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Abstract—The bypass paths and multiported register files in microprocessors serve as an implicit interconnect to communicate

operand values among pipeline stages and multiple ALUs. Previous superscalar designs implemented this interconnect using

centralized structures that do not scale with increasing ILP demands. In search of scalability, recent microprocessor designs in industry

and academia exhibit a trend toward distributed resources such as partitioned register files, banked caches, multiple independent

compute pipelines, and even multiple program counters. Some of these partitioned microprocessor designs have begun to implement

bypassing and operand transport using point-to-point interconnects. We call interconnects optimized for scalar data transport, whether

centralized or distributed, scalar operand networks. Although these networks share many of the challenges of multiprocessor

networks such as scalability and deadlock avoidance, they have many unique requirements, including ultra-low latency (a few cycles

versus tens of cycles) and ultra-fast operation-operand matching. This paper discusses the unique properties of scalar operand

networks (SONs), examines alternative ways of implementing them, and introduces the AsTrO taxonomy to distinguish between them.

It discusses the design of two alternative networks in the context of the Raw microprocessor, and presents timing, area, and energy

statistics for a real implementation. The paper also presents a 5-tuple performance model for SONs and analyzes their performance

sensitivity to network properties for ILP workloads.

Index Terms—Interconnection architectures, distributed architectures, microprocessors.
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1 INTRODUCTION

TODAY’S wide-issue microprocessor designers are finding
it increasingly difficult to convert burgeoning silicon

resources into usable, general-purpose functional units. At
the root of these difficulties are the centralized structures
responsible for orchestrating operands between the func-
tional units. These structures grow in size much faster
asymptotically than the number of functional units. The
prospect of microprocessor designs for which functional
units occupy a disappearing fraction of total area is
unappealing but tolerable. Even more serious is the poor
frequency-scalability of these designs; that is, the unma-
nageable increase in logic and wire delay as these
microprocessor structures grow [1], [16], [30]. A case in
point is the Itanium 2 processor, which sports a zero-cycle
fully-bypassed 6-way issue integer execution core. Despite
occupying less than two percent of the processor die, this
unit spends half of its critical path in the bypass paths
between the ALUs [14].

The scalability problem extends far beyond functional
unit bypassing. Contemporary processor designs are
pervaded by unscalable, global, centralized structures. As
a result, future scalability problems lurk in many of the
components of the processor responsible for naming,
scheduling, orchestrating, and routing operands between
functional units [16].

Building processors that can exploit increasing amounts
of instruction-level parallelism (ILP) continues to be
important today. Many useful applications continue to
display larger amounts of ILP than can be gainfully

exploited by current architectures. Furthermore, other
forms of parallelism, such as data parallelism, pipeline
parallelism, and coarse-grained parallelism, can easily be
converted into ILP.

Seeking to scale ILP processors, recent microprocessor
designs in industry and academia reveal a trend toward
distributed resources to varying degrees, such as parti-
tioned register files, banked caches, multiple independent
compute pipelines, and even multiple program counters.
These designs include UT Austin’s Grid [15], MIT’s Raw
[26], [28] and SCALE, Stanford’s Smart Memories [13],
Wisconsin’s ILDP [8] and Multiscalar [20], Washington’s
WaveScalar [23] and the Alpha 21264. Such partitioned or
distributed microprocessor architectures have begun to
replace the traditional centralized bypass network with a
more general interconnect for bypassing and operand
transport. With these more sophisticated interconnects
come more sophisticated hardware or software algorithms
to manage them. We label operand transport interconnects
and the algorithms that manage them, whether they are
centralized or distributed, scalar operand networks. Speci-
fically, a scalar operand network (SON1) is the set of mechanisms
that joins the dynamic operands and operations of a program in
space to enact the computation specified by a program graph.
These mechanisms include the physical interconnection
network (referred to hereafter as the transport network) as
well as the operation-operand matching system (hardware
or software) that coordinates these values into a coherent
computation. This choice of definition parallels the use of
the word “Internet” to include both the physical links and
the protocols that control the flow of data on those links.

SONs can be designed to have short wire lengths and to
scalewith increasing transistor counts. Furthermore, because
they canbedesigned aroundgeneralized transport networks,
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scalar operand networks can potentially provide transport
for other forms of data including I/O streams, cache misses,
and synchronization signals.

Partitioned microprocessor architectures require scalar
operand networks that combine the low-latency and low-
occupancy operand transport of wide-issue superscalar
processors with the frequency-scalability of multiprocessor
designs. Several recent studies have shown that partitioned
microprocessors based on point-to-point SONs can success-
fully exploit fine-grained ILP. Lee et al. [11] showed that a
compiler can successfully schedule ILP on a partitioned
architecture that uses a static point-to-point transport
network to achieve speedup that was commensurate with
the degree of parallelism inherent in the applications.
Nagarajan et al. [15] showed that the performance of a
partitioned architecture using a dynamic point-to-point
transport network was competitive with that of an idealized
wide issue superscalar, even when the partitioned archi-
tecture counted a modest amount of wire delay.

Much as the study of interconnection networks is
important for multiprocessors, we believe that the study
of SONs in microprocessors is also important. Although
these SONs share many of the challenges in designing
message passing networks, such as scalability and deadlock
avoidance, they have many unique requirements including
ultra-low latency (a few cycles versus tens of cycles) and
ultra-fast operation-operand matching. This paper identi-
fies five important challenges in designing SONs, and
develops the AsTrO taxonomy for describing their logical
properties. The paper also defines a parameterized 5-tuple
model that quantifies performance trade offs in the design
of these networks. To show that large-scale low-latency
SONs are realizable, we also describe the details of the
actual 16-way issue SON designed and implemented in the
Raw microprocessor, using the 180 nm IBM SA-27E ASIC
process.

One concrete contribution of this paper is that it shows that
sender and receiver occupancy have a first-order impact on
ILP performance. In contrast, the performance loss due to
network transport contention averages only 5 percent for a
64-tile Raw mesh. These results lead us to conclude that
whether the network transport is static or dynamic is less
important (at least for up to 64 nodes) than whether the SON
offers efficient support for matching operands with the
intended operations.

The paper proceeds as follows: Section 2 provides
background on scalar operand networks and their evolu-
tion. Section 3 describes the key challenges in designing
scalable SONs; these challenges derive from a combined

ancestry of multiprocessor interconnects and primordial
uniprocessor bypass networks. Section 4 discusses opera-
tion-operand matching. Section 5 introduces a taxonomy for
the logical structure of SONs. Section 6 describes the design
of two SONs. Section 7 discusses Raw’s VLSI SON
implementation. Section 8 quantifies the sensitivity of ILP
performance to network properties. Section 9 presents
related work and Section 10 concludes this paper.

2 EVOLUTION OF SCALAR OPERAND NETWORKS

The role of an SON is to join the dynamic operands and
operations of a program in space to enact the computation
specified by a program graph. This section describes the
evolution of SONs—from early, monolithic register file
interconnects to more recent ones that incorporate routed
point-to-point mesh interconnects.

A nonpipelined processor with a register file and ALU
contains a simple specialized form of an SON. The logical
register numbers provide a naming system for connecting
the inputs and outputs of the operations. The number of
logical register names sets the upper bound on the number
of live values that can be held in the SON.

Fig. 1 emphasizes the role of a register file as a device
capable of performing two parallel routes from any two
internal registers to the output ports of the register file, and
one route from the register file input to any of the internal
registers. Each arc in the diagram represents a possible
operand route that may be performed each cycle. This
interconnect-centric view of a register file becomes increas-
ingly appropriate as wire delays worsen in VLSI processes.

Fig. 2 shows a pipelined, bypassed processor with multi-
ple ALUs. Notice that the SON includes many more multi-
plexers, pipeline registers, and bypass paths, and it begins to
look much like our traditional notion of a network. The
introduction of multiple ALUs creates additional demands
on the naming system of the SON. First, there is the
temptation to support out-of-order issue of instructions,
which forces the SON to deal with the possibility of having
several live aliases of the same register name.Adding register
renaming to the SONallows the network tomanage these live
register aliases. Perhaps more significantly, register renam-
ing also allows the quantity of simultaneous live values to be
increased beyond the limited number of named live values
fixed in the ISA. An even more scalable solution to this

146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2005

Fig. 1. A Simple SON.

Fig. 2. A pipelined processor with bypass links and multiple ALUs.



problem is to adopt an ISA that allows the number of named
live values to increase with the number of ALUs.

More generally, increasing the number of functional
units necessitates more live values in the SON, distributed
at increasingly greater distances. This requirement in turn
increases the number of physical registers, the number of
register file ports, the number of bypass paths, and the
diameter of the ALU-register file execution core. These
increases make it progressively more difficult to build
larger, high-frequency SONs that employ centralized
register files as operand interconnect.

One solution is to partition and distribute the inter-
connect and the resources it connects. Fig. 3 depicts the
partitioned register file and distributed ALU design of the
Multiscalar—one of the early distributed ILP processors.
This design uses a one-dimensional multihop ring SON to
communicate operands to successive ALUs.

