=ror(in[i],K)^rol(out[i],M); |