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Review
Binary Search Trees — Efficiency

Binary Search Trees have poor worst-case performance.

But they have very good performance:

• On average.

• If balanced.

� But we do not know an efficient way to make them stay balanced.

Can we efficiently keep a Binary Search Tree balanced?
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Unit Overview
Tables & Priority Queues

Major Topics

• Introduction to Tables

• Priority Queues

• Binary Heap algorithms

• Heaps & Priority Queues in the C++ STL

• 2-3 Trees

• Other balanced search trees

• Hash Tables

• Prefix Trees

• Tables in various languages

�

�
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Review
Introduction to Tables [1/4]

Our ultimate value-oriented ADT is Table. Three primary 
operations:
• Retrieve (by key).

• Insert (key-data pair).

• Delete (by key).

What do we use a Table for?
• To hold data accessed by key fields. For example:

� Customers accessed by phone number.

� Students accessed by student ID number.

� Any other kind of data with an ID code.

• To hold “set” data.
� Data in which the only question we ask is whether a key lies in the data 
set.

• To hold “arrays” whose indices are not nonnegative integers.
� arr2["hello"] = 3;

• To hold array-like data sets that are sparse.
� arr[6] = 1; arr[1000000000] = 2;
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Review
Introduction to Tables [2/4]

How can we implement a Table? We know several lousy ways:
• A Sequence holding key-data pairs.

� Sorted or unsorted.

� Array-based or Linked-List-based.

• A Binary Search Tree holding key-data pairs.

*Amortized constant time, if we might have to reallocate. (Also, we are allowing multiple 
equivalent keys here. If we do not, then when we insert, we need to find any existing item 
with the given key, which is linear time.)

**Of course, we do not (yet!) know any way to guarantee the tree will stay balanced, unless we 
can restrict ourselves to read-only operations (no insert, delete).
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Review
Introduction to Tables [3/4]

In special situations, the (amortized) constant-time insertion for an 
unsorted array and the logarithmic-time retrieve for a sorted 
array can be combined!

• Insert all data into an unsorted array, sort the array, then use
Binary Search to retrieve data.

• This is a good way to handle Table data with separate filling & 
searching phases (and few or no deletes).

• Note: We will be talking about some complicated Table 
implementations. But sometimes a simple solution is the best.
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Review
Introduction to Tables [4/4]

Idea #1: Restricted Table
• Perhaps we can do better if we do not implement a Table in its full generality.

Idea #2: Keep a Tree Balanced
• Balanced Binary Search Trees look good, but how to keep them balanced efficiently?

Idea #3: “Magic Functions”
• Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.
• Have a “magic function” that tells the index of an item.
• Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)

We will look at what results from these ideas:
• From idea #1: Priority Queues
• From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)
• From idea #3: Hash Tables
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Review
Priority Queues — What a Priority Queue Is

A Priority Queue is a restricted-access Table.

• Just as a Queue is a restricted Sequence.

• A Priority Queue is not a Queue!

The key is called the “priority”.

We can:

• Retrieve (getFront) highest priority item.

• Insert any item (key, data).

• Delete highest priority item.
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Review
Priority Queues — Applications, Implementation

A PQ is useful when we have items to process and some are more 
important than others.

PQs can be used to do sorting.

• Insert all items, then retrieve/delete all items. The resulting 
sequence is sorted by priority.

• Note: Once again, a sorted container gives us a sorting algorithm. 
However, as with Insertion Sort, instead of using a separate 
container to sort with, we prefer to use an in-place version of the 
algorithm. We will call this “Heap Sort”.

The most interesting thing about Priority Queues is their usual 
implementation: a Binary Heap.
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Binary Heap Algorithms
What is a Binary Heap? — Definition

We define a Binary Heap (usually just Heap) to be a complete 
Binary Tree that 

• Is empty,

• Or else

� The root’s key (priority) is ≥ than
the key of each of the root’s
children, if any, and

� Each of the root’s subtrees
is a Binary Heap.

Notes

• This is a Maxheap. If we reverse the order, so that the root’s key is 
≤ than the keys of its children, we get a Minheap.

• The text presents Heap as an ADT with essentially the same 
operations as a Priority Queue. I am not doing this.

• As we will see, a Binary Heap is a good basis for an implementation 
of a Priority Queue.
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Binary Heap Algorithms
What is a Binary Heap? — Complete BTs (again)

We discussed an array implementation for a complete Binary Tree:

• Put the nodes in an array, in the order in which they would be added to a 
complete Binary Tree.

• No pointers/arrows/indices are required.

• We store only the array of data items and the number of nodes.

• Put the root, if any, at index 0.

• The left child of node k is at index 2k + 1. It exists if 2k + 1 < size.

• The right child is similar, but at 2k + 2.

• The parent of node k is at index (k – 1)/2 [int division]. It exists if k > 0.
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Binary Heap Algorithms
What is a Binary Heap? — Implementation

The usual implementation of a Binary Heap uses this array-based 
complete Binary Tree.

There are no required order relationships between siblings.

None of the standard traversals gives any sensible ordering.

In practice, we usually use “Heap” to mean a Binary Heap 
using this array representation. 

In order to base a Priority Queue on a Heap, we need to know how
to implement the operations.
• getFront is easy (right?). Next we look at delete & insert.

Logical Structure
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Binary Heap Algorithms
Operations — Delete [1/2]

In a Priority Queue, we can delete the highest-priority item.

