
Linked Lists: Implementation
Sequences in the C++ STL

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, April 1, 2009

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell

continued

1 Apr 2009 CS 311 Spring 2009 2

Unit Overview
Sequences & Their Implementations

Major Topics

• Introduction to Sequences

• Smart arrays

� Interface

� A basic implementation

� Exception safety

� Allocation & efficiency

� Generic containers

• Linked Lists

� Node-based structures

� Implementation

• Sequences in the C++ STL

• Stacks

• Queues

�

�

�

�

�

�

�

�

(part)

1 Apr 2009 CS 311 Spring 2009 3

Review
Smart Arrays: Allocation & Efficiency

An operation is amortized constant time if k operations require
O(k) time.

• Thus, over many consecutive operations, the operation averages
constant time.

• Not the same as constant-time average case.

• Quintessential amortized-constant-time operation: insert-at-end for
a well written (smart) array.

• Amortized constant time is not something we can easily compare
with (say) logarithmic time.

1 Apr 2009 CS 311 Spring 2009 4

Review
Generic Containers [1/2]

A generic container is a container that can
hold a client-specified data type.

• In C++ we usually implement a generic
container using a class template.

A function that allows exceptions thrown by a
client’s code to propagate unchanged, is said
to be exception-neutral.

When exception-neutral code calls a client-
provided function that may throw, it does
one of two things:

• Call the function outside a try block, so that
any exceptions terminate our code
immediately.

• Or, call the function inside a try block, then
catch all exceptions, do any necessary clean-
up, and re-throw.

Client code

Our package

Implementation
of template-

parameter type

This code
might throw …

… and if it does,
this code handles
the exception.

calls

calls

1 Apr 2009 CS 311 Spring 2009 5

Review
Generic Containers [2/2]

We can use catch-all, clean-up, re-throw to get both exception
safety and exception neutrality.

arr = new MyType[10];

try

{

std::copy(a, a+10, arr);
}

catch (...)

{

delete [] arr;

throw;
}

This helps us meet the Basic
Guarantee (also the Strong
Guarantee if this function does
nothing else).

This makes our code
exception-neutral.

Called outside any try block. If

this fails, we exit immediately,
throwing an exception.

Called inside a try block. If this

fails, we need to deallocate the
array before exiting.

1 Apr 2009 CS 311 Spring 2009 6

Review
Node-Based Structures — Linked Lists [1/5]

Our first node-based data structure is a (Singly) Linked List.

• A Linked List is composed of nodes. Each has a single data item and
a pointer to the next node.

• These pointers are the only way to find the next data item.

• Once we have found a position within a Linked List, we can insert
and delete in constant time.

513 4 5 2

Head NULL pointer
Linked

List

513 4 5 2

513 4 5 2

7

Nodes

1 Apr 2009 CS 311 Spring 2009 7

Review
Node-Based Structures — Linked Lists [2/5]

Also, with Linked Lists, we can do a fast splice:

Note: If we allow for efficient splicing, then we cannot efficiently
keep track of a Linked List’s size.

Before

After

513 4 5 2

126 1 3 3

513 4 5 2

126 1 3 3

1 Apr 2009 CS 311 Spring 2009 8

Review
Node-Based Structures — Linked Lists [3/5]

Further, with Linked Lists, iterators, pointers, and references to
items will always stay valid and never change what they refer
to, as long as the Linked List exists — unless we remove or
change the item ourselves.

513 4 5 2

53 4 5 2

Iterator

Iterator

53 4 5 2

7

Iterator

Remove

Insert

1 Apr 2009 CS 311 Spring 2009 9

Review
Node-Based Structures — Linked Lists [4/5]

*For Singly Linked Lists, we mean
inserting or removing just after
the given position.

• Doubly Linked Lists can help.

**O(n) if reallocation occurs.
Otherwise, O(1). Amortized
constant time.

• Pre-allocation can help.

***For O(1), need a pointer to the
end of the list. Otherwise, O(n).

• This is tricky.

• Doubly Linked Lists can help.

