
Notes on Assignment 7
Heaps & Priority Queues in the C++ STL
2-3 Trees

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, November 20, 2009

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell



20 Nov 2009 CS 311 Fall 2009 2

Notes on Assignment 7
Introduction

In Assignment 7, you are to write a simple Binary Search Tree 
(class BSTree), with copying, retrieve, insert (but not delete!), 

and the three standard traversals.

Here are some ideas about writing the code.

This is a node-based structure.

� The general organization should be much like the Linked List you
wrote: a class for the data structure as a whole, and a node class 
that the client code never sees.

� The node class should have three data members: a data item, and 
two child pointers: left & right. Each of these pointers is NULL if 
there is no child.

� Class BSTree should have two data members: head pointer (pointer 
to a node) and size.



20 Nov 2009 CS 311 Fall 2009 3

Notes on Assignment 7
Helper Functions

Some useful private helper functions to write:

copy

� Copying is easy to do recursively. But your copy constructor cannot 
be recursive. So write a private recursive helper function copy.

� Function copy takes a pointer to a node, copies the tree rooted at 
that node, and then returns a pointer to the root of the new tree.

� Do this recursively:

� If the given pointer is NULL, return NULL (base case). Otherwise, return 
a new node whose data is the same as the data in the given node, and 
whose left and right child pointers are gotten by recursive calls to copy
on the given node’s left & right child pointers.

swap

� As usual: call std::swap on each data member.



20 Nov 2009 CS 311 Fall 2009 4

Notes on Assignment 7
Ideas for Writing Functions [1/2]

Copy constructor

� Do everything in initializers. Set the head pointer to the result of 
calling helper function copy on the other object’s head pointer. Set 
size to the other object’s size.

Copy assignment operator

� Use the swap trick.

retrieve

� Call helper function find with the given key. Return true if find
returns a non-NULL value. Otherwise, return false.

insert

� Call helper function find with the given key. Return true if find
returns a non-NULL value. Otherwise, set the given pointer to point 
to a new node holding the given key, increment size, and return 
false.



20 Nov 2009 CS 311 Fall 2009 5

Notes on Assignment 7
Ideas for Writing Functions [2/2]

preorderTraverse

� Take the iterator by value (so that an array decays to a pointer). 
Then call a private helper function with the given iterator and the 
head pointer.

� Private helper function: takes iterator by reference (since it 
modifies the iterator) and a pointer to a node. If the pointer is 
NULL, return. Otherwise, do *iterator++ = pointer->data_, and 
then make two recursive calls:

� One taking iterator and pointer->left.

� One taking iterator and pointer->right.

inorderTraverse, postorderTraverse

� Write the same way as function preorderTraverse, but do the 
*iterator++ = pointer->data_ operation in the appropriate place.

� Note that these will require different helper functions.



20 Nov 2009 CS 311 Fall 2009 6

Review
Where Are We? — The Big Problem

Our problem for much of the rest of the semester:

� Store: a collection of data items, all of the same type.

� Operations:

� Access items [one item: retrieve/find, all items: traverse].

� Add new item [insert].

� Eliminate existing item [delete].

� All this needs to be efficient in both time and space.

A solution to this problem is a container.

Generic containers: those in which client code can specify the 
type of data stored.



20 Nov 2009 CS 311 Fall 2009 7

Review
Binary Search Trees — Efficiency

Binary Search Trees have poor worst-case performance.

But they have very good performance:

� On average.

� If balanced.

� But we do not know an efficient way to make them stay balanced.

Can we efficiently keep a Binary Search Tree balanced?

� We will look at this question again later.

LinearLinearLogarithmicInsert

LinearLinearLogarithmicDelete

LinearLogarithmicLogarithmicRetrieve

B.S.T.
(worst case)

Sorted ArrayB.S.T.
(balanced & 
average case)



20 Nov 2009 CS 311 Fall 2009 8

Unit Overview
Tables & Priority Queues

Major Topics

� Introduction to Tables

� Priority Queues

� Binary Heap algorithms

� Heaps & Priority Queues in the C++ STL

� 2-3 Trees

� Other balanced search trees

� Hash Tables

� Prefix Trees

� Tables in various languages

�

�

Idea #1: Restricted Table

Idea #2: Keep a Tree Balanced

Idea #3: “Magic Functions”

Lots of lousy implementations

�



20 Nov 2009 CS 311 Fall 2009 9

Review
Introduction to Tables [1/2]

What are possible Table implementations?

