
Introduction to Analysis of Algorithms
Introduction to Sorting

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, February 23, 2009

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell



23 Feb 2009 CS 311 Spring 2009 2

Unit Overview
Recursion & Searching

Major Topics

• Introduction to Recursion

• Search Algorithms

• Recursion vs. Iteration

• Eliminating Recursion

• Recursive Search with Backtracking

�

�

�

�

�

DON
E



23 Feb 2009 CS 311 Spring 2009 3

Unit Overview
Algorithmic Efficiency & Sorting

We now begin a unit on algorithmic efficiency & sorting algorithms.

Major Topics

• Introduction to Analysis of Algorithms

• Introduction to Sorting

• Comparison Sorts I

• More on Big-O

• The Limits of Sorting

• Divide-and-Conquer

• Comparison Sorts II

• Comparison Sorts III

• Radix Sort

• Sorting in the C++ STL

We will (partly) follow the text.

• Efficiency and sorting are in Chapter 9.

After this unit will be the in-class Midterm Exam.



23 Feb 2009 CS 311 Spring 2009 4

Introduction to Analysis of Algorithms
Efficiency [1/3]

What do we mean by an “efficient” algorithm?

• We mean an algorithm that uses few resources.

• By far the most important resource is time.

• Thus, when we say an algorithm is efficient, assuming we do not 
qualify this further, we mean that it can be executed quickly.

How do we determine whether an algorithm is efficient?

• Implement it, and run the result on some computer?

• But the speed of computers is not fixed.

• And there are differences in compilers, etc.

Is there some way to measure efficiency that does not depend on 
the system chosen or the current state of technology?



23 Feb 2009 CS 311 Spring 2009 5

Introduction to Analysis of Algorithms
Efficiency [2/3]

Is there some way to measure efficiency that does not depend on 
the system chosen or the current state of technology?

• Yes!

Rough Idea

• Divide the tasks an algorithm performs into “steps”.

• Determine the maximum number of steps required for input of a 
given size. Write this as a formula, based on the size of the input.

• Look at the most important part of the formula.

� For example, the most important part of
“6n log n + 1720n + 3n2 + 14325” is “n2”.

Next we look at this in more detail.



23 Feb 2009 CS 311 Spring 2009 6

Introduction to Analysis of Algorithms
Efficiency [3/3]

When we talk about efficiency of an algorithm, without further 
qualification of what “efficiency” means, we are interested in:
• Time Used by the Algorithm

� Expressed in terms of number of steps.

• How the Size of the Input Affects Running Time
� Larger input typically means slower running time. How much slower?

• Worst-Case Behavior
� What is the maximum number of steps the algorithm ever requires for a 
given input size?

To make the above ideas precise, we need to say:
• What is meant by a step.

• How we measure the size of the input.

These two are part of our model of computation.



23 Feb 2009 CS 311 Spring 2009 7

Introduction to Analysis of Algorithms
Model of Computation

The model of computation used in this class will include the 
following definitions.

• The following operations will be considered a single step:

� Built-in operations on fundamental types (arithmetic, assignment, 
comparison, logical, bitwise, pointer, array look-up, etc.).

� Calls to client-provided functions (including operators). In particular, in a 
template, operations (i.e., function calls) on template-parameter types.

• From now on, when we discuss efficiency, we will always consider a 
function that is given a list of items. The size of the input will be 
the number of items in the list.

� The “list” could be an array, a range specified using iterators, etc.

� We will generally denote the size of the input by “n”.

Notes

• As we will see later, we can afford to be somewhat imprecise about 
what constitutes a single “step”.

• In a formal mathematical analysis of the properties and limits of 
computation, both of the above definitions would need to change.



23 Feb 2009 CS 311 Spring 2009 8

Introduction to Analysis of Algorithms
Order & Big-O Notation — Definition

Algorithm A is order f(n) [written O(f(n))] if

• There exist constants k and n0 such that

• A requires no more than k×f(n) time units to solve a problem of 
size n ≥ n0.

We are usually not interested in the exact values of k and n0. Thus:

• We don’t worry much about whether some algorithm is (say) five 
times faster than another.

