Heaps & Priority Queues in the C++ STL
2-3 Trees

CS 311 Data Structures and Algorithms

Lecture Slides
Friday, April 17, 2009

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@renber . ans. or g

© 2005-2009 Glenn G. Chappell

Unit Overview
Tables & Priority Queues

Major Topics

v" o Introduction to Tables

v e Priority Queues

v e Binary Heap algorithms
o Heaps & Priority Queues in the C++ STL
o 2-3 Trees
* Other balanced search trees
e Hash Tables
» Prefix Trees
e Tables in various languages

17 Apr 2009 CS 311 Spring 2009

Review
Introduction to Tables

Sorted Unsorted Sorted Unsorted Binary Balanced (how?)
Array Array Linked List | Linked List | Search Tree | Binary
Search Tree
Retrieve | Logarithmic | Linear Linear Linear Linear Logarithmic
Insert Linear Constant (?) | Linear Constant Linear Logarithmic
Delete Linear Linear Linear Linear Linear Logarithmic

Idea #1: Restricted Table

*» Perhaps we can do better if we do not implement a Table in its full generality.
Idea #2: Keep a Tree Balanced

* Balanced Binary Search Trees look good, but how to keep them balanced efficiently?
Idea #3: “Magic Functions”

» Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.

* Have a "magic function” that tells the index of an item.

» Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)
We will look at what results from these ideas:

e From idea #1: Priority Queues

* From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)

* From idea #3: Hash Tables

17 Apr 2009 CS 311 Spring 2009 3

Review
Binary Heap Algorithms [1/10]

A Binary Heap (usually just Heap) is a complete Binary Tree in
which no node has a data item that is less than the data item in
either of its children.

56
50 25
5 22 25 11

1|(3](10] [3] |12 “~—__ Logical
Structure

In practice, we often use “Heap” to refer to the Physical
array-based complete Binary Tree Structure

implementation. /

56(50(25| 5 [22(25(11{ 1 | 3 (10f 3 (12

17 Apr 2009 CS 311 Spring 2009

Review
Binary Heap Algorithms [2/10]

We can use a Heap to implement a Priority Queue.

o Like a Table, but retrieve/delete only highest key.
= Retrieve is called “getFront”.

» Key is called “priority”. 26
e Insert any key-data pair. 50 55
Algorithms for the Three Primary z BB 35 11
Operations = == L
o GetFront L1310 [3][12
= Get the root node.
= Constant time. 56(50|25(5 |22|25(1111 |3 (10| 3 (12
e Insert

= Add new node to end of Heap, “trickle up”.

= Logarithmic time if no reallocate-and-copy required.

* Linear time if it may be required. Note: Heaps often do not manage their own
memory, in which case the reallocation will not be part of the Heap operation.

* Delete
= Swap first & last items, reduce size of Heap, “trickle down” root.

= Logarithmic time. «<——__ =

17 Apr 2009 CS 311 Spring 2009 5

Faster than linear time!

Review

Binary Heap Algorithms [3/10]

To insert into a Heap, add a new node at the end. Then “trickle up”.
o If new value is greater than its parent, swap them. Repeat at new position.

...‘
N
Ul

56 56
50 25 50
_ _ —> _
5 22 25}, 11 5 22 32
1 10 12 @ 11131 (10 12| (25
56
_ Done
50 32
5 22 25 11

17 Apr 2009

CS 311 Spring 2009

Review
Binary Heap Algorithms [4/10]

To delete the root item from a Heap, swap root and last items, and reduce
size of Heap by one. Then “trickle down” the new root item.

o If the root is = all its children, stop.

* Otherwise, swap the root item with its largest child and recursively fix the
proper subtree.

12
A —— P _
50 : 25 50 25
_ B _ _
5 22| i |25 11 5 22 25 11
1| (3] (10| [3] 12 1| (3] (10| |3
50 A{””” 50
12 25 22 .. 25
5 22 25 11 5 12 20 11
1| (3] (10| |3 1| (3] (10| |3

17 Apr 2009 CS 311 Spring 2009 7

Review
Binary Heap Algorithms [5/10]

Heap insert and delete are usually given a random-access range. The item
to insert or delete is last item of the range; the rest is a Heap.

* Action of Heap insert: That’s where we want to put

the item, initially (right?).

