
Binary Heap Algorithms

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, April 15, 2009

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell

15 Apr 2009 CS 311 Spring 2009 2

Review
Binary Search Trees — Efficiency

Binary Search Trees have poor worst-case performance.

But they have very good performance:

• On average.

• If balanced.

� But we do not know an efficient way to make them stay balanced.

Can we efficiently keep a Binary Search Tree balanced?

LinearLinearLogarithmicInsert

LinearLinearLogarithmicDelete

LinearLogarithmicLogarithmicRetrieve

B.S.T.
(worst case)

Sorted ArrayB.S.T.
(balanced &
average case)

15 Apr 2009 CS 311 Spring 2009 3

Unit Overview
Tables & Priority Queues

Major Topics

• Introduction to Tables

• Priority Queues

• Binary Heap algorithms

• Heaps & Priority Queues in the C++ STL

• 2-3 Trees

• Other balanced search trees

• Hash Tables

• Prefix Trees

• Tables in various languages

�

�

15 Apr 2009 CS 311 Spring 2009 4

Review
Introduction to Tables [1/4]

Our ultimate value-oriented ADT is Table. Three primary
operations:
• Retrieve (by key).

• Insert (key-data pair).

• Delete (by key).

What do we use a Table for?
• To hold data accessed by key fields. For example:

� Customers accessed by phone number.

� Students accessed by student ID number.

� Any other kind of data with an ID code.

• To hold “set” data.
� Data in which the only question we ask is whether a key lies in the data
set.

• To hold “arrays” whose indices are not nonnegative integers.
� arr2["hello"] = 3;

• To hold array-like data sets that are sparse.
� arr[6] = 1; arr[1000000000] = 2;

15 Apr 2009 CS 311 Spring 2009 5

Review
Introduction to Tables [2/4]

How can we implement a Table? We know several lousy ways:
• A Sequence holding key-data pairs.

� Sorted or unsorted.

� Array-based or Linked-List-based.

• A Binary Search Tree holding key-data pairs.

*Amortized constant time, if we might have to reallocate. (Also, we are allowing multiple
equivalent keys here. If we do not, then when we insert, we need to find any existing item
with the given key, which is linear time.)

**Of course, we do not (yet!) know any way to guarantee the tree will stay balanced, unless we
can restrict ourselves to read-only operations (no insert, delete).

Linear

Linear

Linear

Binary
Search Tree

Linear

Constant

Linear

Unsorted
Linked List

Linear

Linear

Linear

Sorted
Linked List

Logarithmic

Logarithmic

Logarithmic

Balanced**
Binary
Search Tree

Constant (?)*LinearInsert

LinearLinearDelete

LinearLogarithmicRetrieve

Unsorted
Array

Sorted
Array

15 Apr 2009 CS 311 Spring 2009 6

Review
Introduction to Tables [3/4]

In special situations, the (amortized) constant-time insertion for an
unsorted array and the logarithmic-time retrieve for a sorted
array can be combined!

• Insert all data into an unsorted array, sort the array, then use
Binary Search to retrieve data.

• This is a good way to handle Table data with separate filling &
searching phases (and few or no deletes).

• Note: We will be talking about some complicated Table
implementations. But sometimes a simple solution is the best.

15 Apr 2009 CS 311 Spring 2009 7

Review
Introduction to Tables [4/4]

Idea #1: Restricted Table
• Perhaps we can do better if we do not implement a Table in its full generality.

Idea #2: Keep a Tree Balanced
• Balanced Binary Search Trees look good, but how to keep them balanced efficiently?

Idea #3: “Magic Functions”
• Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.
• Have a “magic function” that tells the index of an item.
• Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)

We will look at what results from these ideas:
• From idea #1: Priority Queues
• From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)
• From idea #3: Hash Tables

Linear

Linear

Linear

Binary
Search Tree

Linear

Constant

Linear

Unsorted
Linked List

Linear

Linear

Linear

Sorted
Linked List

Logarithmic

Logarithmic

Logarithmic

Balanced (how?)
Binary
Search Tree

Constant (?)LinearInsert

LinearLinearDelete

LinearLogarithmicRetrieve

Unsorted
Array

Sorted
Array

15 Apr 2009 CS 311 Spring 2009 8

Review
Priority Queues — What a Priority Queue Is

A Priority Queue is a restricted-access Table.

• Just as a Queue is a restricted Sequence.

• A Priority Queue is not a Queue!

The key is called the “priority”.

We can:

• Retrieve (getFront) highest priority item.

• Insert any item (key, data).

• Delete highest priority item.

15 Apr 2009 CS 311 Spring 2009 9

Review
Priority Queues — Applications, Implementation

A PQ is useful when we have items to process and some are more
important than others.

PQs can be used to do sorting.

• Insert all items, then retrieve/delete all items. The resulting
sequence is sorted by priority.

• Note: Once again, a sorted container gives us a sorting algorithm.
However, as with Insertion Sort, instead of using a separate
container to sort with, we prefer to use an in-place version of the
algorithm. We will call this “Heap Sort”.