Fig. 4 shows the two-dimensional point-to-point SON in
the Raw microprocessor. Raw implements a set of repli-
cated tiles and distributes all the physical resources: FPUs,
ALUs, registers, caches, memories, and I/O ports. Raw also
implements multiple PCs, one per tile, so that instruction
fetch and decoding are also parallelized. Both Multiscalar
and Raw (and, in fact, most distributed microprocessors)
exhibit replication in the form of more or less identical units
that we will refer to as tiles. Thus, for example, we will use
the term tile to refer to an individual node in Grid, and an
individual pipeline in Multiscalar, Raw, or ILDP.

Mapping ILP to architectures with distributed scalar
operand networks is not as straightforward as with early,
centralized architectures. ILP computations are commonly
expressed as a dataflow graph, where the nodes represent
operations, and the arcs represent data values flowing from
the output of one operation to the input of the next. To
execute an ILP computation on a distributed-resource
microprocessor containing an SON, we must first find an
assignment from the nodes of the dataflow graph to the
nodes in the network of ALUs. Then, we need to route the
intermediate values between these ALUs. Finally, we must
make sure that operands and their corresponding opera-
tions are correctly matched at the destinations. See [11], [27]
for further details on orchestrating ILP in partitioned
microprocessors. The next section will address each of
these three issues relating to SONs, and discuss how SONs
can be built in a scalable way.

3 CHALLENGES IN THE DESIGN OF SCALABLE

SCALAR OPERAND NETWORKS

To make the concept of a scalar operand network more
concrete, it is useful to characterize them in terms of some of
the key challenges in designing them. Not surprisingly,
these five challenges derive from a combined ancestry of
multiprocessor interconnections and primordial uniproces-
sor bypass networks. Thus, for those with a multiprocessor

or network background, the challenges of frequency
scalability, bandwidth scalability, and deadlock may seem
particularly familiar. On the other hand, efficient operation-
operand matching and the challenge of exceptional condi-
tions may seem more familiar to those with a micropro-
cessor background.

1. Efficient Operation-Operand Matching. Operation-op-
erand matching is the process of gathering operands
and operations to meet at some point in space to
perform the desired computation.

The focus on efficient operation-operand match-
ing is the fundamental difference between SONs and
other network types. If operation-operand matching
cannot be done efficiently, there is little point in
scaling the issue-width of a processing system,
because the benefits will rarely outweigh the over-
head. Because the challenge of efficient operation-
operand matching is so fundamental to SONs, we
examine it in detail in Section 4.

2. Frequency Scalability. Frequency scalability describes
the ability of a design to maintain high clock
frequencies as that design scales. When an unpipe-
lined, two-dimensional VLSI structure increases in
area, relativity dictates that the propagation delay of
this structure must increase asymptotically at least
as fast as the square root of the area. Practically
speaking, the increase in delay is due to both
increased interconnect2 delay and increased logic
levels. If we want to build larger structures and still
maintain high frequencies, there is no option except
to pipeline the circuits and turn the propagation
delay into pipeline latency.

a. Intracomponent Frequency Scalability. As the
issue-width of a microprocessor increases,
monolithic structures such as multiported
register files, bypassing logic, selection logic,
and wakeup logic grow linearly to cubically in
size. Although extremely efficient VLSI imple-
mentations of these components exist, their
burgeoning size guarantees that intracompo-
nent interconnect delay will inevitably slow
them down. Thus, these components have an
asymptotically unfavorable growth function
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2. We use this term loosely to refer to the set of wires, buffers,
multiplexers, and other logic responsible for the routing of signals within a
circuit.

Fig. 3. Multiscalar’s SON.

Fig. 4. SON based on a 2D point-to-point routed interconnect.



that is partially obscured by a favorable
constant factor.

Classical solutions to frequency scalability
problems incorporate two themes: partitioning
and pipelining. Several recently proposed aca-
demic microprocessors [8], [13], [15], [20], [26]
(and current-daymultiprocessors) combine these
approaches and compose their systems out of
replicated tiles. Tiling simplifies the task of
reasoning about and implementing frequency
scalable systems. A system is scaled up by
increasing the number of tiles, rather than
increasing the size of the tiles. A latency is
assigned for accessing or bypassing the logic
inside the tile element. The tile boundaries are
periodically registered so that the cycle time is not
impacted. In effect, tiling ensures that the task of
reasoning about frequency scalability need only
be performed at the intercomponent level.

b. Intercomponent Frequency Scalability. Frequency
scalability is a problem not just within compo-
nents, but between components. Components
that are separated by even a relatively small
distance are affected by the substantial wire
delays of modern VLSI processes. This inherent
delay in interconnect is a central issue in
multiprocessor designs and is now becoming a
central issue in microprocessor designs. Two
recent examples of commercial architectures
addressing intercomponent delay are the Pen-
tium IV, which introduced two pipeline stages
that are dedicated to the crossing of long wires
between remote components; and the Alpha
21264, which has a one cycle latency cost for
results from one integer cluster to be used by the
other cluster. Once interconnect delay becomes
significant, high-frequency systems must be
designed out of components that operate with
only partial knowledge of what the rest of the
system is doing. In other words, the architecture
needs to be implemented as a distributed
process. If a component depends on information
that is not generated by a neighboring component, the
architecture needs to assign a time cost for the
transfer of this information. Nonlocal information
includes the outputs of physically remote ALUs,
stall signals, branch mispredicts, exceptions, and
the existence of memory dependencies.

c. Managing Latency. As studies that compare
small, short-latency caches with large, long-
latency caches have shown, a large number of
resources (e.g., cache lines) with long latency is
not always preferable to a small number of
resources with a short latency. This trade off
between parallelism and locality is becoming
increasingly important. On one hand, we want
to spread virtual objects—such as cached values,
operands, and instructions—as far out as possi-
ble in order to maximize the quantities of
parallel resources that can be leveraged. On the
other hand, we want to minimize communica-
tion latency by placing communicating objects
close together, especially if they are on the
critical path. These conflicting desires motivate

us to design architectures with nonuniform
costs; so that rather than paying the maximum
cost of accessing a object (e.g., the latency of the
DRAM), we pay a cost that is proportional to the
delay of accessing that particular object (e.g., a
hit in the first-level cache). This optimization is
further aided if we can exploit locality among
virtual objects and place related objects (e.g.,
communicating instructions) close together. Ap-
pendix 1 (which can be found online at http://
www.computer.org/tpds/archives.htm) exam-
ines the performance benefit of placing commu-
nicating instructions nearby.

3. Bandwidth Scalability. While many frequency scal-
ability problems can be addressed by distributing
centralized structures and pipelining paths between
distant components, there remains a subclass of
scalability problems which are fundamentally linked
to an SON’s underlying architectural algorithms.
These bandwidth scalability problems occur when the
amount of information that needs to be transmitted
and processed grows disproportionately with the
size of the system.

The bandwidth scalability challenge is making its
way from multiprocessor to microprocessor designs.
One key red flag of a nonbandwidth scalable
architecture is the use of broadcasts that are not
directly mandated by the computation. For example,
superscalars often rely on global broadcasts to
communicate the results of instructions. Because
every reservation station output must be processed
by every reservation station, the demands on an
individual reservation station grow as the system
scales. Although, like the Alpha 21264, superscalars
can be pipelined and partitioned to improve
frequency scalability, this is not sufficient to over-
come the substantial area, latency, and energy
penalties due to poor bandwidth scalability.

To overcome this problem, we must find a way to
decimate the volume of messages sent in the system.
We take insight from directory-based cache-coherent
multiprocessors which tackle this problem by em-
ployingdirectories to eliminate thebroadcast inherent
in snooping cache systems. Directories are distribu-
ted, known-ahead-of-time locations that contain
dependence information. The directories allow the
caches to reduce thebroadcast to aunicast ormulticast
to only the parties that need the information. The
resulting reduction in necessary bandwidth allows
the broadcast network to be replaced with a point-to-
point network of lesser bisection bandwidth.

A directory scheme is one candidate for replacing
broadcast in an SON and achieving bandwidth
scalability. The source instructions can look up
destination instructions in a directory and then
multicast output values to the nodes on which the
destination instructions reside.

In order to be bandwidth scalable, such a
directory must be implemented in a distributed,
decentralized fashion. There are a number of
techniques for doing so. If the system can guarantee
that every active dynamic instance of an instruction
is always assigned to the same node in the SON, it
can store or cache the directory entry at the source
node. The entry could be a field in the instruction
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encoding which is set by the compiler, or it could be
an auxiliary data structure dynamically maintained
by the architecture or runtime system. The static
mapping scheme is quite efficient because the
lookup of directory entry does not incur lengthy
communication delays. We call architectures [6], [7],
[15], [26] whose SONs assign dynamic instances of
the same static instruction to a single node static-
assignment architectures. Static-assignment architec-
tures avoid broadcast and achieve bandwidth scal-
ability by implementing point-to-point SONs.3

In contrast, dynamic-assignment architectures like
superscalars and ILDP assign dynamic instruction
instances to different nodes in order to exploit
parallelism. In this case, the removal of broadcast
mechanisms is amore challengingproblem to address
because the directory entries need to be constantly
updated as instructions move around. ILDP deci-
mates broadcast traffic by providing intranode by-
passing for values that are only needed locally;
however, it still employs broadcast for values that
may be needed by other nodes.We believe the issue of
whether a scalable dynamic assignment architecture
can replace the broadcast with a multicast using a
distributed register file or directory system is an
interesting open research question.

