
Introduction to Graphs
Graph Traversals

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, December 7, 2009

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell



7 Dec 2009 CS 311 Fall 2009 2

Unit Overview
Tables & Priority Queues

Major Topics

� Introduction to Tables

� Priority Queues

� Binary Heap algorithms

� Heaps & Priority Queues in the C++ STL

� 2-3 Trees

� Other balanced search trees

� Hash Tables

� Prefix Trees

� Tables in various languages

�

�

�

�

�

�

�

�

�

DON
E



7 Dec 2009 CS 311 Fall 2009 3

The Rest of the Course
Overview

Two Topics

� External Data

� Throughout this semester, we have dealt-with data stored in memory.

� What if we store data on an external device, accessed via a (relatively) 
slow connection. How does this change the design of algorithms and 
data structures?

� Graph Algorithms

� A graph is a way of modeling relationships between pairs of objects.

� This is a very general notion; thus, algorithms for graphs often have 
very general applicability.

�



7 Dec 2009 CS 311 Fall 2009 4

Review
External Data — Introduction, Sorting, Tables: Hash Table

We considered data that are accessed via a slow channel.

� Overriding concern: Minimize use of the channel.

Often, the channel transmits data in chunks: blocks.

� Thus: Minimize the number of block accesses.

Sorting

� Stable Merge works well with block-access data.

� Use temporary files for the necessary buffers.

� Result: Reasonably efficient external Merge Sort.

Table Implementation — Hash Table

� Avoid open addressing.

� Each bucket takes one block (or some small number of blocks?).

Client Server

“Here”: Where our 
program runs

“There”: Has data 
storage

Slow channel



7 Dec 2009 CS 311 Fall 2009 5

Review
External Data — Tables: B-Trees [1/3]

A B-Tree of degree m (m is odd) is essentially an (m+1)/2 … m
Tree.

� Each node has (m–1)/2 up to m–1 items.

� Exception: The root can have 1 … m–1 items.

� All leaves are at the same level.

� All non-leaves have 1 more child than # of items.

� Order property holds, as for 2-3 Trees and 2-3-4 Trees.

A 2-3 Tree is precisely a B-Tree of degree 3.

� Degree = max # of children = # of items in an overfull node.

Below is an example of a B-Tree of degree 7.

� In practice, a B-Tree could have much higher degree than this.

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

Terminology varies. 
This is what the text 
uses.



7 Dec 2009 CS 311 Fall 2009 6

Review
External Data — Tables: B-Trees [2/3]

How B-Tree Algorithms Work

� Retrieve

� Like other search trees.

� Traverse

� Like other search trees (generalized inorder traversal).

� Note that we need only read each block once, if we have in-memory 
storage for h blocks, where h is the height of the tree.

� Insert

� Generalizes 2-3 Tree Insert algorithm:

� Find the leaf that an item “should” go in.

� Insert into this leaf.

� If overfull, split it and move up the middle item, recursively inserting it in the 
parent node.

� If the root becomes overfull, split and create a new root.

� Delete

� Generalizes 2-3 Tree Delete algorithm.



7 Dec 2009 CS 311 Fall 2009 7

Review
External Data — Tables: B-Trees [3/3]

Here is an illustration of B-Tree insert.

� We insert 40 into this B-Tree of degree 7.

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

12 58 84

2 7 10 15 27 28 394052 87 88 91 93 9860 63 71 8134

12 58 84

2 7 10 15 27 28 39 40 52 87 88 91 93 9860 63 71 81

34



7 Dec 2009 CS 311 Fall 2009 8

Review
External Data — Tables: B+ Trees

A common variation of a B-Tree is a B+ Tree.
� All data (the non-key portion of the value) is in the leaves.

� Keys in non-leaf nodes are duplicated in the leaves.

� Leaves are typically joined in an auxiliary Linked List. This minimizes the number of 
block accesses required for a traversal.

� Otherwise, same as a B-Tree.

From the Wikipedia “B+ Tree” article (4 Dec 2009):

btrfs, NTFS, ReiserFS, NSS, XFS, and JFS filesystems all use this type of tree for metadata 
indexing. Relational database management systems such as IBM DB2, Informix, Microsoft 
SQL Server, Oracle 8, Sybase ASI, PostgreSQL, Firebird and MySQL support this type of tree 
for table indices. Key-value database management systems such as Tokyo Cabinet and 
Tokyo Tyrant support this type of tree for data access.

12 58 84

2 7 10 15 27 28 39 40 52 84 88 91 93 9860 63 71 81

34

12 34 58 87

Each key in a non-leaf node is 
duplicated in a leaf node.

Data for key 84 are 
only stored here.

Auxiliary Linked List



7 Dec 2009 CS 311 Fall 2009 9

Review
External Data — Tables: Reliability Issues

In practice, external storage is significantly less reliable than a 
computer’s main memory.

Consider: What happens if the communications channel to external
storage device fails in the middle of some algorithm?

� The data on the device may be left in an intermediate state.

How can we take this into account when designing algorithms that
deal with data on external storage?

� As much as possible, the intermediate state of data should be 
either:

� A valid state,

� Or, if that is not possible, a state that can easily fixed (made valid).

In particular:

� When writing the equivalent of a pointer to data on an 
external storage, write the data first, then the pointer.



