2-3 Trees

Other Balanced Search Trees

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, November 23, 2009

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell
Our problem for much of the rest of the semester:

- **Store**: a collection of data items, all of the same type.
- **Operations**:
 - Access items [one item: retrieve/find, all items: traverse].
 - Add new item [insert].
 - Eliminate existing item [delete].
- All this needs to be efficient in both time and space.

A solution to this problem is a **container**.

Generic containers: those in which client code can specify the type of data stored.
Review

Binary Search Trees — Efficiency

<table>
<thead>
<tr>
<th></th>
<th>B.S.T. (balanced & average case)</th>
<th>Sorted Array</th>
<th>B.S.T. (worst case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieve</td>
<td>Logarithmic</td>
<td>Logarithmic</td>
<td>Linear</td>
</tr>
<tr>
<td>Insert</td>
<td>Logarithmic</td>
<td>Linear</td>
<td>Linear</td>
</tr>
<tr>
<td>Delete</td>
<td>Logarithmic</td>
<td>Linear</td>
<td>Linear</td>
</tr>
</tbody>
</table>

Binary Search Trees have poor worst-case performance. But they have very good performance:

- On average.
- If balanced.
 - But we do not know an efficient way to make them stay balanced.

Can we efficiently keep a Binary Search Tree balanced?
- We will look at this question again later.
Unit Overview
Tables & Priority Queues

Major Topics
✓ Introduction to Tables
✓ Priority Queues
✓ Binary Heap algorithms
✓ Heaps & Priority Queues in the C++ STL
(part) 2-3 Trees
✓ Other balanced search trees
✓ Hash Tables
✓ Prefix Trees
✓ Tables in various languages

- Lots of lousy implementations
- Idea #1: Restricted Table
- Idea #2: Keep a Tree Balanced
- Idea #3: “Magic Functions”
Review
Introduction to Tables [1/2]

What are possible Table implementations?
- A Sequence holding key-data pairs.
 - Sorted or unsorted.
 - Array-based or Linked-List-based.
- A Binary Search Tree holding key-data pairs.
 - Implemented using a pointer-based Binary Tree.

<table>
<thead>
<tr>
<th>Key</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Bob</td>
</tr>
<tr>
<td>9</td>
<td>Ann</td>
</tr>
<tr>
<td>2</td>
<td>Ed</td>
</tr>
</tbody>
</table>

Table

Array Implementations

Sorted
- (2, Ed)
- (4, Bob)
- (9, Ann)

Unsorted
- (4, Bob)
- (9, Ann)
- (2, Ed)

Linked List Implementations

Sorted
- (2, Ed) → (4, Bob) → (9, Ann)

Unsorted
- (4, Bob) → (9, Ann) → (2, Ed)

Binary Search Tree Implementation

(4, Bob)
- (2, Ed)
- (9, Ann)
Review
Introduction to Tables [2/2]

<table>
<thead>
<tr>
<th></th>
<th>Sorted Array</th>
<th>Unsorted Array</th>
<th>Sorted Linked List</th>
<th>Unsorted Linked List</th>
<th>Binary Search Tree</th>
<th>Balanced (how?) Binary Search Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieve</td>
<td>Logarithmic</td>
<td>Linear</td>
<td>Linear</td>
<td>Linear</td>
<td>Linear</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>Insert</td>
<td>Linear</td>
<td>Constant??</td>
<td>Linear</td>
<td>Constant</td>
<td>Linear</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>Delete</td>
<td>Linear</td>
<td>Linear</td>
<td>Linear</td>
<td>Linear</td>
<td>Linear</td>
<td>Logarithmic</td>
</tr>
</tbody>
</table>

Idea #1: Restricted Table
- Perhaps we can do better if we do not implement a Table in its full generality.

Idea #2: Keep a Tree Balanced
- Balanced Binary Search Trees look good, but how to keep them balanced efficiently?

Idea #3: “Magic Functions”
- Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.
- Have a “magic function” that tells the index of an item.
- Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)

We will look at what results from these ideas:
- From idea #1: Priority Queues
- From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)
- From idea #3: Hash Tables
Overview of Advanced Table Implementations

We will cover the following advanced Table implementations.

