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1. Introduction 
 

Computer applications traditionally utilize two dimensions for both input and 

output.  Graphical displays use a two-dimensional array of pixels to represent 

information.  Interaction with these systems is usually done with a mouse, which lets the 

user move a cursor around a two-dimensional plane. 

Data, however, is not always easily described using only two dimensions.  Real-

world data tends to occur in a three-dimensional space.  Geo-spatial information could be 

identified by its two-dimensional longitude and latitude, but in the real world, objects 

have some associated depth.  Nearly all of the physical sciences deal with at least some 

information and data that occurs in three dimensions. 

This increase in dimensionality leads to some difficulties in when trying to 

visualize this multidimensional data.  3D graphics are today a standard way of displaying 

data and information.  Visualizations tend to require user interaction with the data – for 

instance, a permafrost researcher may want to zoom in on a certain region of his data.  

This interaction may be facilitated with traditional 2D input devices; however, interacting 

with the data may be better facilitated with a 

3D form of input. 

One laboratory concerned with 

creating and displaying such visualizations is 

the Discovery Lab at the University of Alaska 

Fairbanks.  The Discovery lab is the main 

laboratory for running and creating virtual 

reality applications and environments for the 

 
 

Figure 1.1 – ARSC Discovery Lab 
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Arctic Region Supercomputing Center (ARSC).  The Discovery lab houses a Mechdyne 

Flying Flex CAVE environment, which consists of four large (10’ by 7.5’) projection 

surfaces.  These surfaces are used to display immersive 3D environments and 

visualizations, such as the one in Figure 1.1.   

The main virtual reality input device in the 

Discovery lab is an Intersense IS-900 tracking system.  

This system utilizes a handheld wand with an 

ultrasound microphone, such as the one shown in 

Figure 1.2a.  A speaker array emits an ultrasonic chirp, 

which the microphone in the wand detects.  A pair of 

stereo glasses is also fitted with a similar tracker that 

reports the head position and direction of the user 

(Figure 1.2b).  This system is highly accurate (to within 

a fraction of a millimeter), but this leads to it also being 

quite expensive and out of the budget of most 

individuals.  

One of the Discovery lab’s purposes, in addition to research, is outreach for the 

Fairbanks community and students at both the university and area schools.  This outreach 

includes various tours of the lab and demonstrations of selected virtual reality 

applications.  ARSC encourages the individuals in these tour groups to try out the various 

applications, in an effort to involve them directly in the virtual reality experience.  

However, the current system encourages only a single user at a given time, as there is 

 

 
Figure 1.2 – (a) Handheld wand 

and (b) head tracker 
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only a single wand and head tracker combination.  An input system that could handle 

multiple simultaneous users is highly desired. 

ARSC, the principal stakeholder in this project, has expressed interest in 

supplementing their current tracking system with another type of tracking system, using 

cameras and software to determine 3D user information.  This type of system would be 

fairly inexpensive compared to the current system and would allow for different types of 

applications to be built, utilizing multiple 3D positions for input.   

This project aims to create this camera-based 3D input device, called 3-

Dimensional Hand Positions, or 3DHP.  The following sections outline the stereo 

transformation process used to convert images from a pair of cameras into 3D hand 

positions, the design and implementation of the system, and finally the results and 

conclusions of this project. 

 
 

2. Stereo Correspondence 
 

Depth of vision refers to the ability of humans to gather distance information 

when viewing objects.  Since the eyes are located in different locations on the head, each 

eye sees a slightly different image than the other.  This slight difference between images, 

referred to as parallax, allows the brain to perceive the depth of the various objects within 

view. 

The same basic principle can be applied to computer vision applications.  Given 

two slightly differently positioned cameras, we will get a pair of similar, yet slightly 

different images.  If we are able to locate a specific point that is visible in each image, we 
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can use the object’s location in each image along with the known locations of the 

cameras to calculate the actual 3D location of the point.   

A general model of a camera system is given in Figure 2.1.  In this figure, we are 

concerned with three different coordinate systems.  Digital cameras focus light through a 

lens into an image sensor.  From there, it is sent to a CCD chip, where the image is 

broken into a finite number of pixels that, taken together, compose an image.  The rows 

and columns of pixels of these images define the image coordinate system (ICS).  A point 

(or pixel) in the ICS is represented by a row and column coordinate.   

A camera coordinate system (CCS) is 

related to its respective ICS.  The x-axis of the 

CCS is parallel to the rows of the ICS, and the 

y-axis is parallel to the columns of the ICS.  

Therefore, the z-axis is perpendicular to the 

row/column image plane.  The focal length of 

the camera determines the distance from the 

origin of the CCS to the center of the ICS 

along the z-axis.   

A third coordinate system, the world 

coordinate system (WCS) can be any arbitrary 

3D coordinate system.  For computer vision applications such as motion capture, the 

origin of the WCS would more than likely be located in the middle of a stage area with 

the x-y plane along the floor of the room. 