I —> |
— J — J
o \ New\ﬁeap
Given Heap 1tem to insert That's where
the swap puts
* Action of Heap delete: it (right?).
[| [| l
| —> I
— J — J
Y Y
Given Heap New Heap Item deleted

Note that Heap algorithms can do all their work using swap.
e This usually allows for both speed and safety.

17 Apr 2009 CS 311 Spring 2009 8

Review
Binary Heap Algorithms [6/10]

To turn a random-access range (array?) into a Heap, we could do n-1 Heap inserts.
» Each insert operation is O(log n), and so making a Heap in this way is O(n log n).

However, we can make a Heap faster than this.

* Place each item into a partially-made Heap, in backwards order.

» Trickle each item down through its descendants.
For most items, there are not very many of these.

Bottom items:
no trickling

—_ T necessary —_ —
—_—> —_—>
7N Z Z N Z = =
4|13 (8 4 8
1
9 8 —> |9 8| —>» |1
41 (3|3 411313 4 3

This Heap "make” method is linear time!

17 Apr 2009 CS 311 Spring 2009

1]9 8|
—> 8
3
—> 8
3
9|4 3

Review
Binary Heap Algorithms [7/10]

Our last sorting algorithm is Heap Sort.

This is a sort that uses Heap algorithms.

We can think of it as using a Priority Queue, where the priority of an
item is its value — except that the algorithm is in-place, using no
separate data structure.

Procedure: Make a Heap, then delete all items, using the delete
procedure that places the deleted item in the top spot.

We do a make operation, which is O(n), and n getFront/delete
operations, each of which is O(log n).

Total: O(n log n).

17 Apr 2009 CS 311 Spring 2009 10

Review
Binary Heap Algorithms [8/10]

Below: Heap make operation. Next slide: Heap deletion phase.

g < I —
A s add2 [3]|2]1]4] [2][1
A Al = A
Start [3[2[1[4] | S—
.. - I VIERE) I 4 1
Lty b ' =
Add4 [3]2[1]4] | 2
1 3
.. e . BL3E
Add3 [3]4]1]2] 4|1
' ST | A rLa ' -
Add1 [3]2]1[4] | |[1 2
/ 4 4
Note: This is what happens in memory. This || " Irel_zlarray |)"
is just a picture of the logical structure. 'S a feap. 2

17 Apr 2009 CS 311 Spring 2009

Review

Binary Heap Algorithms [9/10]

Heap deletion phase:

Delete 4

17 Apr 2009

CS 311 Spring 2009

1 4...
Delete 3 | 3121 | 4
2 e k :
3] [1 [1]2]3]4] &=
= e 2 |«
' 2
[2]1]3]4 L
' 1
2 Delete 2 | 211134
7O o
3 1 —1
T T
= ~ 1 <
2| |1 Delete1 |1]2]3]4
Céioe: glgithiggs IA u
e I Now the
I 1(2|3(4]| arrayis
' sorted.

12

Review
Binary Heap Algorithms [10/10]

Efficiency ©

* Heap Sort is O(n log n). “——— Wehave seen these
Requirements on Data ®

together before
» Heap Sort requires random-access data. (Iterative Merge Sort

Space Usage © on a Linked List), but
. / never for an array.
» Heap Sort is in-place.
Stability ®
» Heap Sort is not stable.

Performance on Nearly Sorted Data ©
» Heap Sort is not significantly faster or slower for nearly sorted data.

Notes

» Heap Sort can be generalized to handle sequences that are modified
(in certain ways) in the middle of sorting.

o Recall that Heap Sort is used by Introsort, when the recursion depth
of Quicksort exceeds the maximum allowed.

17 Apr 2009 CS 311 Spring 2009 13

Heaps & Priority Queues in the C++ STL
Heap Algorithms

The C++ STL includes several Heap algorithms.

*» These operate on ranges specified by pairs of random-access iterators.
= Any random-access range can be a Heap: array, vector, deque, part of these, etc.

e An STL Heap is a Maxheap with an optional client-specified comparison.
* Heap algorithms are used by STL Priority Queues (std:: priority_queue).
Example: std:: push_heap (in <al gori t hn®) inserts into an existing Heap.
o Called as st d: : push_heap(first, last) .
o Assumes [first, last) is nonempty, and [first, last- 1) is already a Heap.
o Inserts *(/ast- 1) into the Heap.
Similarly:
e std::pop_heap
= Heap delete operation. Puts the deleted element in *(/ast-1) .
e std::nmake_heap
= Make a range into a Heap.
e std::sort_heap

= Is given a Heap. Does a bunch of pop_heap calls.
= Calling make heap and then sort heap does Heap Sort.

e std::is_heap
= Tests whether a range is a Heap.