- **Balanced Search Trees**
 - Binary Search Trees are hard to keep balanced, so to make things easier we allow more than 2 children:
 - **2-3 Tree**
 - Up to 3 children
 - **2-3-4 Tree**
 - Up to 4 children
 - **Red-Black Tree**
 - Binary-tree representation of a 2-3-4 tree
 - Or back up and try a balanced Binary Tree again:
 - **AVL Tree**
 - Alternatively, forget about trees entirely:
 - **Hash Tables**
 - Finally, “the Radix Sort of Table implementations”:
 - **Prefix Tree**
A Binary-Search-Tree style node is a **2-node**.
- This is a node with 2 subtrees and 1 data item.
- The item’s value lies between the values in the two subtrees.

In a "2-3 Tree" we also allow a node to be a **3-node**.
- This is a node with 3 subtrees and 2 data items.
- Each of the 2 data items has a value that lies between the values in the corresponding pair of consecutive subtrees.

Later, we will look at "2-3-4 trees", which can also have **4-nodes**.
A **2-3 Search Tree** (generally we just say **2-3 Tree**) is a tree with the following properties.

- All nodes contain either 1 or 2 data items.
 - If 2 data items, then the first is \leq the second.
- All leaves are at the same level.
- All non-leaves are either 2-*nodes* or 3-*nodes*.
 - They must have the associated order properties.
Review
2-3 Trees — Operations: Traverse & Retrieve

How do we **traverse** a 2-3 Tree?

- We generalize the procedure for doing an **inorder traversal** of a Binary Search Tree.
 - For each leaf, go through the items in it.
 - For each non-leaf 2-node:
 - Traverse subtree 1.
 - Do item.
 - Traverse subtree 2.
 - For each non-leaf 3-node:
 - Traverse subtree 1.
 - Do item 1.
 - Traverse subtree 2.
 - Do item 2.
 - Traverse subtree 3.

- This procedure lists all the items in sorted order.

How do we **retrieve** by key in a 2-3 Tree?

- Start at the root and proceed downward, making comparisons, just as in a Binary Search Tree.
- 3-nodes make the procedure *slightly* more complex.
Ideas in the 2-3 Tree **insert** algorithm:

- Start by adding the item to the appropriate leaf.
- Allow nodes to expand when legal.
- If a node gets too big (3 items), split the subtree rooted at that node and propagate the **middle** item upward.
- If we end up splitting the entire tree, then we create a new root node, and all the leaves advance one level simultaneously.

Example 1: Insert 10.
Example 2: Insert 5.

- Over-full nodes are **blue**.
Example 3: Insert 5.
- Here we see how a 2-3 Tree increases in height.
Review

2-3 Tree **Insert** Algorithm (outline)

- Find the leaf the new item goes in.
 - Note: In the process of finding this leaf, you may determine that the given key is already in the tree. If you do, act accordingly.
- Add the item to the proper node.
- If the node is overfull, then split it (dragging subtrees along, if necessary), and move the middle item up:
 - If there is no parent, then make a new root. Done.
 - Otherwise, add the moved-up item to the parent node. To add the item to the parent, do a recursive call to the insertion procedure.
Review
2-3 Trees — Operations: Delete [1/8]

Deleting from a 2-3 Tree is similar to inserting.

- We will use the recursive-thinking idea to avoid describing every detail of the process.
- We try to delete from a leaf. If it does not work, rearrange.
- If that does not work, bring an item from the parent down. This is deleting from the parent. Recurse (or reduce the height and we are done).
- As with inserting, we start at a leaf and work our way up.
Review
2-3 Trees — Operations: Delete [2/8]

Observation
- We can always start our deletion at a leaf.
- If the item to be deleted is not in a leaf, swap it with its “inorder” successor.
 - It must have one. (Why?)
- This swap operation comes before the recursive deletion procedure.

Easy Case
- If the leaf containing the item to be deleted has another item in it, just delete the item.

Example
- Delete 25.

```plaintext
    20
   / \
  7 12
 /  \
2 4 9

   20
  / \
 7 12
 /  \
2 4 9

   20
  / \
 7 12
 /  \
2 4 9
```

Semi-Easy Case

- Suppose the item to be deleted is in a node that contains no other item.
- If, next to this node, there is a sibling that contains 2 items, we can rearrange using the parent.

Example: Delete 9.
Review
2-3 Trees — Operations: Delete [4/8]

Hard Case

- If the item to be deleted is in a node with no other item, and there are no nearby 2-item siblings, then we must bring down an item from the parent and place it in a nearby sibling node.
- We need to join nodes/subtrees to make the invariants work.