 
 

Figure 2.1 – General Camera System 
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Figure 2.2 – Stereo Camera System 

Figure 2.2 represents a model of a general stereo camera system.  A specific point 

within view of a camera will be reflected through the camera’s lens, into the image 

sensor, and onto the camera’s CCD chip, where it is stored as an array of pixels.  The 

location of the point P appears in each camera’s image plane as point P’ and is referred to 

as a conjugate point.  We can trace a line from the origin of each camera’s CCS through 

each conjugate point into infinity.  The intersection of these lines gives the location of 

point P in the WCS.   

  

 

Therefore, in order to transform a conjugate pair of image points to a 3D position, 

we need to know some information about the internal workings of the cameras.  This 

information, known as the intrinsic camera parameters, is listed in Table 2.1. 
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In addition to this internal information about 

the cameras, we need to know how the cameras are 

positioned with respect to the world origin.  This 

external information, known as the extrinsic camera 

parameters, simply consist of a translation vector 

specifying the location of the camera in relation to the 

world origin and a rotation vector specifying the camera’s rotation with respect to the 

world coordinate system. 

Camera calibration involves two forms of input: a list of known image 

coordinates for a list of known world coordinates, and a set of initial intrinsic parameters.  

The calibration process is essentially a minimization problem, where we project the 

known world points into image points, then adjust the parameters until we minimize the 

errors in distance. 

A calibration plate is used to facilitate the mapping of 

world coordinates into image coordinates.  The calibration 

plate consists of a grid of evenly spaced dots, such as the one 

in Figure 2.3.  We can physically measure the locations of 

the dots, and the image coordinates for the dots can be found 

by searching an image for this known pattern.  In order to 

maintain a high degree of accuracy, the calibration is carried 

out using a series of images, each with the calibration plate in 

a different pose.  For each of these images, we determine the image coordinates of each 

dot, project their respective locations to calculate a world coordinate, and compare this 

 
 

Figure 2.3 – Calibration Plate 

Intrinsic Camera Parameters 
Focal length of the lens 
Radial distortion coefficient 
Width of a cell on the CCD-chip 
Height of a cell on the CCD-chip 
X-coordinate of the image center 
Y-coordinate of the image center 

 
Table 2.1 – Intrinsic Parameters 
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value to the known coordinate.  This process iteratively modifies the camera parameters 

until we minimize the error between calculated and known world coordinates. 

This calibration process determines the intrinsic camera parameters by iteratively 

adjusting a set of initial values.  The extrinsic parameters are determined using an image 

of the calibration plate placed on world plane defined by z=0.  It is possible to determine 

the pose of the calibration plate by again projecting the image points into world 

coordinates, comparing these to the known world coordinates, and minimizing the errors. 

 
 

3. Project Requirements 
 

The requirements of the system must be determined before the system design and 

implementation can be carried out.  The functional and non-functional requirements of 

the system are outlined below, along with other miscellaneous system constraints. 

 

3.1 Functional Requirements 

The functional requirements for this system are listed below.  These requirements 

will determine the outward functionality of the system. 

• The finished project is to be run from the command line without the need for a 

graphical user interface. 

• The only required user interaction will be to start and stop the program and to 

toggle printing of information to the command window. 

• This system shall not interfere in any way with the current tracking system in the 

Discovery lab. 
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• The system will simultaneously grab separate images from a pair of cameras 

connected to the system. 

• To facilitate the location of the user's hands, the user will be wearing some sort of 

relatively easily detectable hand markers. 

• The system will search for at least two different hand markers, corresponding to 

the users left and right hands. 

• The incoming images will be searched for the hand markers.  The row/column 

coordinate of the center of each hand marker will be determined for each image. 

• The conjugate pair of image coordinates shall be transformed into 3D world 

coordinates.   

• The found hand position shall be printed to the command window if desired. 

• The found hand positions shall be formatted into a UDP packet and sent to a 

multicast address, in order to be used by multiple programs simultaneously. 

• These packets will only be sent if a hand marker has been found. 

 

3.2 Non-functional Requirements 

In addition to the functional requirements of the system, several non-functional 

requirements are addressed.  These requirements include quality constraints on the 

system.  The non-functional requirements for this system are listed below, in descending 

order of importance.   

1. Performance: For an input device to be usable, it must be responsive to user 

input.  Therefore, the performance of this system is a top priority, as slow 

tracking speeds will render it practically useless for real-time applications. 
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Since this system is based on cameras, the maximum performance of the 

system is dictated by the camera's maximum frame rate. 

2. Accuracy: Similarly, input devices need to be accurate to be usable.  3D hand 

positions are useless as a form of input if they do not reflect the user’s actual 

hand positions.  Therefore, the accuracy of the system should be a high 

priority. 

