Comparison Sorts III continued

CS 311 Data Structures and Algorithms
Lecture Slides
Friday, October 16, 2009

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell
Unit Overview
Algorithmic Efficiency & Sorting

Major Topics
✓ Introduction to Analysis of Algorithms
✓ Introduction to Sorting
✓ Comparison Sorts I
✓ More on Big-O
✓ The Limits of Sorting
✓ Divide-and-Conquer
✓ Comparison Sorts II
(part) Comparison Sorts III
✓ Radix Sort
✓ Sorting in the C++ STL
Review
Introduction to Analysis of Algorithms

Efficiency
- General: using few resources (time, space, bandwidth, etc.).
- Specific: fast (time).

Analyzing Efficiency
- Determine how the size of the input affects running time, measured in steps, in the worst case.

Scalable: works well with large problems.

<table>
<thead>
<tr>
<th>Using Big-O</th>
<th>In Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant time</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>Logarithmic time</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear time</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>Log-linear time</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic time</td>
</tr>
<tr>
<td>$O(b^n)$, for some $b > 1$</td>
<td>Exponential time</td>
</tr>
</tbody>
</table>

Faster Slower

Cannot read all of input

Probably not scalable
Review
Introduction to Sorting — Basics, Analyzing

Sort: Place a collection of data in order.

Key: The part of the data item used to sort.

Comparison sort: A sorting algorithm that gets its information by comparing items in pairs.

A *general-purpose comparison sort* places no restrictions on the size of the list or the values in it.

Five criteria for analyzing a general-purpose comparison sort:

- **(Time) Efficiency**
- **Requirements on Data**
- **Space Efficiency**
- **Stability**
- **Performance on Nearly Sorted Data**

In-place = no large additional space required.

Stable = never changes the order of equivalent items.

1. All items close to proper places, OR
2. few items out of order.
There is no *known* sorting algorithm that has all the properties we would like one to have.

We will examine a number of sorting algorithms. Most of these fall into two categories: $O(n^2)$ and $O(n \log n)$.

- **Quadratic-Time [$O(n^2)$] Algorithms**
 - ✔️ Bubble Sort
 - ✔️ Insertion Sort
 - ✔️ Quicksort
 - Treesort (later in semester)

- **Log-Linear-Time [$O(n \log n)$] Algorithms**
 - ✔️ Merge Sort
 - Heap Sort (mostly later in semester)
 - Introsort (not in the text)

- **Special Purpose — Not Comparison Sorts**
 - Pigeonhole Sort
 - Radix Sort
Insertion Sort repeatedly does this:

![Diagram of insertion sort](image)

Analysis

- **Efficiency**: $O(n^2)$. Average case same. 😞
- **Requirements on data**: Works for Linked Lists, etc. 😊
- **Space Efficiency**: In-place. 😊
- **Stable**: Yes. 😊
- **Performance on Nearly Sorted Data**: $O(n)$ for both kinds. 😊

Notes

- Too slow for general-purpose use.
- Works well on nearly sorted data and small lists.
- Thus, used as part of other algorithms.
Three ways to talk about how fast a function grows. $g(n)$ is:

- $O(f(n))$ if $g(n) \leq k \times f(n)$ …
- $\Omega(f(n))$ if $g(n) \geq k \times f(n)$ …
- $\Theta(f(n))$ if both of the above are true.
 - Possibly with different values of k.

In an algorithmic context, $g(n)$ might be the max number of steps required by some algorithm when given input of size n, or the max amount of additional space required.

Fact. Every general-purpose comparison sort does $\Omega(n \log n)$ comparisons in the worst case.
A common algorithmic strategy is called **divide-and-conquer**: split the input into pieces, and handle these with recursive calls.

If an algorithm using divide-and-conquer splits the input into **nearly equal-sized parts**, then we can analyze it using the **Master Theorem**.

- b is the number of nearly equal-sized parts.
- b^k is the number of recursive calls. **Find** k.
- $f(n)$ is the amount of extra work done (number of steps).
 - Hopefully, $f(n)$ looks like n raised to some power.
- If the power is less than k, then the algorithm is $O(n^k)$.
- If the power is k, then the algorithm is $\Theta(n^k \log n)$.

Important!
Review
Comparison Sorts II — Merge Sort

Merge Sort splits the data in half, recursively sorts each half, and then merges the two.

Stable Merge
- Linear time, stable.
- In-place for Linked List. Uses buffer \([O(n) \text{ space}]\) for array.

Analysis
- Efficiency: \(O(n \log n)\). Average same. 😊
- Requirements on data: Works for Linked Lists, etc. 😊
- Space Efficiency: \(O(\log n)\) space for Linked List. Can eliminate recursion to make this in-place. \(O(n)\) space for array. 😊/😊/😊
- Stable: Yes. 😊
- Performance on Nearly Sorted Data: Not better or worse. 😊

Notes
- Practical & often used.
- Fastest known for (1) stable sort, (2) sorting a Linked List.
- Good standard for judging sorting algorithms
Review
Comparison Sorts III — Quicksort: Introduction, Partition

Quicksort is another divide-and-conquer algorithm. Procedure:

- Choose a list item (the pivot).
- Do a Partition: put items less than the pivot before it, and items greater than the pivot after it.
- Recursively sort two sublists: items before pivot, items after pivot.

