
Heaps & Priority Queues in the C++ STL
2-3 Trees

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, April 17, 2009

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell



17 Apr 2009 CS 311 Spring 2009 2

Unit Overview
Tables & Priority Queues

Major Topics

• Introduction to Tables

• Priority Queues

• Binary Heap algorithms

• Heaps & Priority Queues in the C++ STL

• 2-3 Trees

• Other balanced search trees

• Hash Tables

• Prefix Trees

• Tables in various languages

�

�

�



17 Apr 2009 CS 311 Spring 2009 3

Review
Introduction to Tables

Idea #1: Restricted Table
• Perhaps we can do better if we do not implement a Table in its full generality.

Idea #2: Keep a Tree Balanced
• Balanced Binary Search Trees look good, but how to keep them balanced efficiently?

Idea #3: “Magic Functions”
• Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.
• Have a “magic function” that tells the index of an item.
• Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)

We will look at what results from these ideas:
• From idea #1: Priority Queues
• From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)
• From idea #3: Hash Tables

Linear

Linear

Linear

Binary
Search Tree

Linear

Constant

Linear

Unsorted
Linked List

Linear

Linear

Linear

Sorted
Linked List

Logarithmic

Logarithmic

Logarithmic

Balanced (how?)
Binary
Search Tree

Constant (?)LinearInsert

LinearLinearDelete

LinearLogarithmicRetrieve

Unsorted
Array

Sorted
Array



17 Apr 2009 CS 311 Spring 2009 4

Review
Binary Heap Algorithms [1/10]

A Binary Heap (usually just Heap) is a complete Binary Tree in 
which no node has a data item that is less than the data item in 
either of its children.

In practice, we often use “Heap” to refer to the
array-based complete Binary Tree
implementation.

56

50 25

1 3

5

10

22 25 11

3 12

56 50 25 5 22 25 11 1 3 10 3 12

Logical 
Structure

Physical 
Structure



17 Apr 2009 CS 311 Spring 2009 5

Review
Binary Heap Algorithms [2/10]

We can use a Heap to implement a Priority Queue.
• Like a Table, but retrieve/delete only highest key.

� Retrieve is called “getFront”.

• Key is called “priority”.

• Insert any key-data pair.

Algorithms for the Three Primary
Operations
• GetFront

� Get the root node.

� Constant time.

• Insert
� Add new node to end of Heap, “trickle up”.

� Logarithmic time if no reallocate-and-copy required.
• Linear time if it may be required. Note: Heaps often do not manage their own 

memory, in which case the reallocation will not be part of the Heap operation.

• Delete
� Swap first & last items, reduce size of Heap, “trickle down” root.

� Logarithmic time.
Faster than linear time!

56

50 25

1 3

5

10

22 25 11

3 12

56 50 25 5 22 25 11 1 3 10 3 12



17 Apr 2009 CS 311 Spring 2009 6

Review
Binary Heap Algorithms [3/10]

To insert into a Heap, add a new node at the end. Then “trickle up”.

• If new value is greater than its parent, swap them. Repeat at new position.

56

50 25

1 3

5

10

22 25 11

3

56

50 25

1 3

5

10

22 11

3

56

50 32

1 3

5

10

22 25 11

3

12 32

32

12 25

12 25

Done



17 Apr 2009 CS 311 Spring 2009 7

Review
Binary Heap Algorithms [4/10]

To delete the root item from a Heap, swap root and last items, and reduce 
size of Heap by one. Then “trickle down” the new root item.

• If the root is ≥ all its children, stop.

• Otherwise, swap the root item with its largest child and recursively fix the 
proper subtree.

25

1 3

5

10

22 25 11

3

50

12 25

1 3

5

10

22 25 11

3

50

22 25

1 3

5

10

12 20 11

3

12

50

Done

56

50 25

1 3

5

10

22 25 11

3 12



17 Apr 2009 CS 311 Spring 2009 8

Review
Binary Heap Algorithms [5/10]

Heap insert and delete are usually given a random-access range. The item 
to insert or delete is last item of the range; the rest is a Heap.

• Action of Heap insert:

• Action of Heap delete:

Note that Heap algorithms can do all their work using swap.