4. Deadlock and Starvation. Superscalar SONs use
relatively centralized structures to flow-control
instructions and operands so that internal buffering
cannot be overcommitted. With less centralized
SONs, such global knowledge is more difficult to
attain. If the processing elements independently
produce more values than the SON has storage
space, then either data loss or deadlock must occur
[5], [21]. This problem is not unusual; in fact, some of
the earliest large-scale SON research—the dataflow
machines—encountered serious problems with the
overcommitment of storage space and resultant
deadlock [2]. Alternatively, priorities in the operand
network may lead to a lack of fairness in the
execution of instructions, which may severely
impact performance. Transport-related deadlock
can be roughly divided into two categories; endpoint
deadlock, resulting from a lack of storage at the
endpoints of messages, and in-network deadlock,
which is deadlock inside the transport network
itself. Because effective solutions for in-network
deadlock have already been proposed in the
literature, endpoint deadlock is of greater concern
for SONs.

5. Handling Exceptional Events. Exceptional events,
despite not being the common case, tend to occupy
a fair amount of design time. Whenever designing a
new architectural mechanism, one needs to think
through a strategy for handling these exceptional
events. Each SON design will encounter specific
challenges based on the particulars of the design. It
is likely that cache misses, branch mispredictions,
exceptions, interrupts, and context switches will be
among those challenges. For instance, how do

context switches work on a dynamic transport
SON? Is the state drained out and restored later? If
so, how is the state drained out? Is there a freeze
mechanism for the network? Or, is there a roll-back
mechanism that allows a smaller representation of a
process’s context? Are branch mispredicts and cache
miss requests sent on the SON, or on a separate
network?

4 OPERATION-OPERAND MATCHING

The existence of mechanisms for efficient operation-oper-
and matching is the key difference between SONs and other
network types. Abstractly, operation-operand matching is
the fundamental process of gathering operands and opera-
tions to meet at some point in space to perform the desired
computation. In this paper, we attempt to concretize the
process of operation-operand matching with two con-
structs, the performance 5-tuple and the AsTrO taxonomy.
We start with the discussion of the 5-tuple.

Performance 5-tuple. The performance 5-tuple captures
the cost of the most basic and essential function of an SON:
operation-operand matching. This 5-tuple serves as a
simple figure of merit that can be used to compare SON
implementations. As the reader will see in the following
paragraphs, the 5-tuple demonstrates that networks de-
signed for use as SONs are quantitatively much better at
operation-operand matching than other types of networks,
such as message-passing or shared-memory systems.

This 5-tuple of costs<SO; SL;NHL;RL;RO> consists of:

. Send occupancy: average number of cycles that an
ALU wastes in transmitting an operand to depen-
dent instructions at other ALUs.

. Send latency: average number of cycles incurred by
the message at the send side of the network without
consuming ALU cycles.

. Network hop latency: average transport network
hop latency, in cycles, between physically adjacent
ALUs.4

. Receive latency: average number of cycles between
when the final input to a consuming instruction
arrives and when that instruction is issued.

. Receive occupancy: average number of cycles that
an ALU wastes by using a remote value.

For reference, these five components typically add up to
tens to hundreds of cycles [10] on a multiprocessor. In
contrast, all five components in conventional superscalar
bypass networks add up to zero cycles! The challenge is to
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3. Nonbroadcast microprocessors can use any point-to-point SON. We
leave as interesting open research the relative merits of specific point-to-
point SON topologies such as direct meshes, indirect multistage networks,
or trees.

4. When defined this way, 5-tuples for networks whose nodes are
embedded uniformly in a given dimensionality of physical space can be
directly compared if the internode latencies, in cycles, are roughly
proportional to the physical distances between nodes. Unless otherwise
specified, 5-tuples are taken to be defined for a 2D mesh.

Our default assumption of 2D packaging is reasonable for on-chip
networks in modern VLSI processes, for which 2D node packing minimizes
communication latency and for which wire delay is significant in
comparison to router delay. This wire delay prevents frequency-scalable
hyperdimensional topologies from reducing effective network diameter, in
cycles, beyond a constant factor of the underlying physical topology.

Networks with constant communication costs between nodes (e.g.,
crossbars or multistage networks) can be modeled in our 5-tuple by
counting their fixed internode latency as part of the send latency, and
setting NHL to 0. Then their 5-tuples can be directly compared to that of all
other networks regardless of packaging dimensionality.



explore the design space of efficient operation-operand
matching systems that also scale.

In the following sections, we examine SONs implemen-
ted on a number of conventional systems and describe the
components that contribute to the 5-tuple for that system.
At one end of the spectrum, we consider superscalars,
which have perfect 5-tuples, < 0; 0; 0; 0; 0 > , but limited
scalability. On the other end of the spectrum, we examine
message passing, shared memory, and systolic systems,
which have good scalability but poor 5-tuples. The Raw
prototype, described in Section 6 and Section 7, falls in
between the two extremes, with multiprocessor-like scal-
ability and a 5-tuple that comes closer to that of the
superscalar: < 0; 0; 1; 2; 0 > .5

4.1 Superscalar Operation-Operand Matching

Out-of-order superscalars achieve operation-operand
matching via the instruction window and result buses of
the processor’s SON. The routing information required to
match up the operations is inferred from the instruction
stream and routed, invisible to the programmer, with the
instructions and operands. Beyond the occasional move
instruction (say in a software-pipelined loop, or between
the integer and floating point register files, or to/from
functional-unit specific registers), superscalars do not incur
send or receive occupancy. Superscalars tend not to incur
send latency, unless a functional unit loses out in a result
bus arbitration. Receive latency is often eliminated by
waking up the instruction before the incoming value has
arrived, so that the instruction can grab its inputs from the
result buses as it enters the ALU. This optimization requires
that wakeup information be sent earlier than the result
values. Thus, in total, the low-issue superscalars have
perfect 5-tuples, i.e., < 0; 0; 0; 0; 0 > . We note that network
latencies of a handful of cycles have begun to appear in
recent clustered superscalar designs.

4.2 Multiprocessor Operation-Operand Matching

One of the unique issues with multiprocessor operation-
operand matching is the tension between commit point and
communication latency. Uniprocessor designs tend to
execute early and speculatively and defer commit points
until much later. When these uniprocessors are integrated
into multiprocessor systems, all potential communication
must be deferred until the relevant instructions have
reached the commit point. In a modern-day superscalar,
this deferral means that there could be tens or hundreds of
cycles that pass between the time that a sender instruction
executes and the time at which it can legitimately send its
value on to the consuming node. We call the time it takes
for an instruction to commit the commit latency. Barring
support for speculative sends and receives (as with a
superscalar), the send latency of these networks will be
adversely impacted.

The two key multiprocessors communication mechan-
isms are message passing and shared memory. It is
instructive to examine the 5-tuples of these systems. As
detailed in [27], the 5-tuple of an SON based on Raw’s
relatively aggressive on-chip message-passing implementa-
tion falls between <3; 1þc; 1; 2; 7> and <3; 2þ c; 1; 2; 12>

(referred to subsequently as MsgFast and MsgSlow) with c
being the commit latency of the processor. A shared-
memory chip-multiprocessor SON implementation based
on Power4, but augmented with full/empty bits, is
estimated to have a 5-tuple of < 1; 14þ c; 2; 14; 1 > . For
completeness, we also examine a systolic array SON
implementation, iWarp, with a 5-tuple of < 1; 6; 5; 0; 1 > .

4.3 Message-Passing Operation-Operand Matching

For this discussion, we assume that a dynamic transport
network [4] is used to transport operands between nodes.
Implementing operation-operand matching using a mes-
sage-passing style network has two key challenges.

First, nodes need a processor-network interface that
allows low-overhead sends and receives of operands. In an
instruction-mapped interface, special send and receive
instructions are used for communication; in a register-
mapped interface, special register names correspond to
communication ports. Using either interface, the sender
must specify the destination(s) of the outgoing operands.
(Recall that the superscalar uses indiscriminate broad-
casting to solve this problem.) There are a variety of
methods for specifying this information. For instruction-
mapped interfaces, the send instruction can leave encoding
space (the log of the maximum number of nodes) or take a
parameter to specify the destination node. For register-
mapped interfaces, an additional word may have to be sent
to specify the destination. Finally, dynamic transport
networks typically do not support multicast, so multiple
message sends may be required for operands that have
nonunit fanout. These factors will impact send and receive
occupancy.

Second, receiving nodes must match incoming operands
with the appropriate instruction. Because timing variances
due to I/O, cache misses, and interrupts can delay nodes
arbitrarily, there is no set arrival order for operands sent
over dynamic transport. Thus, a tag must be sent along with
each operand. When the operand arrives at the destination,
it needs to be demultiplexed to align with the ordering of
instructions in the receiver instruction stream. Conventional
message-passing implementations must do this in software
[29], or in a combination of hardware and software [12],
causing a considerable receive occupancy.