The most interesting thing about Priority Queues is their usual
implementation: a Binary Heap.

15 Apr 2009 CS 311 Spring 2009 10

Binary Heap Algorithms
What is a Binary Heap? — Definition

We define a Binary Heap (usually just Heap) to be a complete
Binary Tree that

• Is empty,

• Or else

� The root’s key (priority) is ≥ than
the key of each of the root’s
children, if any, and

� Each of the root’s subtrees
is a Binary Heap.

Notes

• This is a Maxheap. If we reverse the order, so that the root’s key is
≤ than the keys of its children, we get a Minheap.

• The text presents Heap as an ADT with essentially the same
operations as a Priority Queue. I am not doing this.

• As we will see, a Binary Heap is a good basis for an implementation
of a Priority Queue.

56

50 25

1 3

5

10

22 25 11

3 12

15 Apr 2009 CS 311 Spring 2009 11

Binary Heap Algorithms
What is a Binary Heap? — Complete BTs (again)

We discussed an array implementation for a complete Binary Tree:

• Put the nodes in an array, in the order in which they would be added to a
complete Binary Tree.

• No pointers/arrows/indices are required.

• We store only the array of data items and the number of nodes.

• Put the root, if any, at index 0.

• The left child of node k is at index 2k + 1. It exists if 2k + 1 < size.

• The right child is similar, but at 2k + 2.

• The parent of node k is at index (k – 1)/2 [int division]. It exists if k > 0.

0 1 2 3 4 5 6 7 8 9

Logical Structure
Physical Structure

0

1 2

7 8

3

9

4 5 6

15 Apr 2009 CS 311 Spring 2009 12

Binary Heap Algorithms
What is a Binary Heap? — Implementation

The usual implementation of a Binary Heap uses this array-based
complete Binary Tree.

There are no required order relationships between siblings.

None of the standard traversals gives any sensible ordering.

In practice, we usually use “Heap” to mean a Binary Heap
using this array representation.

In order to base a Priority Queue on a Heap, we need to know how
to implement the operations.
• getFront is easy (right?). Next we look at delete & insert.

Logical Structure

56 50 25 5 22 25 11 1 3 10 3 12

Physical Structure

56

50 25

1 3

5

10

22 25 11

3 12

15 Apr 2009 CS 311 Spring 2009 13

Binary Heap Algorithms
Operations — Delete [1/2]

In a Priority Queue, we can delete the highest-priority item.

In a Maxheap, this corresponds to the root. How do we delete the root
item, while maintaining the Heap properties?

• We cannot delete the root node (unless it is the only node).

• The Heap will have one less item, and so the last node must go away.

• But the last item is not going away.

• Solution: Move the last node’s item to the root; delete the last node.

� We do this by swapping the items (which has other advantages, as we will see).

• But now we have another problem: This is no longer a Heap.

� How do we fix it?

12

50 25

1 3

5

10

22 25 11

3

56

50 25

1 3

5

10

22 25 11

3 12

Ick!

15 Apr 2009 CS 311 Spring 2009 14

Binary Heap Algorithms
Operations — Delete [2/2]

To fix: “Trickle down” the new root item.

• If the root is ≥ all its children, stop.

• Otherwise, swap the root item with its largest child and recursively fix the
proper subtree. (Why largest?)

25

1 3

5

10

22 25 11

3

50

12 25

1 3

5

10

22 25 11

3

50

22 25

1 3

5

10

12 20 11

3

12

50

Done

15 Apr 2009 CS 311 Spring 2009 15

Binary Heap Algorithms
Operations — Insert

To insert into a Heap, add a new node at the end.

• But if we put our new value in this node, then we may not have a Heap.

Solution: “Trickle up”.

• If new value is greater than its parent, swap them. Repeat at new position.

56

50 25

1 3

5

10

22 25 11

3

56

50 25

1 3

5

10

22 11

3

56

50 32

1 3

5

10

22 25 11

3

12 32

32

12 25

12 25

Done

15 Apr 2009 CS 311 Spring 2009 16

Binary Heap Algorithms
Operations — Using an Array

Heap insert and delete are usually given a random-access range. The item
to insert or delete is last item of the range; the rest is a Heap.

• Action of Heap insert:

• Action of Heap delete:

Note that Heap algorithms can do all their work using swap.

• This usually allows for both speed and safety.

Given Heap Item to insert
New Heap

Given Heap Item deletedNew Heap

That’s where
the swap puts
it (right?).

That’s where we want to put
the item, initially (right?).

15 Apr 2009 CS 311 Spring 2009 17

Binary Heap Algorithms
Efficiency

What is the order of the three main Priority Queue operations, if
we use a Binary Heap implementation based on a complete
Binary Tree stored in an array?

• getFront

� Constant time.

• insert

� Logarithmic time.

• Assuming no reallocation, that is, assuming the array is large enough to hold
the new item. As on the previous slide, the way that Heaps are used often
guarantees that this is the case. (Linear time if possible reallocation.)

� The number of operations is roughly the height of the tree. Since the
tree is balanced, the height is O(log n).