• This usually allows for both speed and safety.

Given Heap Item to insert
New Heap

Given Heap Item deletedNew Heap

That’s where 
the swap puts 
it (right?).

That’s where we want to put 
the item, initially (right?).



17 Apr 2009 CS 311 Spring 2009 9

Review
Binary Heap Algorithms [6/10]

To turn a random-access range (array?) into a Heap, we could do n–1 Heap inserts.

• Each insert operation is O(log n), and so making a Heap in this way is O(n log n).

However, we can make a Heap faster than this.

• Place each item into a partially-made Heap, in backwards order.

• Trickle each item down through its descendants.

� For most items, there are not very many of these.

This Heap “make” method is linear time!

4

39

1

3 8 4

39

1

3 8 4

9 3

1

3 8 4

9 8

1

3 3

4

89

1

3 3 4

89

1

3 3 4

81

9

3 3 1

84

9

3 3

1 9 3 4 3 8

9 4 8 1 3 3

Bottom items: 
no trickling 
necessary



17 Apr 2009 CS 311 Spring 2009 10

Review
Binary Heap Algorithms [7/10]

Our last sorting algorithm is Heap Sort.

• This is a sort that uses Heap algorithms.

• We can think of it as using a Priority Queue, where the priority of an 
item is its value — except that the algorithm is in-place, using no 
separate data structure.

• Procedure: Make a Heap, then delete all items, using the delete 
procedure that places the deleted item in the top spot.

• We do a make operation, which is O(n), and n getFront/delete 
operations, each of which is O(log n).

• Total: O(n log n).



17 Apr 2009 CS 311 Spring 2009 11

Review
Binary Heap Algorithms [8/10]

Below: Heap make operation. Next slide: Heap deletion phase.

3 2 1 4

3 2 1 4

Start

Add 4

4

3 2 1 4Add 1

4

1

3 2 1 4Add 2

4

12
�

3 4 1 2

2

14

3 4 1 2

2

14Add 3

3
�

4 3 1 2

2

13

4

Now the 
entire array 
is a Heap.

☺
Note: This is what happens in memory. This 
is just a picture of the logical structure.

☺



17 Apr 2009 CS 311 Spring 2009 12

Review
Binary Heap Algorithms [9/10]

Heap deletion phase:

2

1
1 2 3 4

11 2 3 4

3 1

4

4 3 1 2

2

Start

Delete 3

3 1

2
2 3 1 4

Delete 4

2 1

3
3 2 1 4

Delete 1
(does nothing;
can be skipped)

3 2 1 4

4 3 1 2

2 1 3 4Delete 2

1 2 3 4

☺�

Now the 
array is 
sorted.

�

1

2
2 1 3 4

1 2 3 4



17 Apr 2009 CS 311 Spring 2009 13

Review
Binary Heap Algorithms [10/10]

Efficiency ☺
• Heap Sort is O(n log n).

Requirements on Data �
• Heap Sort requires random-access data.

Space Usage ☺
• Heap Sort is in-place.

Stability �
• Heap Sort is not stable.

Performance on Nearly Sorted Data �
• Heap Sort is not significantly faster or slower for nearly sorted data.

Notes
• Heap Sort can be generalized to handle sequences that are modified 

(in certain ways) in the middle of sorting.

• Recall that Heap Sort is used by Introsort, when the recursion depth 
of Quicksort exceeds the maximum allowed.

We have seen these 
together before 
(Iterative Merge Sort 
on a Linked List), but 
never for an array.



17 Apr 2009 CS 311 Spring 2009 14

Heaps & Priority Queues in the C++ STL
Heap Algorithms

The C++ STL includes several Heap algorithms.
• These operate on ranges specified by pairs of random-access iterators.

� Any random-access range can be a Heap: array, vector, deque, part of these, etc.

• An STL Heap is a Maxheap with an optional client-specified comparison.

• Heap algorithms are used by STL Priority Queues (std::priority_queue).

Example: std::push_heap (in <algorithm>) inserts into an existing Heap.
• Called as std::push_heap(first, last).