4.4 Shared-Memory Operation-Operand Matching

On a shared-memory multiprocessor, operation-operand
matching can be implemented via a large software-
managed operand buffer in cache RAM. Each communica-
tion edge between sender and receiver could be assigned a
memory location that has a full/empty bit. In order to
support multiple simultaneous dynamic instantiations of an
edge when executing loops, a base register could be
incremented on loop iteration. The sender processor would
execute a special store instruction that stores the outgoing
value and sets the full/empty bit. The readers of a memory
location would execute a special load instruction that blocks
until the full/empty bit is set, then returns the written
value. Every so often, all of the processors would
synchronize so that they can reuse the operand buffer. A
special mechanism could flip the sense of the full/empty bit
so that the bits would not have to be cleared.

The send and receive occupancy of this approach are
difficult to evaluate. The sender’s store instruction and
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5. In previous work, we used a convention that combined any fixed
transport network costs into the SL field. In this paper, we assign the costs
more precisely to SL or RL, based on whether the cost is closer to sender or
receiver.



receiver’s load instruction only occupy a single instruction
slot; however, the processors may still incur an occupancy
cost due to limitations on the number of outstanding loads
and stores. The send latency is the latency of a store
instruction plus the commit latency. The receive latency
includes the delay of the load instruction as well as the
nonnetwork time required for the cache protocols to process
the receiver’s request for the line from the sender’s cache.

This approach has a number of benefits: First, it supports
multicast (although not in a way that saves bandwidth over
multiple unicasts). Second, it allows a very large number of
live operands due to the fact that the physical register file is
being implemented in the cache. Finally, because thememory
address is effectively a tag for the value, no software
instructions are required for demultiplexing. In [27], we
estimate the 5-tuple of this relatively aggressive shared-
memory SON implementation to be < 1; 14þ c; 2; 14; 1 > .

4.5 Systolic Array Operation-Operand Matching

Systolic machines like iWarp [6] were some of the first
systems to achieve low-overhead operation-operand match-
ing in large-scale systems. iWarp sported register-mapped
communication, although it is optimized for transmitting
streams of data rather than individual scalar values. The
programming model supported a small number of pre-
compiled communication patterns (no more than 20 com-
munications streams could pass through a single node). For
the purposes of operation-operand matching, each stream
corresponded to a logical connection between two nodes.
Because values from different sources would arrive via
different logical streams and values sent from one source
would be implicitly ordered, iWarp had efficient operation-
operand matching. It needed only execute an instruction to
change the current input stream if necessary, and then use
the appropriate register designator. Similarly, for sending,
iWarp would optionally have to change the output stream
and then write the value using the appropriate register
designator. Unfortunately, the iWarp system is limited in its
ability to facilitate ILP communication by the hardware
limit on the number of communication patterns, and by the
relatively large cost of establishing new communication
channels. Thus, the iWarp model works well for stream-
type bulk data transfers between senders and receivers, but
it is less suited to ILP communication. With ILP, large
numbers of scalar data values must be communicated with
very low latency in irregular communication patterns.
iWarp’s 5-tuple can modeled as <1; 6; 5; 0; 1>—one cycle
of occupancy for sender stream change, six cycles to exit the
node, four or six cycles per hop, approximately 0 cycles
receive latency, and one cycle of receive occupancy. An on-
chip version of iWarp would probably incur a smaller per-
hop latency but a larger send latency because, like a
multiprocessor, it must incur the commit latency cost before
it releases data into the network.

5 THE ASTRO TAXONOMY FOR SONS

In contrast to the 5-tuple, which compares the performance
of different SONs, the AsTrO taxonomy captures the key
choices in the way SONs manage the flow of operands and
operations. Ultimately, these choices will impact the 5-tuple
and the cycle time of the SON.

By examining recent distributed microprocessor propo-
sals, we were able to generalize the key differences into the
three AsTrO parameters: 1) how operations are Assigned to
nodes, 2) how operands are Transported between the
nodes, and 3) how operations on the nodes are Ordered.

Each of the AsTrO parameters can be fulfilled using a
static or dynamic method. Typically, the static methods
imply less flexibility but potentially better cycle times,
lower power, and better 5-tuples.

An SON uses dynamic-assignment if active dynamic
instances of the same instruction can be assigned to the
different nodes. In static-assignment, active dynamic in-
stances of the same static instruction are assigned to a single
node. A dynamic assignment architecture attempts to trade
implementation complexity for the ability to dynamically
load balance operations across nodes. A static assignment
architecture, on the other hand, has a much easier task of
matching operands and operators. Note that the use of
static-assignment does not preclude instruction migration
as found in WaveScalar and at a coarser grain, with Raw.

An SON employs dynamic transport if the ordering of
operands over transport network links is determined by an
online process. The ordering of operands across static
transport links are precomputed. A dynamic transport
SON benefits from the ability to reorder operand transmis-
sions between nodes in response to varying timing
conditions, for instance, cache-misses or variable latency
instructions. Conversely, static transport SONs can prepare
for operand routes long before the operand has arrived.
More implications of these two properties are discussed in
Section 6.

An SON has static ordering of operations if the execution
order of operations on a node is unchanging. An SON has
dynamic ordering of operations if the execution order can
change, usually in response to varying arrival orderings of
operands. A dynamic ordering SON has the potential to be
able to reschedule operations on a given node in response to
varying time conditions.

Fig. 5 categorizes a number of recent distributed
microprocessor proposals into the AsTrO taxonomy. We
remark, in particular, that static assignment appears to be a
key element of all of the current scalable designs. This
taxonomy extends that described in [25]. The taxonomy in
[19] discusses only operand transport.

6 OPERATION OF THE RAWDYNAMIC AND

RAWSTATIC SONS

In this section, we describe RawDynamic, an SDS SON, and
RawStatic, an SSS SON. We use the term RawStatic to refer
to the SSS SON implemented on top of the hardware
resources in the actual Raw processor prototype. This is the
SON that the Raw hardware actually uses. RawDynamic
refers to an SDS SON implemented with the combination of
the existing Raw hardware and a few additional hardware
features. These features will be discussed in detail in this
section.

Section 7 examines VLSI aspects of RawDynamic and
RawStatic.

Commonalities. We discuss the Raw processor, which
contains the common components employed by both the
RawStatic and RawDynamic SONs. The Raw processor
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addresses the frequency scalability challenge using tiling. A
Raw processor is comprised of a 2D mesh of identical,
programmable tiles, connected by two types of transport
networks. Each tile is sized so that a signal can travel
through a small amount of logic and across the tile in one
clock cycle. Larger Raw systems can be designed simply by
stamping out more tiles. The left and center portions of
Fig. 6 show the array of Raw tiles, an individual Raw tile,
and its network wires. Notice that these wires are registered
on input. Modulo building a good clock tree, frequency will
remain constant as tiles are added. Each Raw tile contains a
single-issue in-order compute processor, and a number of
routers. In the Raw implementation, the switching portions
of the tile (demarkated by the Ss in the left picture) contain
two dynamic routers (for two dynamic transport networks);
and one static router (for one static transport network). The
RawStatic SON employs the static router, while the
RawDynamic SON employs one of the dynamic routers;
both use a credit system to prevent overflow of FIFOs. Both
systems use the second dynamic router for cache-miss
traffic; misses are turned into messages that are routed off
the sides of the mesh to distributed, off-chip DRAMs.

Both RawDynamic and RawStatic address the bandwidth
scalability challenge by replacing buses with a point-to-point
mesh interconnect. Because all of Raw’s point-to-point
networks can be programmed to route operands only to
those tiles that need them, the bandwidth required for
operand transport is decimated relative to a comparable bus
implementation.

Each of the two SONs relies upon a compiler to assign
operations to tiles, and to program the network transports
(in their respective ways) to route the operands between the
corresponding instructions. Accordingly, both SONs are
static assignment. Furthermore, because Raw’s compute

processors are in-order, both RawDynamic and RawStatic
can be termed static ordering SONs.

Because SONs require low-occupancy, low-latency sends
to implement operation-operand matching, Raw employs a
register-mapped interface to the transport networks. Thus,
the RAW ISA dedicates instruction encoding space in each
instruction so that injection of the result operand into the
transport network has zero occupancy. In fact, a single 32-bit
Raw ISA encoded instruction allows up to two destinations
for each output, permitting operands to be simultaneously
injected into the transport network and retained locally.
Furthermore, to reduce send latency, the Raw processor uses
a special inverse-bypass system for both static and dynamic
routers. This inverse-bypass system pulls operands from the
local bypass network of the processor and into the output
FIFOs as soon as they are ready, rather than just at the
writeback stage or through the register file [6]. In both cases,
the logic must ensure that operands are pulled out of the
bypass paths in-order. For the static network, this is because
operandsmust be injected into the network in a knownorder,
and for the dynamic network, because the ordering of words
in a message payload must be respected. This interface is
shown on the right-hand portion of third component of the
Raw processor diagram. Inverse bypassing, combined with
an early commit point in the Rawprocessor, reduces the send
latency of operation-operand matching by up to 4 cycles. In
effect, we have deliberately designed an early commit point
into our processor to eliminate the common multiprocessor
communication-commit delay (i.e., c ¼ 0) described in the
Challenges section.

Register-mapped input FIFOs are used to provide zero-
occupancy, unit-latency receives. One cycle of receive
latency is incurred because the receive FIFOs are scheduled
and accessed in the dispatch stage of the processor. This
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Fig. 5. The AsTrO taxonomy of SONs.

Fig. 6. Architecture of the Raw processor.



cycle of receive latency could be eliminated as with a
superscalar if the valid bits are routed one cycle ahead of
the data bits in the network.