17 Apr 2009 CS 311 Spring 2009 14

Heaps & Priority Queues in the C++ STL
std::priority gqueue — Introduction

The STL has a Priority Queue: std::priority queue, in <queue>.
» STL documentation does not call std:: priority queue a
“container”, but rather a “container adapter”.

» This is because std::priority gueue is explicitly a wrapper around
some other container.

You get to pick what that container is.
e You say "std::priority queue<T, container<T> >",
= “T" is the value type.
= “container” can be std::vector orstd::deque.

= “container<T>" can be any standard-conforming random-access
sequence container.

e container defaults to std: : vect or.

= You can say just “"std::priority queue<T>" to get
“std::priority queue<T, std::vector<T> >",

17 Apr 2009 CS 311 Spring 2009 15

Heaps & Priority Queues in the C++ STL
std::priority gueue — Members

The member function names used by std:: priority _queue are
the same as those used by st d: : st ack.

» Not those used by st d: : queue.
e Thus, std::priority _queue has “top”, not “front”.
Given a variable pqg of type std: :priority_queue<T>, you can do:
° pqg.top()
°* pq. push(item)
= “jtem"” is some value of type T.
° pq. pop()
° pg.enmpty()
* pg.size()

17 Apr 2009 CS 311 Spring 2009 16

Heaps & Priority Queues in the C++ STL
std::priority gqueue — Comparison

How do we specify an item’s priority?
* We really don’t need to know an item’s priority; we only need to know,
given two items, which has the higher priority.

e Thus, we use a comparison, which defaults to oper at or <.
* A third, optional template parameter is a "comparison object”:

std::priority _queue<T, std::vector<T> conpare>

» Comparison objects work the same as those passed to STL sorting
algorithms (st d: : sort, etc.) and STL Heap algorithms.

* So, for example, a priority queue of i nt s whose highest priority items are
those with the lowest value, would have the following type:

std::priority queue<int, std::vector<int> std:.:greater<int>()>

17 Apr 2009 CS 311 Spring 2009 17

Overview of Advanced Table Implementations

We will cover the following advanced Table
implementations.

e Balanced Search Trees

= Binary Search Trees are hard to keep balanced, so to make
things easier we allow more than 2 children:
e 2-3 Tree
= Up to 3 children
e 2-3-4 Tree
= Up to 4 children
* Red-Black Tree
= Binary-tree representation of a 2-3-4 tree
= Or back up and try a balanced Binary Tree again:
e AVL Tree

o Alternatively, forget about trees entirely:
= Hash Tables

e Finally, “the Radix Sort of Table implementations”:
= Prefix Tree

17 Apr 2009 CS 311 Spring 2009

18

2-3 Trees
Introduction & Definition [1/3]

Obviously (?) a Binary Search Tree is a useful idea. The problem is
keeping it balanced.

* Or at least keeping the height small.
It turns out that small height is much easier to maintain if we allow
a node to have more than 2 children.
But if we do this, how do we maintain the “search tree” concept?
» We generalize the idea of an inorder traversal.

» For each pair of consecutive subtrees, a node has one data item
lying between the values in these subtrees.

20

\
712 32

N N
2 4| (9] |18| [2328| [3

17 Apr 2009 CS 311 Spring 2009 19

2-3 Trees
Introduction & Definition [2/3]

A Binary-Search-Tree style node is) cubtrees 27N0CE
a 2-node. 1 item Like a Binary-
o . ordering Search-Tree node
e This is a node with 2 subtrees / \
and 1 data item. <10 || 10s.
° The itemls Value IIeS between the risssrsssssssssssssssat hessssssssssssssssssssses
values in the two subtrees.
In a “2-3 Tree” we also allow a 3 subtrees —on0d®
2 items
node to be a 3-node. ordering
e This is a node with 3 subtrees N S
and 2 data items. P <3 i

e Each of the 2 data items has a
value that lies between

: : 4-node
the values in the corresponding 4 subtrees =
pair of consecutive subtrees. ordering >