• delete

� Logarithmic time.

� No reallocation, of course. Other comments as for insert.

We conclude that a Heap is an excellent basis for an
implementation of a Priority Queue.

Better than linear time!

15 Apr 2009 CS 311 Spring 2009 18

Binary Heap Algorithms
Write It!

TO DO

• Write the Heap insert algorithm.

� Prototype is shown below.

� The item to be inserted is the final item in the given range.

� All other items should form a Heap already.

// Requirements on types:

// RAIter is a random-access iterator type.

template<typename RAIter>

void heapInsert(RAIter first, RAIter last);

Done. See heapalgs.h,
on the web page.

15 Apr 2009 CS 311 Spring 2009 19

Binary Heap Algorithms
An Efficient “Make” Operation

To turn a random-access range (array?) into a Heap, we could do n–1 Heap inserts.

• Each insert operation is O(log n), and so making a Heap in this way is O(n log n).

However, we can make a Heap faster than this.

• Place each item into a partially-made Heap, in backwards order.

• Trickle each item down through its descendants.

� For most items, there are not very many of these.

This Heap “make” method is linear time!

4

39

1

3 8 4

39

1

3 8 4

9 3

1

3 8 4

9 8

1

3 3

4

89

1

3 3 4

89

1

3 3 4

81

9

3 3 1

84

9

3 3

1 9 3 4 3 8

9 4 8 1 3 3

Bottom items:
no trickling
necessary

15 Apr 2009 CS 311 Spring 2009 20

Binary Heap Algorithms
Heap Sort — Introduction

Our last sorting algorithm is Heap Sort.

• This is a sort that uses Heap algorithms.

• We can think of it as using a Priority Queue, where the priority of an
item is its value — except that the algorithm is in-place, using no
separate data structure.

• Procedure: Make a Heap, then delete all items, using the delete
procedure that places the deleted item in the top spot.

• We do a make operation, which is O(n), and n getFront/delete
operations, each of which is O(log n).

• Total: O(n log n).

15 Apr 2009 CS 311 Spring 2009 21

Binary Heap Algorithms
Heap Sort — Properties

Heap Sort can be done in-place.
• We can create a Heap in a given array.

• As each item is removed from the Heap, put it in the array element
that is removed from the Heap.
� Starting the delete by swapping root and last items does this.

• Results
� Ascending order, if we used a Maxheap.

� Only constant additional memory required.

� Reallocation is avoided.

Heap Sort uses less additional space than Introsort or array Merge
Sort.
• Heap Sort: O(1).

• Introsort: O(log n).

• Merge Sort on an array: O(n).

Heap Sort also can easily be generalized.
• Doing Heap inserts in the middle of the sort.

• Stopping before the sort is completed.

15 Apr 2009 CS 311 Spring 2009 22

Binary Heap Algorithms
Heap Sort — Illustration [1/2]

Below: Heap make operation. Next slide: Heap deletion phase.

3 2 1 4

3 2 1 4

Start

Add 4

4

3 2 1 4Add 1

4

1

3 2 1 4Add 2

4

12
�

3 4 1 2

2

14

3 4 1 2

2

14Add 3

3
�

4 3 1 2

2

13

4

Now the
entire array
is a Heap.

☺
Note: This is what happens in memory. This
is just a picture of the logical structure.

☺

15 Apr 2009 CS 311 Spring 2009 23

Binary Heap Algorithms
Heap Sort — Illustration [2/2]

Heap deletion phase:

2

1
1 2 3 4

11 2 3 4

3 1

4

4 3 1 2

2

Start

Delete 3

3 1

2
2 3 1 4

Delete 4

2 1

3
3 2 1 4

Delete 1
(does nothing;
can be skipped)

3 2 1 4

4 3 1 2

2 1 3 4Delete 2

1 2 3 4

☺�

Now the
array is
sorted.

�

1

2
2 1 3 4

1 2 3 4

15 Apr 2009 CS 311 Spring 2009 24

Binary Heap Algorithms
Heap Sort — Analysis

Efficiency ☺
• Heap Sort is O(n log n).

Requirements on Data �
• Heap Sort requires random-access data.

Space Usage ☺
• Heap Sort is in-place.

Stability �
• Heap Sort is not stable.

Performance on Nearly Sorted Data �
• Heap Sort is not significantly faster or slower for nearly sorted data.

Notes
• Heap Sort can be generalized to handle sequences that are modified
(in certain ways) in the middle of sorting.

• Recall that Heap Sort is used by Introsort, when the recursion depth
of Quicksort exceeds the maximum allowed.

We have seen these
together before
(Iterative Merge Sort
on a Linked List), but
never for an array.

15 Apr 2009 CS 311 Spring 2009 25

Binary Heap Algorithms
Thoughts

In practice, a Heap is not so much a data structure as it is an
ordinary random-access sequence with a particular ordering
property.

Associated with Heaps are a collection of algorithms that allow us
to efficiently create Priority Queues and do comparison sorting.

• These algorithms are the things to remember.

• Thus the subject heading.