Finally, Raw’s use of a zero-cycle bypass for routing
operands that a compute processor both produces and uses
locally greatly reduces the average cost of operation-
operand matching.

Both RawStatic and RawDynamic support exceptional
events, the final challenge. Branch conditions and jump
pointers are transmitted over the transport network, just
like data. Raw’s interrupt model allows each tile to take and
process interrupts individually. Compute processor cache
misses stall only the compute processor that misses. Tiles
that try to use the result of a cache-missing load from
another tile will block, waiting for the value to arrive over
the transport network. These cache misses are processed
over a separate dynamic transport. Raw supports context
switches by draining and restoring the transport network
contents. This network state is saved into a context block
and then restored when the process is switched back in.

6.1 Operation of RawDynamic, an SDS SON

RawDynamic differs from RawStatic because it uses the
Raw processor’s dynamic dimension-ordered [22] worm-
hole routed [4] network to route operands between tiles.
Thus, it is a dynamic transport SON. Dimension-ordered
routing is in-network deadlock-free for meshes without
end-around connections.

Because RawDynamic uses a dynamic transport net-
work, it needs to extend the existing Raw compute
processor ISA by encoding the destination address or offset
in the instruction, rather than just the choice of network to
inject into. Furthermore, since the instruction may have
multiple consumers, it is typical to encode multiple
consumers in a single instruction. Finally, because dynamic
transport message arrival orderings are impacted by the
time at which a message is sent, a system intended to
tolerate unpredictable events like cache misses must
include a numeric index with each operand that tells the
recipient exactly which operand it is that has arrived. Thus,
it is likely that dynamic transport SONs will have wider
instruction words and wider transport network sizes6 than
the equivalent static transport SONs. Additionally, for
efficient implementation of multicast and broadcast opera-
tions (such as a jr, or operands with high fanout), the
equivalent dynamic transport SON may need more injec-
tion ports into the network. In fact, low-occupancy, low-
latency broadcast and multicast for dynamic transport
networks is an area of active research [17].

We now examine the transport portion of the Raw-
Dynamic SON. The Raw dynamic router has significantly
deeper logic levels than the Raw static router for determin-
ing the route of incoming operands. In our aggressive,
speculative implementation, we exploit the fact that most
incoming routes in dimension-ordered routers are straight-
through-routes. As a result, we were able to optimize this
path and reduce the latency of most routes to a single cycle

per hop. However, an additional cycle of latency is paid for
any turns in the network, and for turns into and out of the
compute processor. This overhead, and the fact that a
message requires a cycle to go from router to compute
processor on the receive side, makes the transport’s
incremental 5-tuple contribution at least þ < 0; 1; 1; 2; 0 > .

The receive end of RawDynamic is where new hardware
must be added. Unlike a static transport, the dynamic
transport does not guarantee the arrival ordering of
operands. The addition of receive-side demultiplexing
hardware is required. This hardware uses the operand’s
numeric index to place the operand into a known location in
an incoming operand register file (IRF).7

6.1.1 Synchronization and Deadlock

The introduction of an IRF creates two key synchronization
burdens. First, receivers need a way to determine whether a
given operand has arrived or if it is still in transit. Second,
senders need to be able to determine that the destination
index is no longer in use when they transmit a value
destined for the IRF, or that they are not overflowing the
remote IRF.

A simple synchronization solution for the receiver is to
employ a set of full/empty bits, one per index; instructions
can read incoming operands by 1) specifying the numeric
indices of input operands and 2) verifying that the
corresponding full-empty bits are set to full. Accordingly,
the demultiplexing logic can set the full bit when it writes
into the register file. A number of bits in the instruction
word could be used to indicate whether the full-empty bit
of IRF registers should be reset upon read so that a
receiving node can opt to reuse an input operand multiple
times. Furthermore, support for changing the full-empty
bits in bulk upon control-flow transition would facilitate
flow-control sensitive operand use. This set of synchroniza-
tion mechanisms will allow a dynamic transport SON to
address the efficient operation-operand matching challenge.

The problem of receiver-synchronization falls under the
deadlock challenge stated in Section 3. The setting of the full/
empty bit is of little use for preventing deadlock because
there is the greater issue of storing the operands until they
can be written into the IRF. If this storage space is exceeded,
there will be little choice but to discard operands or stop
accepting data from the network. In the second case,
ceasing to accept data from the network often results in
the unfortunate dilemma that the compute processor cannot
read in the very operand that it needs before it can sequence
the instructions that will consume all of the operands that
are waiting. Data-loss or deadlock ensues.

6.1.2 Deadlock Recovery

Generally, we observe two solutions for deadlock: deadlock
recovery and deadlock avoidance. In recovery, buffer space
is allowed to become overcomitted, but a mechanism is
provided for draining the data into a deep pool of memory.
In avoidance, we arrange the protocols so that buffer space
is never overcommitted. Reliance on only deadlock recov-
ery for dynamic transport SONs carries two key challenges:
First, there is a performance robustness problem due to the
slowdown of operations in a deadlock recovery mode (i.e.,
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6. If the transport width is wide enough to send all components of an
operand in a single message, inverse-bypassing could be modified to allow
operands to be transmitted out-of-order. Nonetheless, for resource
scheduling and fairness reasons, it makes sense to prefer older senders to
newer senders.

7. A CAM could also be used, simplifying slot allocation at the risk of
increasing cycle time.



greater access times to the necessarily larger memories
needed for storing large numbers of quiescent operands).
Second, the introduction of deadlock recovery can remove
the backward flow-control exercised from receiver to
sender. As a result, a high data-rate sender sending to a
slower receiver can result in the accumulation of huge pools
of operands in the deadlock recovery buffer. In this case, the
proper solution is to find a way to notify the sender to limit
its rate of production [12]. Nonetheless, deadlock recovery
is promising because it may allow higher overall resource
utilization than is provided by an avoidance scheme. We
believe some of the issues of deadlock recovery mechanisms
on dynamic-transport SONs are interesting open research
questions. A deadlock recovery mechanism for overcom-
mitted buffers is employed in Alewife [10] and in the Raw
general network [26].

6.1.3 Deadlock Avoidance

A deadlock avoidance strategy appears to have a more
immediate method of satisfying the synchronization con-
straints of dynamic transport SONs. We propose one such
strategy in which a lightweight, pipelined one-bit barrier is
used among senders and receivers to reclaim compiler-
determined sets of IRF slots. The system can be designed so
that multiple barriers can proceed in a pipelined fashion,
with each barrier command in an instruction stream
simultaneously issuing a new barrier, and specifying which
of the previous barriers it intends to synchronize against.
For very tight loops, the barrier distance will increase to
include approximately the number of iterations of the loop
that will cause the first of any of the IRFs to fill. As a result,
processing can continue without unnecessary barrier stalls.
This is essentially a double (or more) buffering system for
IRF operand slots.

In order to execute small loops without excessive
overhead, it may be desireable to incorporate a mechanism
that changes the numeric IRF indices based on loop
interation to prevent unnecessary unrolling (see parallels
to register renaming).

Overall, we optimistically assume that dispatching of
operands from the IRF will have the same latency as the
dispatching of operands from RawStatic’s input FIFOs, or
one cycle. We also assume that the synchronization
required to manage the IRF incurs no penalty. Combining
this with the transport cost of þ < 0; 1; 1; 2; 0 > , the 5-tuple
for RawDynamic is < 0; 1; 1; 3; 0 > .

The recent Flit-Reservation System [18] suggests that
dynamic transport routes can be accelerated by sending the
header word in advance. This optimization allows routing
paths tobe computedahead-of-time so that datawords canbe
routed as soonas they arrive. This systemhaspromise, since a
compute pipeline may be able to send out the header as soon
as it can determine that the instruction will issue, setting up
the route as the result operand is being computed. Recent
proposals [15] assume that scalable dynamic-transport SONs
can be implemented with a 5-tuple of < 0;�:25; :5; 0; 0 > .8

Our experience implementing Raw suggests that the attain-
ability of such a 5-tuple for a high-frequency, scalable
dynamic-transport SON is uncertain, evenwith Flit-Reserva-
tion. Implementation of these systemsmay be the onlyway to
shed light on the issue.

6.2 Operation of RawStatic, an SSS SON

We now describe RawStatic, which is the SON implemen-
ted in full in the Raw processor prototype. RawStatic
achieves efficient operation-operand matching through the
combination of the static transport network, an intelligent
compiler, and bypass-path integrated network interfaces.
This SSS SON affords an efficient implementation that
manages and routes operands with a parsimony of hard-
ware mechanisms and logic depths. In contrast to the SDS
SON of the previous section, this SSS SON requires no
special additional hardware structures in order to support
sender synchronization, receiver synchronization and de-
multiplexing, deadlock avoidance, and multicast.

6.2.1 Sends

RawStatic transmits data merely by having instructions
target a register-mapped output FIFO. The static transport
automatically knows where the data should go, so there is
no need to specify a destination tile or an IRF index in the
instruction. Furthermore, because multicast and broadcast
are easily performed by the static transport, there is no need
to encode multiple remote destinations. However, the
inverse-bypass system must ensure the correct ordering of
operand injection into the transport network.