� A Sequence holding key-data pairs.

� Sorted or unsorted.

� Array-based or Linked-List-based.

� A Binary Search Tree holding key-data pairs.

� Implemented using a pointer-based Binary Tree. Ed2

Ann9

Bob4

DataKey

(4, Bob)

(2, Ed) (9, Ann)

Table

Array 
Implementations

Linked List 
Implementations

Binary Search Tree 
Implementation

(4, Bob) (9, Ann) (2, Ed) (4, Bob) (9, Ann) (2, Ed)

Unsorted Unsorted

(2, Ed) (4, Bob) (9, Ann) (2, Ed) (4, Bob) (9, Ann)

Sorted Sorted



20 Nov 2009 CS 311 Fall 2009 10

Review
Introduction to Tables [2/2]

Idea #1: Restricted Table
� Perhaps we can do better if we do not implement a Table in its full generality.

Idea #2: Keep a Tree Balanced
� Balanced Binary Search Trees look good, but how to keep them balanced efficiently?

Idea #3: “Magic Functions”
� Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.

� Have a “magic function” that tells the index of an item.

� Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)

We will look at what results from these ideas:
� From idea #1: Priority Queues

� From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)

� From idea #3: Hash Tables

Linear

Linear

Linear

Binary
Search Tree

Linear

Constant

Linear

Unsorted
Linked List

Linear

Linear

Linear

Sorted
Linked List

Logarithmic

Logarithmic

Logarithmic

Balanced (how?)
Binary
Search Tree

Constant???LinearInsert

LinearLinearDelete

LinearLogarithmicRetrieve

Unsorted
Array

Sorted
Array



20 Nov 2009 CS 311 Fall 2009 11

Review
Binary Heap Algorithms [1/8]

A Binary Heap (usually just Heap) is a complete Binary Tree in 
which no node has a data item that is less than the data item in 
either of its children.

In practice, we often use “Heap” to refer to the
array-based complete Binary Tree
implementation.

56

50 25

1 3

5

10

22 25 11

3 12

56 50 25 5 22 25 11 1 3 10 3 12

Logical 
Structure

Physical 
Structure



20 Nov 2009 CS 311 Fall 2009 12

Review
Binary Heap Algorithms [2/8]

We can use a Heap to implement a Priority Queue.
� Like a Table, but retrieve/delete only highest key.

� Retrieve is called “getFront”.

� Key is called “priority”.

� Insert any key-data pair.

Algorithms for the Three Primary
Operations
� GetFront

� Get the root node.

� Constant time.

� Insert
� Add new node to end of Heap, “trickle up”.

� Logarithmic time if no reallocate-and-copy required.
� Linear time if it may be required. Note: Heaps often do not manage their own 
memory, in which case the reallocation will not be part of the Heap operation.

� Delete
� Swap first & last items, reduce size of Heap, “trickle down” root.

� Logarithmic time.
Faster than linear time!

56

50 25

1 3

5

10

22 25 11

3 12

56 50 25 5 22 25 11 1 3 10 3 12



20 Nov 2009 CS 311 Fall 2009 13

Review
Binary Heap Algorithms [3/8]

To insert into a Heap, add new node at the end. Then “trickle up”.

� If new value is greater than its parent, then swap them. Repeat at 
new position.

56

50 25

1 3

5

10

22 25 11

3

56

50 25

1 3

5

10

22 11

3

56

50 32

1 3

5

10

22 25 11

3

12 32

32

12 25

12 25

Done



20 Nov 2009 CS 311 Fall 2009 14

Review
Binary Heap Algorithms [4/8]

To delete the root item from a Heap, swap root and last items, and reduce 
size of Heap by one. Then “trickle down” the new root item.

� If the root is ≥ all its children, stop.

� Otherwise, swap the root item with its largest child and recursively fix the 
proper subtree.