O(1)O(n)Remove @ beginning

O(1)O(n)Insert @ beginning

O(1)O(n)Splice

O(n)O(n)Search unsorted

O(1)O(1)Swap

O(n)O(n)Copy

O(n)O(n)Traverse

O(1) or O(n)***O(1)Remove @ end

O(1) or O(n)***O(1) or O(n)**

amortized const

Insert @ end

O(1)*O(n)Remove @ given pos

O(1)*O(n)Insert @ given pos

O(n log n)O(n log n)Sort

O(n)O(log n)Search sorted

O(n)O(1)Look-up by index

Linked ListSmart Array

Find faster
with an array

Rearrange faster
with a Linked List

1 Apr 2009 CS 311 Spring 2009 10

Review
Node-Based Structures — Linked Lists [5/5]

Other Issues

• � Linked Lists use more memory.

• � When order is the same, Linked Lists are almost always slower.

� Arrays might be 2–10 times faster.

• � Arrays keep consecutive items in nearby memory locations.

� Many algorithms have the property that when they access a data item,
the following accesses are likely to be to the same or nearby items.

• This property of an algorithm is called locality of reference.

� Once a memory location is accessed, a memory cache will automatically
load nearby memory locations. With an array, these are likely to hold
nearby data items.

� Thus, when a memory cache is used, an array can have a significant
speed advantage over a Linked List, when used with an algorithm that
has good locality of reference.

• ☺ With an array, iterators, pointers, and references to items can be
invalidated by reallocation. Also, insert/remove can change the
item they reference.

1 Apr 2009 CS 311 Spring 2009 11

Review
Node-Based Structures — Linked List Variations [1/2]

In a Doubly Linked List, each node has a data item & two
pointers:

• A pointer to the next node.

• A pointer to the previous node.

Doubly Linked Lists often have an end-of-list pointer.

• This can be efficiently maintained, resulting in constant-time insert
and remove at the end.

Doubly Linked Lists are generally considered to be a good basis for
a general-purpose generic container type.

• Singly-Linked Lists are not. Remember all those asterisks?

Doubly
Linked List

3 1 5 4 5

End-of-list
pointer

1 Apr 2009 CS 311 Spring 2009 12

Review
Node-Based Structures — Linked List Variations [2/2]

With Doubly Linked Lists, we can get
rid of most of our asterisks.

*O(n) if reallocation occurs.
Otherwise, O(1). Amortized
constant time.

• Pre-allocation can help.

O(1)O(n)Remove @ beginning

O(1)O(n)Insert @ beginning

O(1)O(n)Splice

O(n)O(n)Search unsorted

O(1)O(1)Swap

O(n)O(n)Copy

O(n)O(n)Traverse

O(1)O(1)Remove @ end

O(1)O(1) or O(n)*

amortized const

Insert @ end

O(1)O(n)Remove @ given pos

O(1)O(n)Insert @ given pos

O(n log n)O(n log n)Sort

O(n)O(log n)Search sorted

O(n)O(1)Look-up by index

Doubly
Linked List

Smart Array

Find faster
with an array

Rearrange faster
with a Linked List

1 Apr 2009 CS 311 Spring 2009 13

Review
Linked Lists: Implementation

Two approaches to implementing a Linked List:

• A Linked List package to be used by others.

• A Linked List as part of some other package, and not exposed to
clients.

1 Apr 2009 CS 311 Spring 2009 14

Linked Lists: Implementation
Write It

TO DO

• Write an insert-at-beginning operation for a Linked List.

continued

Done. See linked_list.cpp,
on the web page.

1 Apr 2009 CS 311 Spring 2009 15

Sequences in the C++ STL
Generic Sequence Types — Introduction

The C++ STL has four generic Sequence container types.
• Class template std::vector.

� A “smart array”.

� Much like what we wrote, but with more member functions.

• Class template std::basic_string.
� Much like std::vector, but aimed at character string operations.

� Mostly we use std::string, which is really std::basic_string<char>.

� Also std::wstring, which is really std::basic_string<std::wchar_t>.

• Class template std::list.
� A Doubly Linked List.

• Note: The Standard does not specify implementation. It specifies the
semantics and order of operations. These were written with a Doubly Linked
List in mind, and a D.L.L. is the usual implementation.

• Class template std::deque.
� Deque stands for Double-Ended QUEue.

� Say “deck”.

� Like std::vector, but a bit slower. Allows fast insert/remove at both
beginning and end.

1 Apr 2009 CS 311 Spring 2009 16

Sequences in the C++ STL
Generic Sequence Types — std::deque [1/4]

We are familiar with smart arrays and Linked Lists. How is
std::deque implemented?

• There are two big ideas behind it.