In a Maxheap, this corresponds to the root. How do we delete the root 
item, while maintaining the Heap properties?

• We cannot delete the root node (unless it is the only node).

• The Heap will have one less item, and so the last node must go away.

• But the last item is not going away.

• Solution: Move the last node’s item to the root; delete the last node.

� We do this by swapping the items (which has other advantages, as we will see).

• But now we have another problem: This is no longer a Heap.

� How do we fix it?
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Binary Heap Algorithms
Operations — Delete [2/2]

To fix: “Trickle down” the new root item.

• If the root is ≥ all its children, stop.

• Otherwise, swap the root item with its largest child and recursively fix the 
proper subtree. (Why largest?)
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Binary Heap Algorithms
Operations — Insert

To insert into a Heap, add a new node at the end.

• But if we put our new value in this node, then we may not have a Heap.

Solution: “Trickle up”.

• If new value is greater than its parent, swap them. Repeat at new position.
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Binary Heap Algorithms
Operations — Using an Array

Heap insert and delete are usually given a random-access range. The item 
to insert or delete is last item of the range; the rest is a Heap.

• Action of Heap insert:

• Action of Heap delete:

Note that Heap algorithms can do all their work using swap.

• This usually allows for both speed and safety.

Given Heap Item to insert
New Heap

Given Heap Item deletedNew Heap

That’s where 
the swap puts 
it (right?).

That’s where we want to put 
the item, initially (right?).
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Binary Heap Algorithms
Efficiency

What is the order of the three main Priority Queue operations, if 
we use a Binary Heap implementation based on a complete 
Binary Tree stored in an array?

• getFront

� Constant time.

• insert

� Logarithmic time.

• Assuming no reallocation, that is, assuming the array is large enough to hold 
the new item. As on the previous slide, the way that Heaps are used often 
guarantees that this is the case. (Linear time if possible reallocation.)

� The number of operations is roughly the height of the tree. Since the 
tree is balanced, the height is O(log n).

• delete

� Logarithmic time.

� No reallocation, of course. Other comments as for insert.

We conclude that a Heap is an excellent basis for an 
implementation of a Priority Queue.

Better than linear time!
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Binary Heap Algorithms
Write It!

TO DO

• Write the Heap insert algorithm.

� Prototype is shown below.

� The item to be inserted is the final item in the given range.

� All other items should form a Heap already.

// Requirements on types:

//     RAIter is a random-access iterator type.

template<typename RAIter>

void heapInsert(RAIter first, RAIter last);

Done. See heapalgs.h, 
on the web page.
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Binary Heap Algorithms
An Efficient “Make” Operation

To turn a random-access range (array?) into a Heap, we could do n–1 Heap inserts.

• Each insert operation is O(log n), and so making a Heap in this way is O(n log n).

However, we can make a Heap faster than this.

• Place each item into a partially-made Heap, in backwards order.

• Trickle each item down through its descendants.

� For most items, there are not very many of these.

This Heap “make” method is linear time!
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Binary Heap Algorithms
Heap Sort — Introduction

Our last sorting algorithm is Heap Sort.

• This is a sort that uses Heap algorithms.

• We can think of it as using a Priority Queue, where the priority of an 
item is its value — except that the algorithm is in-place, using no 
separate data structure.

• Procedure: Make a Heap, then delete all items, using the delete 
procedure that places the deleted item in the top spot.

• We do a make operation, which is O(n), and n getFront/delete 
operations, each of which is O(log n).

• Total: O(n log n).
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Binary Heap Algorithms
Heap Sort — Properties

Heap Sort can be done in-place.
• We can create a Heap in a given array.

• As each item is removed from the Heap, put it in the array element 
that is removed from the Heap.
� Starting the delete by swapping root and last items does this.

• Results
� Ascending order, if we used a Maxheap.

� Only constant additional memory required.

� Reallocation is avoided.

Heap Sort uses less additional space than Introsort or array Merge 
Sort.
• Heap Sort: O(1).

• Introsort: O(log n).

• Merge Sort on an array: O(n).

Heap Sort also can easily be generalized.
• Doing Heap inserts in the middle of the sort.

• Stopping before the sort is completed.
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Binary Heap Algorithms
Heap Sort — Illustration [1/2]

Below: Heap make operation. Next slide: Heap deletion phase.
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Binary Heap Algorithms
Heap Sort — Illustration [2/2]

Heap deletion phase:
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Binary Heap Algorithms
Heap Sort — Analysis

Efficiency ☺
• Heap Sort is O(n log n).

Requirements on Data �
• Heap Sort requires random-access data.

Space Usage ☺
• Heap Sort is in-place.

Stability �
• Heap Sort is not stable.

Performance on Nearly Sorted Data �
• Heap Sort is not significantly faster or slower for nearly sorted data.

Notes
• Heap Sort can be generalized to handle sequences that are modified 
(in certain ways) in the middle of sorting.

• Recall that Heap Sort is used by Introsort, when the recursion depth 
of Quicksort exceeds the maximum allowed.

We have seen these 
together before 
(Iterative Merge Sort 
on a Linked List), but 
never for an array.
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Binary Heap Algorithms
Thoughts

In practice, a Heap is not so much a data structure as it is an 
ordinary random-access sequence with a particular ordering 
property.

Associated with Heaps are a collection of algorithms that allow us 
to efficiently create Priority Queues and do comparison sorting.

• These algorithms are the things to remember.

• Thus the subject heading.