25

1 3

5

10

22 25 11

3

50

12 25

1 3

5

10

22 25 11

3

50

22 25

1 3

5

10

12 20 11

3

12

50

Done

56

50 25

1 3

5

10

22 25 11

3 12



20 Nov 2009 CS 311 Fall 2009 15

Review
Binary Heap Algorithms [5/8]

Heap insert and delete are usually given a random-access range. The item 
to insert or delete is last item of the range; the rest is a Heap.

� Action of Heap insert:

� Action of Heap delete:

Note that Heap algorithms can do all their work using swap.

� This usually allows for both speed and safety.

Given Heap Item to insert
New Heap

Given Heap Item deletedNew Heap

That’s where 
the swap puts it 
(right?).

That’s where we want to put the 
item, initially (right?).



20 Nov 2009 CS 311 Fall 2009 16

Review
Binary Heap Algorithms [6/8]

To turn a random-access range (array?) into a Heap, we could do n–1 Heap inserts.
� Each insert operation is O(log n), and so making a Heap in this way is O(n log n).

However, we can make a Heap faster than this.
� Place each item into a partially-made Heap, in backwards order.

� Trickle each item down through its descendants.
� For most items, there are not very many of these.

This Heap “make” method is linear time!

4

39

1

3 8 4

39

1

3 8 4

9 3

1

3 8 4

9 8

1

3 3

4

89

1

3 3 4

89

1

3 3 4

81

9

3 3 1

84

9

3 3

1 9 3 4 3 8

9 4 8 1 3 3

Bottom items: 
no trickling 
necessary



20 Nov 2009 CS 311 Fall 2009 17

Review
Binary Heap Algorithms [7/8]

Our last sorting algorithm is Heap Sort.

� This is a sort that uses Heap algorithms.

� We can think of it as using a Priority Queue, where the priority of an 
item is its value — except that the algorithm is in-place, using no 
separate data structure.

� Procedure: Make a Heap, then delete all items, using the delete 
procedure that places the deleted item in the top spot.

� We do a make operation, which is O(n), and n getFront/delete 
operations, each of which is O(log n).

� Total: O(n log n).



20 Nov 2009 CS 311 Fall 2009 18

Review
Binary Heap Algorithms [8/8]

Efficiency ☺
� Heap Sort is O(n log n).

Requirements on Data �
� Heap Sort requires random-access data.

Space Usage ☺
� Heap Sort is in-place.

Stability �
� Heap Sort is not stable.

Performance on Nearly Sorted Data �
� Heap Sort is not significantly faster or slower for nearly sorted data.

Notes
� Heap Sort can be generalized to handle sequences that are modified 
(in certain ways) in the middle of sorting.

� Recall that Heap Sort is used by Introsort, when the depth of the 
Quicksort recursion exceeds the maximum allowed.

We have seen these 
together before 
(Iterative Merge Sort on 
a Linked List), but never 
for an array.



20 Nov 2009 CS 311 Fall 2009 19

Heaps & Priority Queues in the C++ STL
Heap Algorithms

The C++ STL includes several Heap algorithms.
� These operate on ranges specified by pairs of random-access iterators.

� Any random-access range can be a Heap: array, vector, deque, part of these, etc.

� An STL Heap is a Maxheap with an optional client-specified comparison.

� Heap algorithms are used by STL Priority Queues (std::priority_queue).

Example: std::push_heap (in <algorithm>) inserts into an existing Heap.
� Called as std::push_heap(first, last).

� Assumes [first, last) is nonempty, and [first, last-1) is already a Heap.

� Inserts *(last-1) into the Heap.

Similarly:
� std::pop_heap

� Heap delete operation. Puts the deleted element in *(last-1).

� std::make_heap
� Make a range into a Heap.

� std::sort_heap
� Is given a Heap. Does a bunch of pop_heap calls.

� Calling make_heap and then sort_heap does Heap Sort.

� std::is_heap
� Tests whether a range is a Heap.



20 Nov 2009 CS 311 Fall 2009 20

Heaps & Priority Queues in the C++ STL
std::priority_queue — Introduction

The STL has a Priority Queue: std::priority_queue, in <queue>.
� Once again, STL documentation calls std::priority_queue a “container 
adapter”, not a “container”.