First Idea

• A vector uses an array in which data are stored at the beginning.

� This gives linear-time insert/remove at beginning, constant-time remove
at end, and, if we do it right, amortized-constant-time insert at end.

• What if we store data in the middle? When we reallocate-and-copy,
we move our data to the middle of the new array.

� Result: Amortized-constant-time insert, and constant-time remove, at
both ends.

0 1 2 3 4 5

3 4 520 1

1 Apr 2009 CS 311 Spring 2009 17

Sequences in the C++ STL
Generic Sequence Types — std::deque [2/4]

Second Idea

• Doing reallocate-and-copy for a vector requires calling either the

copy constructor or copy assignment for every data item.

� For large, complex data items, this can be time-consuming.

• Instead, let our array be an array of pointers to arrays, so that
reallocate-and-copy only needs to move the pointers.

� This still lets us keep most of the locality-of-reference advantages of an
array, when the data items are small.

0 1 2 3 4 5 6 7 8

Array of
Pointers

Arrays of
Data Items

1 Apr 2009 CS 311 Spring 2009 18

Sequences in the C++ STL
Generic Sequence Types — std::deque [3/4]

An implementation of std::deque typically uses both of these ideas.
• It probably uses an array of pointers to arrays.

� This might go deeper (array of pointers to arrays of pointers to arrays).

• The arrays may not be filled all the way to the beginning or the end.
• Reallocate-and-copy moves the data to the middle of the new array of

pointers.

Thus, std::deque is an array-ish container, optimized for:
• Insert/remove at either end.
• Possibly large, difficult-to-copy data items.

The cost is complexity, and a slower [but still O(1)] look-up by index.

0 1 2 3 4 5 6 7 8 9

Base
Object

Array of
Pointers

Arrays of
Data Items

Middle is used

1 Apr 2009 CS 311 Spring 2009 19

Sequences in the C++ STL
Generic Sequence Types — std::deque [4/4]

Essentially, std::deque is an array.
• Iterators are random-access.
• But it has some complexity to it, so it is a slow-ish array.

However, insertions at the beginning do not require items to be moved up.
• We speed up insert-at-beginning by allocating extra space before existing

data.

And reallocate-and-copy leaves the data items alone.
• We also speeds up insertion by trading value-type operations for pointer

operations.
• Pointer operations can be much faster than value-type operations. A

std::deque can do reallocate-and-copy using a raw memory copy, with no
value-type copy ctor calls.

Like vector, deque tends to keep consecutive items in nearby memory
locations.
• So it avoids cache misses when used with algorithms having good locality of

reference.

The Bottom Line
• A std::deque is generally a good choice when you need fast insert/remove

at both ends of a Sequence.
• Especially if you also want fast-ish look-up.
• Some people also recommend std::deque whenever you will be doing a lot

of resizing, but do not need fast insert/remove in the middle.

1 Apr 2009 CS 311 Spring 2009 20

Sequences in the C++ STL
Generic Sequence Types — Efficiency [1/2]

We determine efficiency by counting operations. How do we count
operations for a generic container type?

• We count both built-in operations and value-type operations.

• However, we typically expect that the most time-consuming
operations are those on the value type.

The C++ Standard, on the other hand, counts only value-type
operations.

• For example, “constant time” in the Standard means that at most a
constant number of value-type operations are performed.

1 Apr 2009 CS 311 Spring 2009 21

Sequences in the C++ STL
Generic Sequence Types — Efficiency [2/2]

*Only a constant number of value-type operations are required.

• The C++ standard counts only value-type operations. Thus, it says that insert at beginning or end of
a std::deque is constant time.

**Constant time if sufficient memory has already been allocated.

All have O(n) traverse, copy, and search-unsorted, O(1) swap, and O(n log n) sort.

ConstantLinear/
Amortized
Constant*

LinearInsert @ beginning

ConstantConstantLinearRemove @ beginning

ConstantConstantConstantRemove @ end

LinearLogarithmicLogarithmicSearch sorted

ConstantLinear/
Amortized
Constant*

Linear/
Amortized
Constant**

Insert @ end

ConstantLinearLinearRemove @ given pos

ConstantLinearLinearInsert @ given pos

LinearConstantConstantLook-up by index

listdequevector,
basic_string

1 Apr 2009 CS 311 Spring 2009 22

Sequences in the C++ STL
Generic Sequence Types — Common Features

All STL Sequence containers have:
• iterator, const_iterator

� Iterator types. The latter acts like a
pointer-to-const.