7 Dec 2009 CS 311 Fall 2009 10

Introduction to Graphs
Definition

A graph is consists of vertices and 
edges. An edge joins two vertices.

� An example of a graph is shown at 
right.

Sometimes we give each edge a 
direction.

� The result is a directed graph or 
digraph.

Graphs represent situations in which 
objects are related in pairs.

vertex edge



7 Dec 2009 CS 311 Fall 2009 11

Introduction to Graphs
Applications

We use graphs to model:

� Networks

� Vertices are nodes in network; edges are connections.

� Examples

� Communication

� Transportation

� Electrical

� Web (edges are links)

� State Spaces

� Vertices are states; edges are transitions between states.

� See CS 451 for more info.

� Generally, situations in which objects are related in pairs:

� Vertices are people, edges indicate relationships (friendship? common 
work?)

� Vertices are events at a conference; edges join events that cannot be 
held simultaneously.

� Vertices are data structure nodes; (directed) edges indicate (owning?) 
pointers.



7 Dec 2009 CS 311 Fall 2009 12

Introduction to Graphs
Representations

Two common ways to represent graphs:

� Adjacency matrix. 2-D array of Boolean values. Entry (i, j) 
answers the question “Does edge (i, j) exist?”

� Answer “does edge (i, j) exist?” in O(1).

� Finding all neighbors of a vertex can be slow for large, sparse graphs.

� A sparse graph is one with relatively few edges.

� Space used: O(n2), where n = number of vertices.

� Note: For graphs in general, we cannot do better than this.

� Adjacency list. Array of lists. Entry i is a list of the neighbors of 
vertex i.

� Answer “does edge (i, j) exist?” in O(n).

� Finding all neighbors of a vertex is fast.

� Much better space usage for large, sparse graphs.

Both of these can be tweaked in obvious ways to handle digraphs.

Other graph representations are used.



7 Dec 2009 CS 311 Fall 2009 13

Graph Traversals
Introduction

We have discussed traversals of Binary Trees.

� Preorder, inorder, postorder.

We traverse graphs as well.

� To “traverse” here means to visit each vertex once.

� Traditionally, graph traversal is viewed in terms of a “search”.

Two kinds of graph traversals.

� Depth-first search (DFS).

� “Last visited, first explored.”

� Like preorder tree traversal.

� When we visit a vertex, give priority to visiting its unvisited neighbors 
(and their unvisited neighbors, etc.).

� Breadth-first search (BFS).

� “First visited, first explored.”

� Visit all of a vertex’s unvisited neighbors before visiting their neighbors.



7 Dec 2009 CS 311 Fall 2009 14

Graph Traversals
DFS [1/2]

DFS has a nice recursive formulation:

� Given a start vertex, visit it, and mark it as visited.

� For each of the start vertex’s neighbors:

� If this neighbor is unvisited, do a DFS with this neighbor as the start 
vertex.

We get a DFS tree (shown in bold above).

DFS is convenient if we think about traveling through the graph,
minimizing the number of edges we cross.

1

2

4 5

3

6

1

2

3

4
DFS: 1, 2, 4, 5, 3, 6 DFS: 1, 2, 3, 4



7 Dec 2009 CS 311 Fall 2009 15

Graph Traversals
DFS [2/2]

We can, as usual eliminate recursion using a Stack.

� “Last visited, first explored.”

� Then we have an iterative DFS algorithm using a local Stack.

� And we can use it in a more intelligent way than the “brute-force” 
recursion elimination method.

Algorithm

� Push start vertex on Stack.

� Repeat while Stack is non-empty:

� Pop top of Stack.

� If this vertex is not visited, then:

� Visit it.

� Push its not-visited neighbors on the Stack.

TO DO

� Write a non-recursive function to do a DFS on a graph, given an 
adjacency matrix. Done. See graphtraverse.cpp, 

on the web page.



7 Dec 2009 CS 311 Fall 2009 16

Graph Traversals
BFS

BFS is “first visited, first explored”.

Thus: replace the Stack with a Queue.

BFS is not as nice in several ways.

� No elegant recursive formulation.

� Not a convenient way to travel around a graph.

But BFS is useful.

� BFS is good for finding the shortest paths to other vertices.

� Also, looking for things “nearby first”.

TO DO

� Modify our DFS function to do BFS.

1

2

4 5

3

6

1

2

3

4
BFS: 1, 2, 3, 4, 5, 6 BFS: 1, 2, 4, 3

Done. See graphtraverse.cpp, 
on the web page.



7 Dec 2009 CS 311 Fall 2009 17

Graph Traversals
Generalization: Shortest Path

Sometimes we place costs (or weights) on edges of a graph.
� Cost might represent distance, time, money, etc.

� In general, the “cost” of an edge is how much resource expenditure 
it takes to “use” the edge in some way.

� We want to do things in a way that minimizes the total cost.

Example: Shortest Path
� Use a variation on BFS called Dijkstra’s Algorithm.

� Edsger Dijkstra, 1959.

� Choose a start vertex.

� Label each vertex with the length of the shortest
known path from the start to it.
� So, for now, start gets 0, others get ∞ (no path is known).

� Repeat:
� Among the unvisited vertices, find the one with the smallest label (“me” 
below).

� For each neighbor, if my label plus the cost of the edge between us is 
less than its label, then replace its label with the new value.

� Mark me as visited.

1

2

8

3

4