As with std::stack and std::queue, std::priority_queue is a wrapper 
around a container that you choose.

std::priority_queue<T, container<T> >

� “T” is the value type.

� “container<T>” can be any standard-conforming random-access sequence 
container with value type T.

� In particular “container” can be std::vector, std::deque, or 
std::basic_string.
� But not std::list.

container defaults to std::vector.

std::priority_queue<T>

// = std::priority_queue<T, std::vector<T> >



20 Nov 2009 CS 311 Fall 2009 21

Heaps & Priority Queues in the C++ STL
std::priority_queue — Members

The member function names used by std::priority_queue are 
the same as those used by std::stack.

� Not those used by std::queue.

� Thus, std::priority_queue has “top”, not “front”.

Given a variable pq of type std::priority_queue<T>, you can do:

� pq.top()

� pq.push(item)

� “item” is some value of type T.

� pq.pop()

� pq.empty()

� pq.size()



20 Nov 2009 CS 311 Fall 2009 22

Heaps & Priority Queues in the C++ STL
std::priority_queue — Comparison

How do we specify an item’s priority?
� We really don’t need to know an item’s priority; we only need to
know, given two items, which has the higher priority.

� Thus, we use a comparison, which defaults to operator<.

� A third, optional template parameter is a “comparison object”:

std::priority_queue<T, std::vector<T>,

compare>

� Comparison objects work the same as those passed to STL sorting 
algorithms (std::sort, etc.) and STL Heap algorithms.

� So, for example, a priority queue of ints whose highest priority 
items are those with the lowest value, would have the following 
type:

std::priority_queue<int, std::vector<int>,

std::greater<int>()>



20 Nov 2009 CS 311 Fall 2009 23

Overview of Advanced Table Implementations

We will cover the following advanced Table implementations.

� Balanced Search Trees

� Binary Search Trees are hard to keep balanced, so to make things easier 
we allow more than 2 children:

� 2-3 Tree

� Up to 3 children

� 2-3-4 Tree

� Up to 4 children

� Red-Black Tree

� Binary-tree representation of a 2-3-4 tree

� Or back up and try a balanced Binary Tree again:

� AVL Tree

� Alternatively, forget about trees entirely:

� Hash Tables

� Finally, “the Radix Sort of Table implementations”:

� Prefix Tree



20 Nov 2009 CS 311 Fall 2009 24

2-3 Trees
Introduction & Definition [1/3]

Obviously (?) a Binary Search Tree is a useful idea. The problem is 
keeping it balanced.

� Or at least keeping the height small.

It turns out that small height is much easier to maintain if we allow 
a node to have more than 2 children.

But if we do this, how do we maintain the “search tree” concept?

� We generalize the idea of an inorder traversal.

� For each pair of consecutive subtrees, a node has one data item 
lying between the values in these subtrees.

9 18

20

32

352 4

7 12

23 28



20 Nov 2009 CS 311 Fall 2009 25

2-3 Trees
Introduction & Definition [2/3]

A Binary-Search-Tree style node is 
a 2-node.

� This is a node with 2 subtrees 
and 1 data item.

� The item’s value lies between the 
values in the two subtrees.

In a “2-3 Tree” we also allow a 
node to be a 3-node.

� This is a node with 3 subtrees 
and 2 data items.

� Each of the 2 data items has a 
value that lies between
the values in the corresponding 
pair of consecutive subtrees.

Later, we will look at “2-3-4 trees”, 
which can also have 4-nodes.

2-node

10

�≤10 10≤�

3 9

3-node

3≤�≤9 9≤��≤3

2 5

4-node

5≤�≤7 7≤��≤2

7

2≤�≤5

2 subtrees
1 item
ordering

3 subtrees
2 items
ordering

4 subtrees
3 items
ordering

Like a Binary-
Search-Tree 
node



20 Nov 2009 CS 311 Fall 2009 26

2-3 Trees
Introduction & Definition [3/3]

A 2-3 Search Tree (generally we just say 2-3 Tree) is a tree with 
the following properties.