Example: Delete 7.

In the above example, recursively “delete” 4 from the tree consisting of the first two levels. Since 4’s node has another item in it, this is the easy case; we simply get rid of 4 (and then put it in the node containing 2).
If we do a recursive delete above the leaf level, where do “orphaned” subtrees go?

Consider two Hard Case examples.
- We delete 40. Why? Because one of its subtrees is going away. What do we do with the other subtree?
- Answer: Make it a subtree of the item we bring down.

Consider a Semi-Easy Case example.
- Again, we delete 40. One of its subtrees is going away. 30 is coming down to replace it. 20 is going up. What do we do with the right-subtree of 20?
- Answer: Make it the left subtree of 30.

Idea: There is always exactly one spot available for an orphaned subtree. Put it in that spot.
Review
2-3 Trees — Operations: Delete [6/8]

2-3 Tree **Delete** Algorithm (outline)

- Find the node holding the given key.
 - Note: In the process of this search, you may determine that the given key is not in the tree. If you do, act accordingly.

- If the above node is not a leaf, then swap its item with its successor in the traversal ordering. Continue with the deletion procedure: delete the given key from its new (leaf) node.

- 3 Cases
 - **Easy Case** (item shares a node with another item). Delete item. Done.
 - **Semi-Easy Case** (otherwise: item has a consecutive sibling holding 2 items). Do rotation: sibling item up, parent down, to replace the item to be deleted. Done.
 - **Hard Case** (otherwise). Eliminate the node holding the item, and move item from the parent down, adding it to consecutive sibling node. Eliminate item from parent using a recursive call to the deletion procedure (dragging subtrees along).
A few more examples.

Example: Delete 1.

- 1 is “Hard Case”, so we bring down the parent (recursively “delete” 2) and join it with 3 in a single node.
- 2 is “Semi-Easy Case”, so rotate (6 to 4 to 2).
- The 5 is orphaned. We make it the right child of 4.
Example: Delete 2.

- This is “Easy Case”.

Example: Delete 3.

- This is “Hard Case”. We need to bring down 4 and join it with 5.
- 4 is “Hard Case”. We need to bring down 6 and join it with 8.
- 6 is the root. We reduce the height of the tree.
What is the order of the following operations for a 2-3 Tree?

- **Traverse**
 - $O(n)$ [as usual].

- **Retrieve**
 - $O(\log n)$.
 - The number of steps is roughly proportional to the height of the tree.

- **Insert**
 - $O(\log n)$.
 - Comments as for Retrieve.

- **Delete**
 - $O(\log n)$.
 - Comments as for Retrieve.

This is what we have been looking for. A 2-3 Tree is a good basis for an implementation of a Table. However, there are better bases.

- Not necessarily a **lot** better, but better.
Other Balanced Search Trees
Better Than a 2-3 Tree?

Again, the Table operations retrieve, insert, and delete are all \(O(\log n) \) for a 2-3 Tree implementation.

We do not know any structure in which all operations are \(O(\log n) \) [worst case], and at least one is faster.

- Of course, we can make some operations better \& some worse. For example, for an unsorted Linked List implementation, Table insert is \(O(1) \), while Table retrieve \& delete are \(O(n) \).

However, we can make everything a little faster than a 2-3 Tree, although still \(O(\log n) \).

We do this with other kinds of balanced search trees.

- These are all similar to a 2-3 Tree.
- Thus, we will not look at them in great detail.
- See the text for details.
Other Balanced Search Trees
2-3-4 Trees

In a **2-3-4 Tree**, we also allow 4-nodes.

The insert and delete algorithms are not terribly different from those of a 2-3 Tree.
- They are a little more complex.
- And they tend to be a little faster.

Why not also allow 5-nodes (a “2-3-4-5 Tree”)?
- Because the algorithms tend to be a little slower.
It turns out that we can increase the efficiency of 2-3-4 Tree operations by representing the tree using a Binary Search Tree plus a little more information.

- The representation we will discuss is called a **Red-Black Tree**.

Consider the 4-node below. We can represent this part of the 2-3-4 Tree using only 2-nodes if we add two new nodes (shown in red).

Note that the ordering property of the 2-3-4 Tree translates into the ordering property of a Binary Search Tree.
Other Balanced Search Trees
Red-Black Trees — Idea [2/3]

Here again is our transformed 4-node.

