Spanning Trees

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, December 9, 2009

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell
The Rest of the Course Overview

Two Topics

✓ External Data

- Throughout this semester, we have dealt-with data stored in memory.
- What if we store data on an external device, accessed via a (relatively) slow connection. How does this change the design of algorithms and data structures?

(part) Graph Algorithms

- A graph is a way of modeling relationships between pairs of objects.
- This is a very general notion; thus, algorithms for graphs often have very general applicability.
A graph is consists of vertices and edges. An edge joins two vertices.

- An example of a graph is shown at right.

Sometimes we give each edge a direction.

- The result is a directed graph or digraph.

Graphs represent situations in which objects are related in pairs.
We use graphs to model:

- Networks
 - Vertices are nodes in network; edges are connections.
 - Examples
 - Communication
 - Transportation
 - Electrical
 - Web (edges are links)

- State Spaces
 - Vertices are states; edges are transitions between states.
 - See CS 451 for more info.

- Generally, situations in which objects are related in pairs:
 - Vertices are people, edges indicate relationships (friendship? common work?)
 - Vertices are events at a conference; edges join events that cannot be held simultaneously.
 - Vertices are data structure nodes; (directed) edges indicate (owning?) pointers.
Two common ways to represent graphs:

- **Adjacency matrix.** 2-D array of Boolean values. Entry \((i, j)\) answers the question “Does edge \((i, j)\) exist?”
 - Answer “does edge \((i, j)\) exist?” in \(O(1)\).
 - Finding all neighbors of a vertex can be slow for large, sparse graphs.
 - A **sparse** graph is one with relatively few edges.
 - Space used: \(O(n^2)\), where \(n\) = number of vertices.
 - Note: For graphs in general, we cannot do better than this.

- **Adjacency list.** Array of lists. Entry \(i\) is a list of the neighbors of vertex \(i\).
 - Answer “does edge \((i, j)\) exist?” in \(O(n)\).
 - Finding all neighbors of a vertex is fast.
 - Much better space usage for large, sparse graphs.

Both of these can be tweaked in obvious ways to handle digraphs. Other graph representations are used.
Review
Graph Traversals — Introduction

We have discussed traversals of Binary Trees.
- Preorder, inorder, postorder.

We traverse graphs as well.
- To “traverse” here means to visit each vertex once.
- Traditionally, graph traversal is viewed in terms of a “search”.

Two kinds of graph traversals.
- Depth-first search (DFS).
 - “Last visited, first explored.”
 - Like preorder tree traversal.
 - When we visit a vertex, give priority to visiting its unvisited neighbors (and their unvisited neighbors, etc.).
- Breadth-first search (BFS).
 - “First visited, first explored.”
 - Visit all of a vertex’s unvisited neighbors before visiting their neighbors.
Review
Graph Traversals — DFS [1/2]

DFS has a nice recursive formulation:
- Given a start vertex, visit it, and mark it as visited.
- For each of the start vertex’s neighbors:
 - If this neighbor is unvisited, do a DFS with this neighbor as the start vertex.

We get a **DFS tree** (shown in bold above).
DFS is convenient if we think about traveling through the graph, minimizing the number of edges we cross.
We can, as usual eliminate recursion using a Stack.

- “Last visited, first explored.”
- Then we have an iterative DFS algorithm using a local Stack.
 - And we can use it in a more intelligent way than the “brute-force” recursion elimination method.

Algorithm

- Push start vertex on Stack.
- Repeat while Stack is non-empty:
 - Pop top of Stack.
 - If this vertex is not visited, then:
 - Visit it.
 - Push its not-visitted neighbors on the Stack.

TO DO

- Write a non-recursive function to do a DFS on a graph, given an adjacency matrix.

Done. See graphtraverse.cpp, on the web page.
BFS is “first visited, first explored”.

Thus: replace the Stack with a Queue.

BFS is not as nice in several ways.

- No elegant recursive formulation.
- Not a convenient way to travel around a graph.

But BFS is *useful*.

- BFS is good for finding the shortest paths to other vertices.
- Also, looking for things “nearby first”.

TO DO

- Modify our DFS function to do BFS.