� All nodes contain either
1 or 2 data items.

� If 2 data items, then the
first is ≤ the second.

� All leaves are at the
same level.

� All non-leaves are either 2-nodes or 3-nodes.

� They must have the associated order properties.

9 18

20

32

352 4

7 12

23 28



20 Nov 2009 CS 311 Fall 2009 27

2-3 Trees
Operations — Traverse & Retrieve

How do we traverse a 2-3 Tree?
� We generalize the procedure for doing an inorder traversal of a 
Binary Search Tree.
� For each leaf, go through the items in it.

� For each non-leaf 2-node:
� Traverse subtree 1.

� Do item.

� Traverse subtree 2.

� For each non-leaf 3-node:
� Traverse subtree 1.

� Do item 1.

� Traverse subtree 2.

� Do item 2.

� Traverse subtree 3.

� This procedure lists all the items in sorted order.

How do we retrieve by key in a 2-3 Tree?
� Start at the root and proceed downward, making comparisons, just
as in a Binary Search Tree.

� 3-nodes make the procedure slightly more complex.

9 18

20

32

352 4

7 12

23 28



20 Nov 2009 CS 311 Fall 2009 28

2-3 Trees
Operations — Insert & Delete

How do we insert & delete in a 2-3 Tree?

� These are the tough problems.

� It turns out that both have efficient [O(log n)] algorithms, which is 
why we like 2-3 Trees.



20 Nov 2009 CS 311 Fall 2009 29

2-3 Trees
Operations — Insert [1/4]

Ideas in the 2-3 Tree insert algorithm:

� Start by adding the item to the appropriate leaf.

� Allow nodes to expand when legal.

� If a node gets too big (3 items), split the subtree rooted at that 
node and propagate the middle item upward.

� If we end up splitting the entire tree, then we create a new root 
node, and all the leaves advance one level simultaneously.

Example 1: Insert 10.

9 18

20

32

352 4

7 12

23 28 18

20

32

352 4

7 12

23 289 10



20 Nov 2009 CS 311 Fall 2009 30

2-3 Trees
Operations — Insert [2/4]

Example 2: Insert 5.

� Over-full nodes are blue.

918

20

32

352 4

7 12

23 28 18

20

32

35

7 12

23 289 2 4 5

9 18

20

32

3523 28

4 7 12

2 5 9 18

32

3523 282 5

124

7 20



20 Nov 2009 CS 311 Fall 2009 31

2-3 Trees
Operations — Insert [3/4]

Example 3: Insert 5.

� Here we see how a 2-3 Tree increases in height.

9182 4

7 12

18

7 12

9 2 4 5

9 18

4 7 12

2 5 9 182 5

124

7



20 Nov 2009 CS 311 Fall 2009 32

2-3 Trees
Operations — Insert [4/4]

2-3 Tree Insert Algorithm (outline)

� Find the leaf the new item goes in.

� Note: In the process of finding this leaf, you may determine that the 
given key is already in the tree. If you do, act accordingly.

� Add the item to the proper node.

� If the node is overfull, then split it (dragging subtrees along, if 
necessary), and move the middle item up:

� If there is no parent, then make a new root. Done.

� Otherwise, add the moved-up item to the parent node. To add the item 
to the parent, do a recursive call to the insertion procedure.



20 Nov 2009 CS 311 Fall 2009 33

2-3 Trees
Operations — Delete [1/8]

Deleting from a 2-3 Tree is similar to inserting.

� We will use the recursive-thinking idea to avoid describing every 
detail of the process.

� We try to delete from a leaf. If it does not work, rearrange.

� If that does not work, bring an item from the parent down. This is 
deleting from the parent. Recurse (or reduce the height and we are 
done).

� As with inserting, we start at a leaf and work our way up.



20 Nov 2009 CS 311 Fall 2009 34

2-3 Trees
Operations — Delete [2/8]

Observation

� We can always start our deletion at a leaf.

� If the item to be deleted is not in a leaf, swap it with its “inorder” 
successor.

� It must have one. (Why?)

� This swap operation comes before the
recursive deletion procedure. 

Easy Case

� If the leaf containing the item to
be deleted has another item
in it, just delete the item.