We can also apply this process to a 3-node (in two different ways).

2-nodes are essentially left alone.
Other Balanced Search Trees
Red-Black Trees — Idea [3/3]

A **Red-Black Tree** is a Binary-Tree representation of a 2-3-4 Tree.

- A R.B.T. is a Binary Search Tree in which each node is “**red**” or “**black**”.
- Think of **black** nodes as representing 2-3-4 Tree nodes.
- Think of **red** nodes as being the extra ones required to make a Binary Tree out of the 2-3-4 Tree.

It is no longer true that every leaf is at the same level. However, given a node, every path from it down to a leaf goes through the same number of **black** nodes.
Implementations of Red-Black Trees vary.
- I have presented them as having red and black nodes.
- The text talks about red and black pointers.
 - Note that the root is always black, so it does not matter whether the root’s color is stored somewhere.
- Some (most?) versions add “null nodes” at the bottom.
 - Null nodes are black and have no data.
 - All leaves are null nodes, and all null nodes are leaves.
Other Balanced Search Trees
Red-Black Trees — Usage

How do we use Red-Black Trees?
- Retrieve and traverse are exactly the same as for Binary Search Trees. Just ignore the color.
- Insert and delete algorithms are complicated (and will not be covered). They are based on *rotations*, which we will see when we cover AVL Trees (shortly).

Why do we use Red-Black Trees?
- Because they tend to be just a little more efficient than 2-3-4 Trees, which are just a little more efficient than 2-3 Trees.
- All three have $O(\log n)$ insert, delete, and retrieve.

Red-Black Trees are the most common basis for implementations of C++ STL Tables (*std::set*, *std::map*, etc.).
A Red-Black Tree is not necessarily a balanced Binary Tree, as we defined “balanced” earlier.

However, a Red-Black Tree with n nodes cannot have height more than $2 \log_2(n + 1)$.
Thus, the height is $O(\log n)$, which makes the retrieve, insert, and delete operations $O(\log n)$.
In practice, we *never* do the 2-3-4 Tree to Red-Black Tree conversion. Rather, we implement only a Red-Black Tree.

- The conversion was illustrated here in order to explain where Red-Black Trees come from and how they work.

If you need an efficient balanced search tree for in-memory data, use a Red-Black Tree.

- The insert & delete algorithms get rather complex. Look up the details.
Other Balanced Search Trees
AVL Trees — Definition

The first kind of self-balancing search tree was the “AVL Tree”.

- AVL trees are named after the authors of a 1962 paper describing them: Georgy Maximovich Adelson-Velsky and Yevgeniy Mikhailovich Landis.
- These days, AVL Trees are mostly a historical curiosity.

An **AVL Tree** is a balanced (in our original, strict sense) Binary Search Tree in which each node has an extra piece of data: its “balance”: left high [←], right high [→], or even [=].

- Recall: a Binary Tree is balanced, if, for each node in the tree, its two subtrees have heights differing by at most 1.

A-V & L discovered logarithmic-time algorithms to do insert and delete while maintaining the balanced property.
Other Balanced Search Trees
AVL Trees — Rotation

We will not cover all of the details of the AVL Tree algorithms.

- We note that they rest on an operation known as rotation.
- Rotation is pictured below. For nodes labeled A, C, E, the subtrees of which they are the roots are moved along with them.
- Note that we have seen something (roughly) like this before, in the “semi-easy case” of 2-3 Tree deletion.

When we allow rotations, we can insert or delete using at most $O(\log n)$ operations, while maintaining the balanced property.

- Thus, insert and delete (and, by the balanced property, retrieve) are $O(\log n)$ operations for an AVL Tree.
Other Balanced Search Trees
AVL Trees — Example

Quick example of AVL Tree insert: Do Binary Search Tree insert, then proceed up to the root, adjusting “balances” and, if needed, rotating.

- Below we illustrate Insert 5.
All balanced search trees offer an implementation of the Table ADT in which the insert, delete, and retrieve operations are $O(\log n)$. Generally, the Red-Black Tree is agreed to have best overall performance.

- It is the one that tends to be used to implement things like `std::map`.
- The word “overall” is important. For example, an AVL Tree has a faster retrieve operation than a Red-Black Tree.
 - But a sorted array has an even faster retrieve; no one uses AVL Trees.

Implementation details may be changed due to various trade-off’s.

- Space vs. time, etc.