Transport. RawStatic’s static transport maintains a pre-
computed ordering9 of operands over individual network
links using a static router. This router fetches an instruction
stream from a local instruction cache; these instructions
each contain a simple operation and a number of route
fields. The route fields specify the inputs for all outputs of
two separate crossbars, allowing two operands per direc-
tion per cycle to be routed. The simple operation is
sufficient to allow the static routers to track the control
flow of the compute processors, or to loop and route
independently.

For each operand sent between tiles on the static transport
network, there is a corresponding route field in the instruc-
tion memory of each router that the operand will travel
through. These instructions are generated by a compiler or
runtime system. Because the static router employs branch
prediction and can fetch the appropriate instruction long
before the operand arrives, the preparations for the route can
be pipelined, and the operand can be routed immediately
when it arrives. This ahead-of-time knowledge of routes
allows the transport portion of the RawStatic SON to achieve
a partial 5-tuple of þ < 0; 0; 1; 1; 0 > .

A static router executes an instruction as follows: In the
first couple of pipeline stages, it fetches and decodes the
instruction. Then, in the Execute Stage, the static router
determines if the instruction routes are ready to fire. To do
this, it verifies that the source FIFOs of all of the routes are
not empty and that the destinations of all of the routes have
sufficient FIFO space. If these conditions are met, all routes
proceed. Alternative, less tightly synchronized versions of
this system could allow independent routes to occur
without synchronizing.
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8. The negative SL parameter reflects an assumption that half of the first
route is free.

9. We distinguish this type of transport from a static-timing transport, for
which both ordering and timing of operand transport are fixed. Our early
experiments led us away from static-timing transports due to the high cost
of supporting the variability inherent in general-purpose computation.
Nonetheless, static-timing transport eliminates much of the control and
buffering inherent in routing and thus could afford extremely high
throughput, low latency communication.



6.2.2 Receives

Once the static transport network has routed an operand
to the corresponding receiver, things procede quite
simply. The receiver merely verifies a single “data
available” bit coming from one of two input FIFOs
(corresponding to the two inputs of an instruction)
indicating whether any data is available at all. If there is
data available, it is the right data, ipso facto, because the
static router provides in-order operand delivery. There is
no need to demultiplex data to an IRF10 with full/empty
bits, no need to route an IRF index, and no need to
dequeue a destination header. Furthermore, since the
words arrive in the order needed, and the system is flow-
controlled, there is no need to implement a deadlock
recovery or avoidance mechanism to address the deadlock
challenge. As mentioned earlier, a receiver compute
processor requires one cycle of latency to issue an
instruction after its operand has arrived. This, combined
with the partial transport tuple of þ < 0; 0; 1; 1; 0 > makes
the overall 5-tuple for RawStatic < 0; 0; 1; 2; 0 > . See
Section 7 for in-depth derivation of this 5-tuple.

This brief summary of RawStatic is expanded further in
[24], [11], and [26].

7 VLSI IMPLEMENTATION OF AN SSS SON

Having overviewed the operation of RawStatic and Raw-
Dynamic, we can now consider aspects of their VLSI
implementations, using data from the actual Raw SSS SON
implementation.

We received 120 of the 180 nm, 6-layer Cu, 330 mm2,
1,657 pin Raw prototypes from IBM’s CMOS7SF fabrication
facility in October 2002. The chip core has been verified to
operate at 425 MHz at the nominal voltage, 1.8V, which is

comparable to IBM PowerPC implementations in the same
ASIC process. Fig. 7 shows a die photo.

The Raw prototype divides the usable silicon area into an
array of 16 tiles. A tile contains an 8-stage in-order single-
issue MIPS-style compute processor, a 4-stage pipelined
FPU, a 32 KB data cache, two types of routers—static and
dynamic, and 96 KB of instruction cache. These tiles are
connected to nearest neighbors using four separate net-
works, two static and two dynamic. These networks consist
of more than 1,024 wires per tile.

7.1 Physical Design

The floorplan of a Raw tile is shown in Fig. 8. Approxi-
mately 40 percent of the tile area is dedicated to the
dynamic and static transports. The local bypass network is
situated in the center of the tile because it serves as a
clearing house for the inputs and outputs of most of the
components. The distance of a component from the bypass
networks is an inverse measure of the timing criticality of
the component. Components that have ample timing slack
can afford to be placed further away and suffer greater wire
delay. Thus, we can see that the static network paths were
among the least critical, while the single-cycle ALU, control,
and dynamic network components were most critical. The
Event Counters, FPU, and Integer Multiply were placed
“wherever they fit” and the corresponding paths were
pipelined (increasing the latency of those functional units)
until they met the cycle time. Finally, the fetch units and
data cache are constrained by the sizes of the SRAMs they
contain (occupying most of their area) and, thus, have little
flexibility beyond ensuring that the non-RAM logic is
gravitated toward the bypass paths.

Of particular interest are the relative sizes of the dynamic
and static transport components, which are roughly equal in
raw transport bandwidth. The crossbars of the two transports
are of similar size. Raw’s static router has an additional fetch
unit, forwhich there is noequivalent in thedynamic transport
SON. On the other hand, a dynamic transport SON like
RawDynamic requires additional hardware structures be-
yond the transport, which are not represented in the Raw
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10. Nonetheless, as shown in Appendix 2, it is useful to have a small
register file controlled by the static transport which allows time-delay of
operands as they are transmitted between senders and receivers. However,
this mechanism does not need full/empty bits, nor does it require
conservative usage of buffer space to ensure deadlock avoidance. In fact,
our current compiler does not yet take advantage of this feature.

Fig. 7. A die photo of the 16-tile Raw chip. The tiles and RAMs are easy

to spot. A tile is 4 mm � 4 mm.

Fig. 8. Floorplan of a Single Raw Tile. DN ¼ dynamic network. SR ¼
static router. Everything below the bold border is part of the compute

processor. RF ¼ register file.



floorplan.We estimate the area of these structures as follows.
First, the IRF will occupy 8-12x more area than the existing
Register File due to the number of ports (>¼ 2W, 2R) and
increased register count (we estimate 128) necessary to
implement deadlock avoidance. Second, the dynamic router
must transport headers and IRF indices with the data words,
which we estimate results in 50 percent wider paths in the
crossbars in order to provide the same operand bandwidth
(as opposed to raw bandwidth) and the same scalability
(1,024 tiles). Finally, to support multicast, a dynamic
transport SON needs to encode multiple destinations in the
compute processor instructions themselves. Thus, the re-
quired compute processor fetch unit RAM size for a given
miss ratio may double or even triple. The implementation of
complete bandwidth-scalable dynamic transport SONs will
shed more light on this subject.

7.2 Energy Characteristics of SONs

By measuring the current used by the 16-tile Raw core using
an ammeter, we were able to derive a number of statistics
for the use of Raw’s transport networks. First, the static
transport is around 40 percent more power efficient than
the dynamic transport for single word transfers (such as
found in SONs), but the dynamic network is almost twice as
efficient for 31-word transfers. We found that there is a vast
difference between the power of worst-case usage (where
every routing channel is being used simultaneously), and
typical usage. Worst-case usage totals 38W @ 425 MHz,
consisting of 21 percent static transport, 15 percent dynamic
transport, 39 percent compute processors, and 28 percent
clock. Typical usage is 17W @ 425 MHz, with around 5 to
10 percent going to static transport, and 55 percent to clock.
Our data indicates that clock-gating at the root of the clock
tree of each tile (in order to reduce the energy usage of the
clock tree when tiles are unused) is an architectural
necessity in these systems. More detail on these results
can be found in [9]. A recent paper examines power trade
offs in on-chip networks [31].

7.3 Examination of Tile-Tile Operand Path

In this portion, we specifically examine the path an operand
takes travelling in four clock cycles. We further annotate the
parameters of the 5-tuple <SO; SL;NHL;RL;RO> , <0; 0;
1; 2; 0> , as they are determined. First, the operand travels
through the sender’s rotate operator inside the ALU, and is
latched into a FIFO attached to the sender’s static router.
Because the FIFO is register mapped, SO = 0. In the next
cycle, the value is routed through the local static router
across to the next tile’s FIFO. This process takes one cycle
per hop. (SL = 0, NHL = 1). A cycle later, the operand is
routed through the receiver’s static router to the receiver’s
compute processor input FIFO. On the final cycle, the value
is latched into the input register of the receiver ALU (RL =
2). Since instructions have register-mapped interfaces to the
network, there is no instruction overhead for using values
from the network (RO = 0).

Fig. 9 superimposes the path taken by the operand on its
journey, across two tiles. The white line is the path the
operand takes. The tick-marks on the line indicate the
termination of a cycle. The floorplan in Fig. 8 can be
consulted to understand the path of travel.

The reference critical path of the Raw processor was
designed to be the delay through a path in the compute
processor fetch unit. This path consists of an 8K� 32 bit
SRAM and a 14-bit 2-input mux, the output routed back

into the address input of the SRAM. All paths in the tile
were optimized to be below this delay. This path times at
approximately 3.4 ns, excluding register overhead.11 The
total delay of a path may vary from this number, because
the register and clock skew overhead varies slightly.
Furthermore, because none of the paths that an operand
travels along are close to the cycle time of the chip, CAD
optimizations like buffering, gate reordering, and gate
sizing may not have been run. As a result, some of the
delays may be greater than necessary. In Tables 1 and 2, we
examine the timing of signals travelling through the most
critical paths of the operand route. We examine both the
propagation of the actual operand data as well as the single
bit valid signal that interacts with the control logic to
indicate that this data is a valid transmission. These are the
key signals that are routed the full distance of an operand
route.