• We ignore small problem sizes.

Big-O is important!

• We will probably use it every day for the rest of the semester (the 
concept, not the above definition).



23 Feb 2009 CS 311 Spring 2009 9

Introduction to Analysis of Algorithms
Order & Big-O Notation — Worst Case & Average Case

When we use big-O, unless we say otherwise, we are always 
referring to the worst-case behavior of an algorithm.

• For input of a given size, what is the maximum number of steps 
the algorithm requires?

We can also do average-case analysis. However, we need to say 
so. We also need to indicate what kind of average we mean. For 
example:

• We can determine the average number of steps required over all 
inputs of a given size.

• We can determine the average number of steps required over 
repeated applications of the same algorithm.



23 Feb 2009 CS 311 Spring 2009 10

Introduction to Analysis of Algorithms
Order & Big-O Notation — Example 1, Problem

Determine the order of the following, and express it using “big-O”:

int func1(int p[], int n) // n is length of array p

{

int sum = 0;

for (int i = 0; i < n; ++i)

sum += p[i];

return sum;

}

See the next slide.



23 Feb 2009 CS 311 Spring 2009 11

Introduction to Analysis of Algorithms
Order & Big-O Notation — Example 1, Solution

I count 9 single-step operations in func1 .

Strictly speaking, it is correct to say that 
func1 is O(4n+6). In practice, however, 

we always place a function into one of a 
few well-known categories.

ANSWER: Function func1 is O(n).

• This works with (for example) k = 5
and n0 = 100.

• That is, 4n + 6 ≤ 5 × n, whenever n ≥ 100.

What if we count “sum += p[i] ” as one 

step? What if we count the loop as one?

• Moral: collapsing a constant number of 
steps into one step does not affect the 
order.

• This is why I said we can be somewhat
imprecise about what a “step” is.

Times
Executed

Operation

4n + 6TOTAL

1return sum

nsum += …

n p[i]

n++i

n + 1i < n

1int i = 0

1int sum = 0

1int n

1int p[]



23 Feb 2009 CS 311 Spring 2009 12

Introduction to Analysis of Algorithms
Order & Big-O Notation — Scalability

Why are we so interested in the running time of an algorithm for
very large problem sizes?

• Small problems are easy and fast.

• We expect more of faster computers. Thus, problem sizes keep 
getting bigger.

• As we saw with search algorithms, the advantages of a fast 
algorithm become more important at very large problem sizes.

Recall:

• “The fundamental law of computer science: As machines become 
more powerful, the efficiency of algorithms grows more important, 
not less.” — Nick Trefethen

An algorithm (or function or technique …) that works well when 
used with large problems & large systems is said to be 
scalable.

• Or, it scales well.

• This class is all about things that scale well.

This definition applies 
in general, not only in 

computing.



23 Feb 2009 CS 311 Spring 2009 13

Introduction to Analysis of Algorithms
Order & Big-O Notation — Efficiency Categories

An O(1) algorithm is constant time.
• The running time of such an algorithm is essentially independent of the input.

• Such algorithms are rare, since they cannot even read all of their input.

An O(logbn) [for some b] algorithm is logarithmic time.
• Again, such algorithms cannot read all of their input.

• As we will see, we do not care what b is.

An O(n) algorithm is linear time.
• Such algorithms are not rare.

• This is as fast as an algorithm can be and still read all of its input.

An O(n logbn) [for some b] algorithm is log-linear time.
• This is about as slow as an algorithm can be and still be truly useful (scalable).

An O(n2) algorithm is quadratic time.
• These are usually too slow for anything but very small data sets.

An O(bn) [for some b] algorithm is exponential time.
• These algorithms are much too slow to be useful.

Notes
• Gaps between these categories are not bridged by compiler optimization.

• We are interested in the fastest category above that an algorithm fits in.
� Every O(1) algorithm is also O(n2) and O(237n+ 184); but “O(1)” interests us most.

• I will also allow O(n3), O(n4), etc. However, we will not see these much.

Faster

Slower

Know 
these!