• Assumes [first, last) is nonempty, and [first, last-1) is already a Heap.

• Inserts *(last-1) into the Heap.

Similarly:
• std::pop_heap

� Heap delete operation. Puts the deleted element in *(last-1).

• std::make_heap
� Make a range into a Heap.

• std::sort_heap
� Is given a Heap. Does a bunch of pop_heap calls.

� Calling make_heap and then sort_heap does Heap Sort.

• std::is_heap
� Tests whether a range is a Heap.



17 Apr 2009 CS 311 Spring 2009 15

Heaps & Priority Queues in the C++ STL
std::priority_queue — Introduction

The STL has a Priority Queue: std::priority_queue, in <queue>.

• STL documentation does not call std::priority_queue a 

“container”, but rather a “container adapter”.

• This is because std::priority_queue is explicitly a wrapper around 

some other container.

You get to pick what that container is.

• You say “std::priority_queue<T, container<T> >”.

� “T” is the value type.

� “container” can be std::vector or std::deque.

� “container<T>” can be any standard-conforming random-access

sequence container.

• container defaults to std::vector.

� You can say just “std::priority_queue<T>” to get
“std::priority_queue<T, std::vector<T> >”.



17 Apr 2009 CS 311 Spring 2009 16

Heaps & Priority Queues in the C++ STL
std::priority_queue — Members

The member function names used by std::priority_queue are 
the same as those used by std::stack.

• Not those used by std::queue.

• Thus, std::priority_queue has “top”, not “front”.

Given a variable pq of type std::priority_queue<T>, you can do:

• pq.top()

• pq.push(item)

� “item” is some value of type T.

• pq.pop()

• pq.empty()

• pq.size()



17 Apr 2009 CS 311 Spring 2009 17

Heaps & Priority Queues in the C++ STL
std::priority_queue — Comparison

How do we specify an item’s priority?
• We really don’t need to know an item’s priority; we only need to know, 

given two items, which has the higher priority.

• Thus, we use a comparison, which defaults to operator<.

• A third, optional template parameter is a “comparison object”:

std::priority_queue<T, std::vector<T>, compare>

• Comparison objects work the same as those passed to STL sorting 
algorithms (std::sort, etc.) and STL Heap algorithms.

• So, for example, a priority queue of ints whose highest priority items are 
those with the lowest value, would have the following type:

std::priority_queue<int, std::vector<int>, std::greater<int>()>



17 Apr 2009 CS 311 Spring 2009 18

Overview of Advanced Table Implementations

We will cover the following advanced Table 
implementations.
• Balanced Search Trees

� Binary Search Trees are hard to keep balanced, so to make 
things easier we allow more than 2 children:
• 2-3 Tree

� Up to 3 children

• 2-3-4 Tree

� Up to 4 children

• Red-Black Tree

� Binary-tree representation of a 2-3-4 tree

� Or back up and try a balanced Binary Tree again:
• AVL Tree

• Alternatively, forget about trees entirely:
� Hash Tables

• Finally, “the Radix Sort of Table implementations”:
� Prefix Tree



17 Apr 2009 CS 311 Spring 2009 19

2-3 Trees
Introduction & Definition [1/3]

Obviously (?) a Binary Search Tree is a useful idea. The problem is 
keeping it balanced.

• Or at least keeping the height small.

It turns out that small height is much easier to maintain if we allow 
a node to have more than 2 children.

But if we do this, how do we maintain the “search tree” concept?

• We generalize the idea of an inorder traversal.

• For each pair of consecutive subtrees, a node has one data item 
lying between the values in these subtrees.

9 18

20

32

352 4

7 12

23 28



17 Apr 2009 CS 311 Spring 2009 20

2-3 Trees
Introduction & Definition [2/3]

A Binary-Search-Tree style node is 
a 2-node.

• This is a node with 2 subtrees 
and 1 data item.

• The item’s value lies between the 
values in the two subtrees.

In a “2-3 Tree” we also allow a 
node to be a 3-node.

• This is a node with 3 subtrees 
and 2 data items.

• Each of the 2 data items has a 
value that lies between
the values in the corresponding 
pair of consecutive subtrees.