We did a simple pivot choice: the first item. Later, we improve this.

Fast Partition algorithms are in-place, but not stable.

- Note: In-place Partition does not give us an in-place Quicksort. Quicksort uses memory for recursion.
TO DO

- Write Quicksort, with the in-place Partition being a separate function.

Done. See quicksort1.cpp, on the web page.
Quicksort has a problem.

- In the worst case, the pivot is chosen poorly.
- Thus: linear recursion depth, and so Quicksort is $O(n^2)$. 😞
- And the worst case happens when the list is already sorted!

However, Quicksort’s **average-case** time is very fast.

- This is $O(n \log n)$ and typically significantly faster than Merge Sort.

Quicksort is *usually* very fast; thus, people want to use it.

- So we try to figure out how to make it better.
- We look at three of the best optimizations ...
Choose the pivot using **median-of-3**.

- Look at 3 items in the list: first, middle, last.
- Let the pivot be the one that is between the other two (by <).

This gives acceptable performance on most nearly sorted data.

- But it is still $O(n^2)$.
Quick sort uses space for recursion.

- Its additional space usage is proportional to its recursion depth ...
- ... which is linear. Additional space: $O(n)$. 😊

We can significantly improve this:

- Do the larger of the two recursive calls last.
- Do tail-recursion elimination on this final recursive call.
- Result: Recursion depth & additional space usage: $O(\log n)$. 😊
 - And this additional space need not hold any data items.
Comparison Sorts III continued
Better Quicksort — Optimization 3: Finishing with Insertion Sort

Another Speed-Up: Finish with Insertion Sort

- Stop Quicksort from going to the bottom of its recursion. We end up with a nearly sorted list.
- Finish sorting this list using one call to Insertion Sort.
- This is generally faster*, but still $O(n^2)$.
- Note: This is not the same as using Insertion Sort for small lists.

Initial State: \begin{tabular}{cccccccc}
2 & 12 & 9 & 10 & 3 & 1 & 6 \\
\end{tabular}

Modified Quicksort

Nearly Sorted: \begin{tabular}{cccccccc}
2 & 3 & 1 & 6 & 12 & 9 & 10 \\
\end{tabular}

Insertion Sort

Sorted: \begin{tabular}{cccccccc}
1 & 2 & 3 & 6 & 9 & 10 & 12 \\
\end{tabular}

*I have read that this tends to adversely affect the number of cache hits.
TO DO

- Rewrite our Quicksort to do:
 - Median-of-3 pivot selection.
 - Tail-recursion elimination for reduced recursion depth.
 - Finishing with Insertion Sort.

Done. See quicksort2.cpp, on the web page.
Comparison Sorts III
Better Quicksort — Needed?

We want an algorithm that:
- Is as fast as Quicksort on the average.
- Has reasonable $O(n \log n)$ worst-case performance.

But for over three decades no one found one.

Some said (and some still say) “Quicksort’s bad behavior is very rare; ignore it.”
- I suggest to you that this is not a good way to think.
- Sometimes bad worst-case behavior is okay; sometimes it is not.
 - Know what is important in the situation you are addressing.
 - Also, understand that your software can end up being used in other situations.
 - Lastly, remember that on the Web, there are malicious users.
- From a former version of the Wikipedia article on Quicksort (retrieved 18 Oct 2006; the statements below were removed on 19 Jan 2007):

 The worst-case behavior of quicksort is not merely a theoretical problem. When quicksort is used in web services, for example, it is possible for an attacker to deliberately exploit the worst case performance and choose data which will cause a slow running time or maximize the chance of running out of stack space.

However, in 1997, a solution was finally published. We discuss this shortly. But first, we analyze Quicksort.
Comparison Sorts III
Better Quicksort — Analysis of Quicksort

Efficiency ☹
- Quicksort is $O(n^2)$.
- Quicksort has a **very** good $O(n \log n)$ average-case time. ☺☺

Requirements on Data ☹
- Non-trivial pivot-selection algorithms (median-of-3 and others) are only efficient for random-access data.

Space Usage ☹
- Quicksort uses space for recursion.
 - Additional space: $O(\log n)$, if clever tail-recursion elimination is done.
 - Even if **all** recursion is eliminated, $O(\log n)$ additional space is still used.
 - This additional space need not hold any data items.

Stability ☹
- Efficient versions of Quicksort are not stable.

Performance on Nearly Sorted Data ☹
- An unoptimized Quicksort is **slow** on nearly sorted data: $O(n^2)$.
- Quicksort + median-of-3 is $O(n \log n)$ on most nearly sorted data.
Comparison Sorts III
Introsort — “Introspection”

In 1997, David Musser introduced a simple algorithmic-design idea.

- For a number of problems, there are known algorithms with very good average-case performance and very bad worst-case performance.
- Quicksort is the best known of these, but there are others.
- Musser suggests keeping track of an algorithm’s performance. If it is not doing well, switch to a different algorithm that has reasonably good worst-case performance.
- Musser calls this technique **introspection**, since an algorithm is examining itself.