Example

� Delete 25.

18

20

25

2 4

7 12

9 28 3523

18

20

28

2 4

7 12

9 253523 182 4

7 12

9

20

28

23 35



20 Nov 2009 CS 311 Fall 2009 35

2-3 Trees
Operations — Delete [3/8]

Semi-Easy Case

� Suppose the item to be deleted is in a node that contains no other 
item.

� If, next to this node, there is a sibling that contains 2 items, we can 
rearrange using the parent.

Example: Delete 9.

18

20

25

2 4

7 12

9 28 3523 18

20

254 12

7 28 35232



20 Nov 2009 CS 311 Fall 2009 36

2-3 Trees
Operations — Delete [4/8]

Hard Case

� If the item to be deleted is in a node with no other item, and there 
are no nearby 2-item siblings, then we must bring down an item 
from the parent and place it in a nearby sibling node.

� We need to join nodes/subtrees to make the invariants work.

Example: Delete 7.

In the above example, recursively “delete” 4 from the tree 
consisting of the first two levels. Since 4’s node has another 
item in it, this is the easy case; we simply get rid of 4 (and then 
put it in the node containing 2).

18

20

254 12

7 28 35232 18

20

25

28 35232 4

12



20 Nov 2009 CS 311 Fall 2009 37

2-3 Trees
Operations — Delete [5/8]

If we do a recursive delete above the leaf 
level, where do “orphaned” subtrees go?

Consider two Hard Case examples.
� We delete 40. Why? Because one of its 
subtrees is going away. What do we do 
with the other subtree?

� Answer: Make it a subtree of the item we 
bring down.

Consider a Semi-Easy Case example.
� Again, we delete 40. One of its subtrees is 
going away. 30 is coming down to replace 
it. 20 is going up. What do we do with the 
right-subtree of 20?

� Answer: Make it the left subtree of 30.

Idea: There is always exactly one spot 
available for an orphaned subtree. Put it 
in that spot.

30

20 40 20 30

30 50

20 40 60 6020 30

50

4010 20

30 20

10 30



20 Nov 2009 CS 311 Fall 2009 38

2-3 Trees
Operations — Delete [6/8]

2-3 Tree Delete Algorithm (outline)

� Find the node holding the given key.

� Note: In the process of this search, you may determine that the given 
key is not in the tree. If you do, act accordingly.

� If the above node is not a leaf, then swap its item with its successor 
in the traversal ordering. Continue with the deletion procedure:
delete the given key from its new (leaf) node.

� 3 Cases

� Easy Case (item shares a node with another item). Delete item. Done.

� Semi-Easy Case (otherwise: item has a consecutive sibling holding 2 
items). Do rotation: sibling item up, parent down, to replace the item to 
be deleted. Done.

� Hard Case (otherwise). Eliminate the node holding the item, and move 
item from the parent down, adding it to consecutive sibling node. 
Eliminate item from parent using a recursive call to the deletion 
procedure (dragging subtrees along).



20 Nov 2009 CS 311 Fall 2009 39

2-3 Trees
Operations — Delete [7/8]

A few more examples.

Example: Delete 1.

� 1 is “Hard Case”, so we bring down the parent (recursively “delete” 
2) and join it with 3 in a single node.

� 2 is “Semi-Easy Case”, so rotate (6 to 4 to 2).

� The 5 is orphaned. We make it the right child of 4.

9

4

2 6 8

71 5 5

6

8

72 3

4

3 9



20 Nov 2009 CS 311 Fall 2009 40

2-3 Trees
Operations — Delete [8/8]

Example: Delete 2.

� This is “Easy Case”.

Example: Delete 3.

� This is “Hard Case”. We need to bring down 4 and join it with 5.

� 4 is “Hard Case”. We need to bring down 6 and join it with 8.

� 6 is the root. We reduce the height of the tree.

5

6

8

72 3

4

9 5

6

8

7

4

93

5

6

8

7

4

93

6 8

4 5 7 9



20 Nov 2009 CS 311 Fall 2009 41

2-3 Trees
TO BE CONTINUED …

2-3 Trees will be continued next time.