Later, we will look at “2-3-4 trees”, ... /-

which can also have 4-nodes. 'S2 i} 25:S5

17 Apr 2009 CS 311 Spring 2009

2-3 Trees
Introduction & Definition [3/3]

A 2-3 Search Tree (generally we just say 2-3 Tree) is a tree with
the following properties.

e All nodes contain either 20
1 or 2 data items. T~
= If 2 data items, then the 712 32
first is < the second. AN AN
» All leaves are at the 2 4] 9] 18] [23128] |35

same level.

* All non-leaves are either 2-nodes or 3-nodes.
= They must have the associated order properties.

17 Apr 2009 CS 311 Spring 2009 21

2-3 Trees
Operations — Traverse & Retrieve

How do we traverse a 2-3 Tree?

» We generalize the procedure for doing an inorder traversal of a
Binary Search Tree.
= For each leaf, go through the items in it.

= For each non-leaf 2-node:
e Traverse subtree 1. 20

* Do item. T~

e Traverse subtree 2.

= For each non-leaf 3-node:

e Traverse subtree 1. \ \
Do item 1.
Traverse subtree 2.
Do item 2.
Traverse subtree 3.

e This procedure lists all the items in sorted order.
How do we retrieve by key in a 2-3 Tree?

o Start at the root and proceed downward, making comparisons, just
as in a Binary Search Tree.

* 3-nodes make the procedure slightly more complex.

17 Apr 2009 CS 311 Spring 2009 22

2-3 Trees
Operations — Insert & Delete

How do we insert & delete in a 2-3 Tree?
» These are the tough problems.

o It turns out that both have efficient [O(log n)] algorithms, which is
why we like 2-3 Trees.

17 Apr 2009 CS 311 Spring 2009 23

2-3 Trees
Operations — Insert [1/4]

Basic ideas behind the 2-3 Tree insert algorithm:
* Allow nodes to expand when legal.

o If a node gets too big (3 items), split the subtree rooted at that
node and propagate the middle item upward.

o If we end up splitting the entire tree, then we create a new root
node, and all the leaves advance one level simultaneously.

Example 1: Insert 10.

20 20
7 12 32 ——> 7 12 32
N\ N\ BRI N\
2 4| (9] 18] [2328| |35 2 4|9 10 18| [23)28] (35
17 Apr 2009 CS 311 Spring 2009

24

2-3 Trees
Operations — Insert [2/4]

Example 2: Insert 5.
e Over-full nodes are blue.

20 20
T~ ST~
7 12 32 — L[7712 32
AN \ _/ o~ AN
2 4] [9] [18] [23128 4 5] (9] [18] [23 28] [3
4 20 /}E\
[4 7 17 32l ——> 4 12 32
/ N AN / N/ \ AN
2] [5][9] [18] [2328] [35 2] [5][9] [18| [2328] [3

17 Apr 2009 CS 311 Spring 2009

2-3 Trees
Operations — Insert [3/4]

Example 3: Insert 5.
» Here we see how a 2-3 Tree increases in height.

7 12 — L[7712
AN N
2 4] [9][18 [272 5] [9] [18
A /
[4 7 12 —> 4 12
/ N / N/ \
2] [5][9][18 2] [5][9][18

17 Apr 2009 CS 311 Spring 2009 26

2-3 Trees
Operations — Insert [4/4]

In the middle of a 2-3 Tree insertion, overfull nodes are always
leaves or 4-nodes.
o (Of course 4-nodes are illegal.)
o This is why we can always split at the middle item.

2-3 Tree insertion can be thought of recursively.
» Insert into a node.
= This node will be a leaf the first time.

o If the node is overfull, split and move the middle item up.

= We split the subtree rooted at the node. If the node is a leaf, this is
easy. If the node is not a leaf, this is more work, but not hard to
understand.

* Moving an item up is inserting into the parent.
= SO we recurse.

= Or we make increase the height (by making a new root), and we are
done.

17 Apr 2009 CS 311 Spring 2009

27

2-3 Trees
TO BE CONTINUED ...

2-3 Trees will be continued next time.

17 Apr 2009 CS 311 Spring 2009

28