Later, we will look at “2-3-4 trees”, 
which can also have 4-nodes.

2-node

10

�≤10 10≤�

3 9

3-node

3≤�≤9 9≤��≤3

2 5

4-node

5≤�≤7 7≤��≤2

7

2≤�≤5

2 subtrees
1 item
ordering

3 subtrees
2 items
ordering

4 subtrees
3 items
ordering

Like a Binary-
Search-Tree node



17 Apr 2009 CS 311 Spring 2009 21

2-3 Trees
Introduction & Definition [3/3]

A 2-3 Search Tree (generally we just say 2-3 Tree) is a tree with 
the following properties.

• All nodes contain either
1 or 2 data items.

� If 2 data items, then the
first is ≤ the second.

• All leaves are at the
same level.

• All non-leaves are either 2-nodes or 3-nodes.

� They must have the associated order properties.

9 18

20

32

352 4

7 12

23 28



17 Apr 2009 CS 311 Spring 2009 22

2-3 Trees
Operations — Traverse & Retrieve

How do we traverse a 2-3 Tree?
• We generalize the procedure for doing an inorder traversal of a 

Binary Search Tree.
� For each leaf, go through the items in it.

� For each non-leaf 2-node:
• Traverse subtree 1.

• Do item.

• Traverse subtree 2.

� For each non-leaf 3-node:
• Traverse subtree 1.

• Do item 1.

• Traverse subtree 2.

• Do item 2.

• Traverse subtree 3.

• This procedure lists all the items in sorted order.

How do we retrieve by key in a 2-3 Tree?
• Start at the root and proceed downward, making comparisons, just

as in a Binary Search Tree.

• 3-nodes make the procedure slightly more complex.

9 18

20

32

352 4

7 12

23 28



17 Apr 2009 CS 311 Spring 2009 23

2-3 Trees
Operations — Insert & Delete

How do we insert & delete in a 2-3 Tree?

• These are the tough problems.

• It turns out that both have efficient [O(log n)] algorithms, which is 
why we like 2-3 Trees.



17 Apr 2009 CS 311 Spring 2009 24

2-3 Trees
Operations — Insert [1/4]

Basic ideas behind the 2-3 Tree insert algorithm:

• Allow nodes to expand when legal.

• If a node gets too big (3 items), split the subtree rooted at that 
node and propagate the middle item upward.

• If we end up splitting the entire tree, then we create a new root 
node, and all the leaves advance one level simultaneously.

Example 1: Insert 10.

9 18

20

32

352 4

7 12

23 28 18

20

32

352 4

7 12

23 289 10



17 Apr 2009 CS 311 Spring 2009 25

2-3 Trees
Operations — Insert [2/4]

Example 2: Insert 5.

• Over-full nodes are blue.

918

20

32

352 4

7 12

23 28 18

20

32

35

7 12

23 289 2 4 5

9 18

20

32

3523 28

4 7 12

2 5 9 18

32

3523 282 5

124

7 20



17 Apr 2009 CS 311 Spring 2009 26

2-3 Trees
Operations — Insert [3/4]

Example 3: Insert 5.

• Here we see how a 2-3 Tree increases in height.

9182 4

7 12

18

7 12

9 2 4 5

9 18

4 7 12

2 5 9 182 5

124

7



17 Apr 2009 CS 311 Spring 2009 27

2-3 Trees
Operations — Insert [4/4]

In the middle of a 2-3 Tree insertion, overfull nodes are always 
leaves or 4-nodes.

• (Of course 4-nodes are illegal.)

• This is why we can always split at the middle item.

2-3 Tree insertion can be thought of recursively.

• Insert into a node.

� This node will be a leaf the first time.

• If the node is overfull, split and move the middle item up.

� We split the subtree rooted at the node. If the node is a leaf, this is 
easy. If the node is not a leaf, this is more work, but not hard to 
understand.

• Moving an item up is inserting into the parent.

� So we recurse.

� Or we make increase the height (by making a new root), and we are 
done.



17 Apr 2009 CS 311 Spring 2009 28

2-3 Trees 
TO BE CONTINUED …

2-3 Trees will be continued next time.