23 Feb 2009 CS 311 Spring 2009 14

Introduction to Analysis of Algorithms
Order & Big-O Notation — Example 2, Problem

Determine the order of the following, and express it with “big-O”:

int func2(int p[], int n) // n is length of array p

{

int sum = 0;

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

sum += p[j];

return sum;

}

See the next slide.



23 Feb 2009 CS 311 Spring 2009 15

Introduction to Analysis of Algorithms
Order & Big-O Notation — Example 2, Solution

In Example 2:
• There is a loop within a loop. The body of the inside (j) loop looks 

like this:

for (int j = 0; j < n; ++j)

sum += p[j];

• A single execution of this inside loop requires 3n+2 steps.
� If we treat “sum += p[j]; ” as a single step.

• However, the loop itself is executed n times by the outside (i) loop. 
Thus a total of n × (3n+2) = 3n2+2n steps are required.

• The rest of the function takes 2n+6 steps, for a total of (3n2+2n) + 
(2n+6) = 3n2+4n+6.

• Again, strictly speaking, it would be correct to say that func2 is 
O(3n2+4n+6), but that is not how we do things.

• Instead, we note that, for large n, 3n2+4n+6 ≤ 4n2. Thus, func2 is 
O(n2): quadratic time.



23 Feb 2009 CS 311 Spring 2009 16

Introduction to Analysis of Algorithms
Order & Big-O Notation — Example 3, Problem

Determine the order of the following, and express it using “big-O”:

int func3(int p[], int n) // n is length of array p

{

int sum = 0;

for (int i = 0; i < n; ++i)

for (int j = 0; j < i; ++j)

sum += p[j];

return sum;

}

See the next slide.

Notice!



23 Feb 2009 CS 311 Spring 2009 17

Introduction to Analysis of Algorithms
Order & Big-O Notation — Example 3, Solution

In Example 3:

• The number of steps taken by the j loop is 4i+2.

• So the total number of steps used by the j loop as i goes from 0 to 
n–1 is
2 + 6 + 10 + … + 4(n–1)+2.

• We summed this in class:
[2+4(n–1)+2] × n ÷ 2 = 2n2.

• The total number of steps for the function as a whole is
2n2 + 2n + 6.

• Thus the function is O(n2): quadratic time.



23 Feb 2009 CS 311 Spring 2009 18

Introduction to Analysis of Algorithms
Order & Big-O Notation — Rule of Thumb & Example 4

When computing the number of steps used by nested loops:

• For nested loops, each of which is either

� executed n times, or

� executed i times, where i goes up to n.

• Or up to n plus some constant.

• The order is O(nt) where t is the number of loops.

Example 4

for (int i = 0; i < n; ++i)

for (int j = 0; j < i; ++j)

for (int k = j; k < i+4; ++k)

++arr[j][k];

• By the above rule of thumb, this has order O(n3).



23 Feb 2009 CS 311 Spring 2009 19

Introduction to Analysis of Algorithms
Order & Big-O Notation — Rule of Thumb & Example 5

Example 5

for (int i = 0; i < n; ++i)

for (int j = 0; j < i; ++j)

for (int k = 0; k < 5; ++k)

++arr[j][k];

• The k loop uses a constant number of operations.

• By the Rule of Thumb, this has order O(n2).

Notice!



23 Feb 2009 CS 311 Spring 2009 20

Introduction to Sorting
The Basics — What is Sorting?

To sort a collection of data is to place it in order.

Sometimes the items we sort are themselves collections of data. 
The part we sort by is the key.

Efficient sorting is of great interest.

• Sorting is a very common operation.

• Sorting code that is written with little thought/knowledge is often 
much less efficient than code using a good algorithm.

• Some algorithms (like Binary Search) require sorted data. The 
efficiency of sorting affects the desirability of such algorithms.

3 1 3 5 25 1 2 3 5 53

3
a

1
c

3
b

5
a

2
c

5
c

1
c

2
c

3
a

5
a

5
c

3
b

Keys

Other data



23 Feb 2009 CS 311 Spring 2009 21

Introduction to Sorting
TO BE CONTINUED …

Introduction to Sorting will be continued next time.