� vector, basic_string, and deque
have random-access iterators.

� list has bidirectional iterators.

• iterator begin(), iterator end()

• iterator insert(iterator, item)
� Insert before. Returns position of new

item.

• iterator erase(iterator)
� Remove this item. Returns position of

next item.

• push_back(item), pop_back()
� Insert & remove at the end.

• reference front(), reference back()
� Return reference to first, last item.

• clear()
� Remove all items.

• resize(newSize)
� Change the size of the container.

� Not the same as vector::reserve,
which sets capacity.

In addition, deque and list also have:

• push_front(item), pop_front()

� Insert & remove at the beginning.

In addition, vector, basic_string, and
deque also have:

• reference operator[](index)

� Look-up by index.

In addition, vector also has:

• reserve(newCapacity)

� Sets capacity to at least the given
value.

And there are other members …

1 Apr 2009 CS 311 Spring 2009 23

Sequences in the C++ STL
Iterator Validity — The Idea

One of the trickier parts of using container types is making sure
you do not use an iterator that has become “invalid”.

• Generally, valid iterators are those that can be dereferenced.

• We also call things like container.end() valid.

� These are “past-the-end” iterators.

Consider the smart-array class in Assignment 5. When is one of its
iterators invalidated?

• When reallocate-and-copy occurs.

• When the container is destroyed.

• When the container is resized so that the iterator is more than one
past the end.

Now consider a (reasonable) Linked-List class with iterators. When
are such iterators invalidated?

• Only when the item referenced is erased.

� This includes container destruction.

1 Apr 2009 CS 311 Spring 2009 24

Sequences in the C++ STL
Iterator Validity — Rules

We see that different container types have different iterator-
validity rules.

• When using a container, it is important to know the associated
rules.

A related topic is reference validity.

• Items in a container can be referred to via iterators, but also via
pointers and references.

• Reference-validity rules indicate when pointers and references
remain usable.

• Often these are the same as the iterator-validity rules, but not
always.

1 Apr 2009 CS 311 Spring 2009 25

Sequences in the C++ STL
Iterator Validity — std::vector

For std::vector

• Reallocate-and-copy invalidates all iterators and references.

• When there is no reallocation, the Standards says that insertion and
erasure invalidate all iterators and references except those before
the insertion/erasure.

� Apparently, the Standard counts an iterator as invalidated if the item it
points to changes.

A vector can be forced to pre-allocate memory using
std::vector::reserve.

• The amount of pre-allocated memory is the vector’s capacity.

• We have noted that pre-allocation makes insert-at-end a constant-
time operation. Now we have another reason to do pre-allocation:
preserving iterator and reference validity.

1 Apr 2009 CS 311 Spring 2009 26

Sequences in the C++ STL
Iterator Validity — std::deque

For std::deque

• Insertion in the middle invalidates all iterators and references.

• Insertion at either end invalidates all iterators, but no references.

� Why?

• Erasure in the middle invalidates all iterators and references.

• Erasure at the either end invalidates only iterators and references to
items erased.

So deques have some validity advantages over vectors.

1 Apr 2009 CS 311 Spring 2009 27

Sequences in the C++ STL
Iterator Validity — std::list

For std::list

• An iterator or reference always remains valid until the item it points
to goes away.

� When the item is erased.

� When the list is destroyed.

In some situations, these validity rules can be a big advantage of
std::list.

1 Apr 2009 CS 311 Spring 2009 28

Sequences in the C++ STL
Iterator Validity — Example

// v is a variable of type vector<int>
// Insert a 1 before each 2 in v:
for (vector<int>::iterator iter = v.begin();

iter != v.end();
++iter)

{
if (*iter == 2)

v.insert(iter, 1);
}

What is wrong with the above code?
• The insert call invalidates iterator iter.
• Even if iter stays valid, after an insertion, it points to the 1 inserted. After

being incremented, it points to the 2 again. Infinite loop.

How can we fix it? Some ideas (most of which were discussed in class):
• Replace the “if” body with: “iter = v.insert(iter, 1); ++iter;”.
• Use indices in the loop, instead of iterators.
• Use std::list, instead of std::vector.
• Pre-allocate using reserve (and increment iter in the “if”).