This process is somewhat complicated by the fact that a
given signal may not be on the direct critical path. For
instance, it may arrive at the destination gate earlier than
the other inputs to the gate. In this case, it may appear as if
the gate has greater delay than it really does, because the
input-to-output time includes the time that the gate is
waiting for the other inputs.

We address this issue as follows: First, for each cycle of
each signal (data and valid), we give the output slack and the
input slack. The input slack is the true measure of how much
later the input signal could have arrived, without any
modification to the circuit, without impacting the cycle time
of theprocessor. Theoutput slackmeasureshowmuchearlier
the output signal is latched into the flip-flop ending the cycle
than is needed for the given cycle time. In general, these two
numbers are not exclusive; one cannot simply calculate the
combined slack that could be exploited without examining
the full path of gates between input and output. However, if
the output slack of one stage and the input slack of the next
stage sumtogreater than the cycle time, they canbe combined
to eliminate a register. The elimination of such a register on
this path would cause a reduction in the communication
latency and, thus, in the 5-tuple.

Of interest in Table 1 are Cycles 3 and 4, where
considerable adjacent Output and Input slack exists, on the
Data Signal, totaling 3.68 ns, and on the Valid signal, totaling
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11. IBM requires tapeout on worst-case rather than nominal process
corners. Because of this, the numbers are pessimistic relative to the actual
frequency (425 MHz) of average parts produced from the fab and used in
typical conditions. All numbers are worst-case numbers, extracted using
CAD tools with parasitics derived from the chip wiring.

Fig. 9. The path of an operand route between two tiles. Path is

superimposed over an EDA screenshot of the placed cells. Grayish

cells are collections of single-bit registers.



2.4 ns. The Data signal is already fast enough to remove the
register.However, theValid signal requires anadditional 1ns
of slack.With someoptimization, it seems likely thatone cycle
of latency couldbe removed from the 5-tuple; reducingRaw’s
5-tuple to < 0; 0; 1; 1; 0 > . Two possibilities are: 1) ANDing
the Valid line later on into its consuming circuit, the stall
calculation of the computeprocessor in cycle 4, or 2) adjusting
the static router to begin processing the Valid signals (and,
thus, most of the control logic for a route) a half cycle earlier,
taking advantage of the early arrival (2.3 ns) of the Valid
signal into Cycle 2.

It is not altogether suprising that the control, including
the Valid signal, is the bottleneck. In our experiences
implementing multiple versions of both dynamic and static
on-chip transport networks, the data paths are always less
critical than the corresponding control paths, to the extent
that the Data path can almost be ignored. Furthermore, it is
easy to underestimate the number of logic levels required
after the Valid and Data signals are already sent out toward
the destination tile—there are FIFOs to be dequeued, “space
available” registers to be updated, and any other logic
required to get the routers ready for the next route.

In Table 2, we show detailed timings for the tile-tile
operand path. Because the valid signal is not actually
propagated through the operand path, but rather is
consumed and regenerated at each step, the control paths
are relatively complex to describe. Instead, we show the
arrival time of the data portion of the operand as it travels
through the circuit. This time includes the calculation of the
control signals for the muxes that manage the flow of the
operand. This gives us an intuition for the delays incurred,
especially due to the transport of the data over long
distances. Of particular interest is that wire (and repeater)
delay is almost 40 percent of the delay in a single-cycle
network hop.

8 ANALYTICAL EVALUATION OF SONS

This section examines the impact of SON properties on
performance. We focus our evaluation on the 5-tuple cost
model. First, we consider the performance impact of each
element of the 5-tuple. Then, we consider the impact of

some factors not modeled directly in the 5-tuple. Finally, we
compare RawStatic with SONs based on traditional multi-
processor communication mechanisms. Though multipro-
cessors are scalable, we show that they do not provide
adequate performance for operand delivery—which in turn
justifies the study of scalable SONs as a distinct area of
research. Appendices 1 and 2 (which can be found online at
http://www.computer.org/tpds/archives.htm) examine
the locality and usage properties of SONs.

8.1 Experimental Setup

Our apparatus includes a simulator, a memory model, a
compiler, and a set of benchmarks.

8.1.1 Simulator

Our experiments were performed on Beetle, a validated
cycle-accurate simulator of the Raw microprocessor [24]. In
our experiments, we used Beetle to simulate up to 64 tiles.
Data cache misses are modeled faithfully; they are satisfied
over a dynamic transport network that is separate from the
SON. All instructions are assumed to hit in the instruction
cache.

Beetle has two modes: one mode simulates the Raw
prototype’s actual SSS SON; the other mode simulates a
parameterized SON based on the 5-tuple cost model. The
parameterized network correctly models latency and
occupancy costs, but does not model contention. It main-
tains an infinite buffer for each destination tile, so an
operand arriving at its destination buffer is stored until an
ALU operation consumes it.

8.1.2 Memory Model

The Raw compiler maps each piece of program data to a
specific home tile. This home tile becomes the tile that is
responsible for caching the data on chip. The distribution of
data to tiles is provided by Maps, Raw’s compiler managed
memory system [3].

8.1.3 Compiler

Code is generated by Rawcc, the Raw parallelizing compiler
[11]. Rawcc takes sequential C or Fortran programs and
schedules their ILP across the Raw tiles. Rawcc operates on
individual scheduling regions, each of which is a single-
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TABLE 1
Slack in Critical Paths of Tile-Tile Operand Path (in ns)

TABLE 2
Detailed Timings for Tile-Tile Operand Path



entry, single-exit control flow region. The mapping of code
to Raw tiles includes the following tasks: assigning
instructions to tiles, scheduling the instructions on each
tile, and managing the delivery of operands.

To make intelligent instruction assignment and schedul-
ing decisions, Rawcc models the communication costs of the
target network accurately. Rawcc’s compilation strategy
seeks tominimize the latency of operand transport on critical
paths of the computation. Accordingly, it performs operation
assignment in a way that gravitates sections of those critical
paths to a single node so that that node’s 0-cycle local bypass
network can be used, minimizing latency.

8.1.4 Benchmarks

Table 3 lists our benchmarks. The problem sizes of the
dense matrix applications have been reduced to improve
simulation time. To improve parallelism via unrolled loop
iterations, we manually applied an array reshape transfor-
mation to Cholesky, and a loop fusion transformation to
Mxm. Both transformations can be automated.

8.2 Performance Impact of 5-tuple Parameters

We evaluated the impact of each 5-tuple parameter on
performance. We used the Raw static transport SON as the
baseline for comparison, and we recorded the performance
as we varied each individual 5-tuple parameter.

8.2.1 Baseline Performance

First, we measured the absolute performance attainable
with the actual, implemented Raw static SON with 5-tuple
< 0; 0; 1; 2; 0 > . Table 3 shows the speedup attained by the
benchmarks as we vary the number of tiles from two to 64.
Speedup for a benchmark is computed relative to its
execution time on a single tile.

The amount of exploited parallelism varies between the
benchmarks. Sha, Aes, Adpcm, Moldyn, and Unstructured
have small amounts of parallelism and attains between one
to four-fold speedup. The others contain modest to high
amounts of ILP and attain between 7 to 80 fold-speedups.
Note that speedup can be superlinear due to effects from
increased cache capacity as we scale the number of tiles.
The presence of sizable speedup validates our experimental
setup for the study of SONs—without such speedups, it
would be moot to explore SONs that are scalable.

8.2.2 Send and Receive Occupancy

Next, we measured the performance impact of send and
receiveoccupancy, as showninFigs. 10and11.Weemphasize
that the Rawcc compiler accounts for occupancy when it
schedules ILP. All data points are based on 64 tiles.
Performance is normalized to that of the actual Raw static
SON with 5-tuple < 0; 0; 1; 2; 0 > .

The trends of the two occupancy curves are similar.
Overall, results indicate that occupancy impacts perfor-
mance significantly. Performance drops by as much as
20 percent, even when the send occupancy is increased
from zero to one cycle.

The slope of each curve is primarily a function of the
amount of communication and slack in the schedule.
Benchmarks that communicate infrequently and have a
large number of cache misses, such as Vpenta, have higher
slacks and are able to better tolerate increases in send
occupancy. Benchmarks with fine-grained parallelism such
as Sha and Fpppp-kernel have much lower tolerance for
occupancy.

This data suggests that SONs should strive for zero-cycle
send and receive occupancy.

8.2.3 Send and Receive Latency

We switched to the parameterized SON to measure the
impact of send and receive latency on performance. For
this experiment, we set the network hop latency to zero,
with 5-tuple < 0; n; 0; 0; 0 > or < 0; 0; 0; n; 0 > . Due to
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TABLE 3
Performance of Raw’s Static SON <0,0,1,2,0> for 2 to 64 Tiles

Speedups are relative to that on one tile.

Fig. 10. Send occupancy versus performance on 64 tiles, i.e., < n; 0; 1;

2; 0 > .