Done. See graphtraverse.cpp, on the web page.
Sometimes we place **costs** (or **weights**) on edges of a graph.

- Cost might represent distance, time, money, etc.
- In general, the “cost” of an edge is how much resource expenditure it takes to “use” the edge in some way.
- We want to do things in a way that minimizes the total cost.

Example: Shortest Path

- Use a variation on BFS called **Dijkstra’s Algorithm**.
 - Choose a start vertex.
 - Label each vertex with the length of the shortest known path from the start to it.
 - So, for now, start gets 0, others get ∞ (no path is known).
 - Repeat:
 - Among the unvisited vertices, find the one with the smallest label ("me" below).
 - For each neighbor, if my label plus the cost of the edge between us is less than its label, then replace its label with the new value.
 - Mark me as visited.
Spanning Trees
Introduction

A **tree** is a graph that:
- Is **connected** (all one piece).
- Has no **cycles**.

Given a graph G, a **spanning tree** in G is a tree that:
- Uses only vertices and edges of G.
- Uses *all* vertices of G.

Fact. Every connected graph has a spanning tree.

An important problem is, given a weighted graph (weights on the edges), find a **minimum spanning tree** (a spanning tree of minimum total weight).
- There are several nice algorithms that solve this problem.
Spanning Trees
Prim’s Algorithm — Idea

Given a connected weighted graph (weights on the edges), we can find a minimum spanning tree using a **greedy** algorithm.

Here is one greedy algorithm for finding a minimum-weight spanning tree.

- Start with one vertex that we can reach.
- Repeatedly add the lowest weight edge joining a vertex we can reach to one we cannot (and now we can reach its other endpoint).

This is called **Prim’s Algorithm**.

- R.C. Prim 1957 (also V. Jarnik 1930 & E. Dijkstra 1959).
Spanning Trees
Prim’s Algorithm — Description

Prim’s Algorithm more formally:

- Given: Connected graph with weights on the edges.
- Returns: Edge set of a minimum spanning tree.
- Procedure:
 - Mark all vertices as not-reached.
 - Set edge set of spanning tree to empty.
 - Choose a vertex. Mark it as reached.
 - Repeat while there exist not-reached vertices:
 - Find lowest weight edge joining a reached vertex to a not-reached vertex.
 - Add this edge to the edge set.
 - Mark the not-reached endpoint of this edge as reached.
 - Return edge set.
Spanning Trees
Prim’s Algorithm — Issues

How can we specify a weighted graph (in a program)?

- Use something like an adjacency matrix, but instead of storing 0/1, store weights. If necessary, also have a value meaning “no edge”.

How can we efficiently find the lowest cost edge between reached and a not-reached vertices?

- Use a Priority Queue.
- One way to do it:
 - PQ holds edges that, at some point, joined reached & not-reached vertices.
 - When getting an edge from the PQ, check to be sure it joins reached & not-reached vertices. If not, skip it.
 - When marking a vertex as reached, insert into the PQ all edges from this vertex to not-reached vertices.
 - When the PQ is empty, quit.
TO DO

- Implement Prim’s Algorithm.

Done. See `prim.cpp`, on the web page.

Note: Prim’s Algorithm can be implemented somewhat more efficiently.

- Use adjacency lists instead of an adjacency matrix. Inserting in the PQ would become faster.
- Put vertices in the PQ, instead of edges, and be intelligent about figuring out which edge to use to get to that vertex.
- Use a Fibonacci Heap instead of a Binary Heap. A Fibonacci Heap is a data structure much like a Binary Heap, but: insert is faster \([O(1)]\) at the expense of delete becoming amortized \(O(\log n)\).
Spanning Trees
Other Algorithms

Kruskal’s Algorithm (J. Kruskal 1956)
- Procedure: Repeatedly add the lowest weight edge joining two vertices that cannot be reached \textit{from each other}.
- Need some way of determining efficiently whether a vertex can be reached from another vertex. (Coming soon!)

Reverse-Delete Algorithm (J. Kruskal 1956)
- Procedure: Start with all edges. Repeatedly remove the highest weight edge joining two vertices that \textit{can} be reached from each other.
- (Same need as above.)