The most important application is to sorting.

- Now we can eliminate the bad behavior of Quicksort.

Introspection, and its applications to sorting, are not in the text.
Comparison Sorts III
Introsort — Heap Sort Preview

This is a preview of a sorting algorithm to be covered later. Later in the semester, we will study the “Priority Queues”, generally implemented via a data structure known as a “Heap”.

- In a normal Queue, we insert items, and then remove them in the same order (first-in-first-out).
- In a **Priority Queue**, each item has a “priority”. Items come out in order of their priority.

Set an item’s priority equal to its numerical value, and items come out in sorted order.

- So: Make a Heap and then remove all items from it, in numerical order.
- This sorting algorithm is called **Heap Sort**.

Important Facts about Heap Sort

- Log-linear time.
- In-place.
- Requires random-access data.
- Can be modified to handle problems that are more general than simple comparison sorting. For example, we can allow new items to be added during the sorting process.
- Used as part of a very fast sorting algorithm called “Introsort”. Read on ...
Comparison Sorts III
Introsort — Description

Recall: Quicksort does a linear time operation (Partition), then calls itself recursively.

- If the recursion depth is around $\log n$, then it uses $O(n \log n)$ steps.
 - Count both sub-lists as recursive calls. Ignore the tail-recursion trick.
- Thus, Quicksort is slow only when the recursion gets too deep.

Apply introspection:

- Do optimized Quicksort, but keep track of the recursion depth.
- If the depth exceeds some threshold ($k \log n$, for some k), switch to Heap Sort for the current sublist being sorted.
 - Musser suggested a threshold of $2 \log_2 n$.

The resulting algorithm is called **Introsort**.

Musser’s 1997 paper discusses the speed-ups we have covered:

- Use the median-of-3 rule for pivot selection.
- Stop the recursion prematurely, and finish with Insertion Sort.
 - Maybe. This can adversely affect cache performance.
- However, it is no longer necessary to handle the larger and smaller recursive calls differently, since the recursion-depth limit already makes sure that excessive recursive calls are not made.
Comparison Sorts III
Introsort — Diagram

Here is an illustration of how Introsort works.

- In practice, the recursion will be deeper than this.
- The Insertion-Sort call *might* not be done, due to its effect on cache hits.

Introsort-recurse
Like Mo3 Quicksort: Find Mo3 Pivot, Partition

Insertion Sort

Introsort-recurse
Like Mo3 Quicksort: Find Mo3 Pivot, Partition

Recursion Depth Limit

When the sublist to sort is very small, do not recurse. Insertion Sort will finish the job later [??].

Now, the list is nearly sorted. Finish with a (linear time!) Insertion Sort [??].

When the recursion depth is too great, switch to Heap Sort to sort the current sublist.
Comparison Sorts III
Introsort — Analysis

Efficiency ☺ ☺
- Introsort is $O(n \log n)$.
- Introsort also has an average-case time of $O(n \log n)$ [of course].
 - Its average-case time is just as good as Quicksort. ☺ ☺

Requirements on Data ☹
- Introsort requires random-access data.

Space Usage ☹
- Introsort uses space for recursion (or simulated recursion).
 - Additional space: $O(\log n)$ — even if all recursion is eliminated.
 - This additional space need not hold any data items.

Stability ☹
- Introsort is not stable.

Performance on Nearly Sorted Data ☹
- Introsort is not significantly faster or slower on nearly sorted data.
Comparison Sorts III
Introsort — Comments

In general, when you want speed (i.e., all the time), Introsort is usually the algorithm to use.

Some Exceptions

- When you need a stable sort.
- When sorting non-random-access data.
- When you expect the data to be nearly sorted.
- When memory is limited.
 - On some embedded systems, maybe?
 - Sorting a list that does not fit into memory.
- When data are accessed over a slow connection.
 - Sorting data accessed over a network?
- When the problem you want to solve is not exactly comparison sorting.
- When your sort may be used in multiple applications.

More about some of these later in the semester.
If someone tells you that Quicksort’s worst-case behavior is so rare that we *never* need to worry about it, tell them they’re wrong.

Quicksort’s worst-case behavior is so rare that we *never* need to worry about it.

Someone

You’re wrong.

You
Comparison Sorts III
When is it Best?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>When This Algorithm is the Best One</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Sort</td>
<td>Never</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>▪ For small lists ▪ When you are guaranteed nearly sorted data</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>▪ When stability is needed ▪ For special data types, especially Linked Lists</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>In certain special situations: ▪ When a list is operated on during the sorting process ▪ When you only care about the ordering of part of a list ▪ Etc. (more about this later in the semester)</td>
</tr>
<tr>
<td>Quicksort</td>
<td>Never</td>
</tr>
<tr>
<td>Introsort</td>
<td>Most of the time (if you do not care about stability, data accessed via slow connections, sequential-access data, ...)</td>
</tr>
</tbody>
</table>

Now, what if (say) Quicksort is written for you, but nothing else is? Should you write your own? Maybe. It depends on the situation. **Think!**