Fig. 11. Receive occupancy versus performance on 64 tiles, i.e.,

< 0; 0; 1; 2; n > .



simulator constraints, the minimum latency we can
simulate is one. Note that because the parameterized
network does not model contention, n cycles of send
latency is indistinguishable from the effect of n cycles of
receive latency. Also, note that each of these 5-tuples also
happens to represent an n cycle contention-free crossbar.

Fig. 12 graphs the performance impact of latency for
64 tiles. A speedup of 1.0 represents the performance of the
Raw SSS SON with 5-tuple < 0; 0; 1; 2; 0 > .

Intuitively, we expect benchmark sensitivity to latency to
depend on the granularity of available parallelism. The finer
the grain of parallelism, the more sensitive the benchmark is
to latency. Granularity of parallelism does not necessarily
correspond toamountof availableparallelism: It ispossible to
have a large amount of fine-grained parallelism, or a small
amount of coarse grained parallelism.

The benchmarks have varying sensitivities to latency.
Mxm, Swim, and Vpenta exhibit “perfect” locality and thus
coarse grained parallelism, so they are latency insensitive.
The other benchmarks have finer grained parallelism and
incur slowdown to some degree. Sha and Adpcm, irregular
apps with the least parallelism, also have the finest grained
parallelism and the most slowdown.

Overall, benchmark performance is much less sensitive
to send/receive latency than to send/receive occupancy.

8.2.4 Network Hop Latency

We also measured the effect of network hop latency on
performance. The 5-tuple that describes this experiment is
< 0; 0; n; 1; 0 > , with 0 � n � 5. The range of hop latency is
selected to match roughly with the range of latency in the
send/receive latency experiment: when hop latency is five, it
takes 70 cycles (14 hops) to travel between opposite corner
tiles.

Fig. 13 shows the result of this experiment. In general,
the same benchmarks that are insensitive to send/receive
latency (Mxm, Swim, and Vpenta to a lesser degree) are also
insensitive to network hop latency. Of the remaining
latency-sensitive benchmarks, a cycle of network hop
latency has a higher impact than a cycle of send/receive
latency, which suggests that those applications have at least
some communication between nonneighboring tiles.

8.3 Impact of Other Factors on Performance

We now consider some factors not directly modeled in our
5-tuple: multicast and network contention.

8.3.1 Multicast

Raw’s SON supports multicast, which reduces send
occupancy and makes better use of network bandwidth.
We evaluated the performance benefit of this feature. For
the case without multicast, we assume the existence of a
broadcast mechanism that can transmit control flow
information over the static network with reasonable
efficiency.

Somewhat surprisingly, we find that the benefit of multi-
cast is small for up to 16 tiles: on 16 tiles, it is 4 percent. The
importance of multicast, however, quickly increases for
larger configurations, with an average performance impact
of 12 percent on 32 tiles and 23 percent on 64 tiles.

8.3.2 Contention

We measured contention by comparing the performance of
the actual Raw static SON with the performance of the
parameterized SON with the same 5-tuple: < 0; 0; 1; 2; 0 > .
The former models contention while the latter does not.
Fig. 14 plots this comparison. Each data point is a ratio of
the execution time of the realistic network over that of the
idealized contention-free network. Thus, we expect all data
points to be 1.0 or above. The figure shows that the cost of
contention is modest and does not increase much with
number of tiles. On 64 tiles, the average cost of contention is
only 5 percent. This marks a departure of SONs from
conventional networks: for the limited scale we have
considered, contention and bisection bandwidth are not
significant limiters for on-chip mesh implementations. This
is presumably due to the inherent locality found within the
instruction dependence graphs of computations.

8.4 Performance of Multiprocessor-Based SONs
versus RawStatic

We measure the performance of SONs based on traditional
multiprocessor communication mechanisms. These SONs
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Fig. 12. 64-tile performance versus send or receive latency, i.e.,

< 0;n; 0; 0; 0 > or < 0; 0; 0;n; 0 > .

Fig. 13. Effect of network hop latency on performance on 64 tiles, i.e.,

< 0; 0; n; 1; 0 > .

Fig. 14. Impact of removing contention.



include MsgFast, MsgSlow, and SMP—they have been
described and modeled using our 5-tuple cost model in
Section 3, with the optimistic assumption that the commit
latency, c, is zero.

Fig. 15 shows the performance of the SONs for each
benchmark on 64 tiles. Since all these SONs are modeled
without contention, we use as baseline the network with the
same 5-tuple as RawStatic (< 0; 0; 1; 2; 0 > ), but without
modeling contention. We normalize all performance bars to
this baseline. For reference, we include UnitCrossbar, a
single-cycle, contention-free crossbar SON with 5-tuple
< 0; 0; 0; 1; 0 > .

Our results show that traditional communication me-
chanisms are inefficient for scalar operand delivery.
Operand delivery via traditional message passing has high
occupancy costs, while operand delivery via shared
memory has high latency costs. The average performance
is 33 percent to 56 percent worse than RawStatic.

8.5 Summary

These experiments indicate that themostperformance critical
components in the 5-tuple for 64 tiles are send and receive
occupancy, followed closely by the per-hop latency, followed
more distantly by send and receive latency. The 5-tuple
framework gives structure to the task of reasoning about the
tradeoffs in the design of SONs.12

9 RELATED WORK

Table 4 contrasts some of the contemporary commercial and
research SONs discussed in this paper. The first section of
the table summarizes the 5-tuples, the AsTrO category, and
the number of ALUs and fetch units supported in each of
the SONs. Note that the ILDP and Grid papers examine a
range of estimated costs; more information on the actual
costs will be forthcoming when those systems are imple-
mented.

The second, third, and fourth super-rows give the way in
which the various designs address the frequency scalability,
bandwidth scalability, and operation-operand matching
challenges, respectively. All recent processors use tiling to
achieve frequency scalability. Bandwidth scalable designs
use point-to-point SONs to replace indiscriminant broad-
casts with multicasts. So far, all of the bandwidth scalable

architectures use static assignment of operations to nodes.
The diversity of approaches is richest in the category of
operand matching mechanisms, and in the selection of
network transports. Specifically, the choice of static versus
dynamic transport results in very different implementa-
tions. However, there is a common belief that the five tuples
of both can be designed to be very small. Finally, a common
theme is the use of intratile bypassing to cut down
significantly on latency and required network bandwidth.

The solutions to the deadlock and exceptions challenges
are not listed because they vary between implementations
of superscalars, distributed shared memory machines, and
message passing machines, and they are not specified in full
detail in Grid and ILDP papers.

10 CONCLUSIONS

As we approach the scaling limits of wide-issue superscalar
processors, researchers are seeking alternatives that are
based on partitioned microprocessor architectures. Parti-
tioned architectures distribute ALUs and register files over
scalar operand networks (SONs) that must somehow
account for communication latency. Even though the
microarchitectures are distributed, ILP can be exploited on
these SONs because their latencies and occupancies are
extremely low.

This paper makes several contributions: It introduces the
notion of SONs and discusses the challenges in implement-
ing scalable forms of these networks. These challenges
include maintaining high frequencies, managing the band-
width requirements of the underlying algorithms, imple-
menting ultra-low cost operation-operand matching,
avoiding deadlock and starvation, and handling exceptional
events. This paper describes how two example SON designs
deal with the five SON scaling challenges. These designs are
based on an actual VLSI implementation called Raw.

The paper also surveys the SONs of recently proposed
distributed architectures and distills their fundamental
logical differences using a novel categorization: the AsTrO
taxonomy.

The paper further identifies the key importance of
operation-operand matching in SONs. The paper breaks
down the latency of operation-operand matching into five
components < SO; SL;NHL;RL;RO > : send occupancy,
send latency, network hop latency, receive latency, and
receive occupancy. The paper evaluates several families of
SONs based on this 5-tuple. Our early results show that
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Fig. 15. Performance spectrum of SONs.

12. Comparison between systems with and without multicast can be
done with greater accuracy by ensuring that the average send occupancy
appropriately includes occupancy costs due to operand replication.



send and receive occupancy have the biggest impact on
performance. For our benchmarks, performance decreases
by up to 20 percent even if the occupancy on the send or
receive side increases by just one cycle. The per-hop latency
follows closely behind in importance. Hardware support for
multicast has a high impact on performance for large
systems. Other parameters such as send/receive latency
and network contention have smaller impact.

In the past, SON design was closely tied in with the
design of other microprocessor mechanisms such as the
register files and bypassing. In this paper, we identify the
generalized SON as an independent architectural entity that
merits its own research. We believe that research focused on
the SON will yield significant simplifications in future
scalable ILP processors.

Avenues for further research on SONs are plentiful, and
relate to both reevaluating existing network concepts for
scalar operands, and the discovery of new SON mechan-
isms. A partial list includes:

1. designing SONs for a high clock rate while mini-
mizing their 5-tuples,

2. evaluating performance for much larger numbers of
tiles and a wider set of programs,

3. generalizing SONs for other forms of parallelism
such as streams, threads, and SMT,

4. exploration of both dynamic and static schemes for
assignment, transport, and ordering,

5. evaluation of the impact of the AsTrO categories on
cycle time and 5-tuple,

6. mechanisms for fast exception handling and context
switching,

7. analysis of the trade offs between commit point,
exception handling, and send latency,

8. low energy SONs, and
9. techniques for deadlock avoidance and recovery.
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