3. Modifiability: Being able to add or replace certain features of the system is a 

high priority.  Since this system is being designed and implemented in an 

ongoing research facility, the ability to easily modify the code is strongly 

desired.  The system should be designed in a modular fashion so that various 

components can be changed and improved. 

4. Reliability: The system should not crash unexpectedly, or it will become less 

and less desirable as a form of input.  Therefore, this system must be able to 

run and output expected results as long as the user desires. 

5. Interoperability: The system shall be installed alongside other equipment in 

the laboratory.  It should in no way hinder the use of the existing lab hardware 

or software.  In addition, it should be able to be run at the same time as the 

equipment in the lab as a complementary form of input. 

6. Configurability: Changes in the physical layout of the system should be 

anticipated, such as moving the cameras to new locations.  Methods or 

routines should be implemented to assist the user in recalibrating the system 

as desired.  In addition, simple configuration changes in the system, such as 

what to search for or the destination of the output, should be implemented in 
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an external file.  This way the system can be reconfigured without needing to 

recompile the source code. 

 

3.3 Other Requirements 

Some of the equipment needed for this project was previously purchased before any 

project requirements or design was specified.  Therefore, this project also has the 

following hardware requirements: 

1. Program to run on a PC with a Windows XP, Service Pack 2 operating system 

2. System will use Sumix M71 USB 2.0 cameras 

One constraint that was created by using the Sumix cameras was that the USB 2.0 

cameras have a maximum cable length of 5 meters.  Therefore, the placement of the 

computer used to run the 3DHP system was also confined to a certain area. 

 

4. System Design 
 

The main functionality of the 3DHP system consists of taking a pair of images, 

determining the user’s 3D hand positions from these images, and broadcasting these hand 

positions to a multicast address.  These three processing steps are separated into three 

functional modules: the Image Acquisition module, the Data Extraction module, and the 

Data Transport module.  The responsibilities of each module are defined below.  Besides 

these three modules, the 3DHP system also includes a calibration routine and a 

preferences file, which are also described below. 
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4.1 Image Acquisition Module 

The 3DHP system utilizes two digital cameras.  These cameras must be initialized 

for use in the system and the images from these cameras must be stored in a format that is 

accessible to the other modules in the system.  In addition, for the sake of performance, 

we would like to have images ready for the modules whenever they are requested, instead 

of having to wait for new images.  This functionality is delivered to the system by the 

Image Acquisition Module. 

 The camera initialization step is straightforward – each camera is set to the 

desired resolution and exposure time, and any color and white balance adjustments are 

made.  After the cameras are properly set up for the system, they are given the proper 

signal to start grabbing images. 

 Grabbing an image from a camera doesn’t happen instantaneously.  The camera 

needs time to write the image data to its memory.  We are emphasizing system 

performance, so any unnecessary waiting is undesirable.  Therefore, a buffer will be used 

to store the most recently grabbed images from each camera.  Other system modules will 

be able to take images from these buffers, and the cameras will write to the buffer 

whenever a new image is ready.   

 

4.2 Data Extraction Module 

The data extraction module contains the primary functionality of the 3DHP 

system – namely to calculate the 3D position of a user’s hands given a pair of images.  

This can be split up into two steps.  First we search the pair of images for the user’s hand 
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positions.  Then we can transform these image coordinate pairs into 3D positions using 

the stereo intersection method outlined in Section 2. 

 Locating a user’s hands in an image can be a complex task.  Techniques for 

segmenting the user’s hands from a background might include searching for a specific 

contour relating to the shape of a user's hand or determining the hand positions from an 

outline of the user's pose.  These methods are computationally expensive – which leads to 

slower performance – and require a considerable amount of training for their respective 

systems. Another method of finding hand positions involves searching for a specific color 

range pertaining to human skin.  While researching appropriate methods, it was 

determined that the cameras used in this project are very sensitive to infrared light.  This 

resulted in colors of both clothing and human skin being quite similar and therefore 

difficult to differentiate. 

 For this project, hand tracking is simplified by having the user hold a colored 

marker in each hand.  The markers will be colored using light emitting diodes, which 

emit colors that aren't adversely affected by the infrared sensitivity of the cameras.  Since 

the user will be holding distinct, colored markers, the hands should be easily 

distinguishable from the rest of the scene.  This colored marker method of locating the 

users hands also allows for easy distinction between the user's left and right hands.  

Different colors can be used to differentiate between different hands, and adding new 

markers to search for is trivial. 

 This module takes new images from the image buffer described above.  The 

incoming images are searched for a specific color (within a predetermined threshold), and 

if something is found, it is assumed to be the desired hand marker.  If nothing is found, 
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we can assume that the hand marker isn’t in view of the camera and start again with a 

new image.  The module will not handle ambiguous information.  If we find more than 

one object of the same color, we won't bother trying to resolve which object is the desired 

hand marker; we will simply start the search again with a new image.  When we end up 

with a single object corresponding to the proper color range, we will determine the center 

of this object and pass it on to a stereo rectification function. 

 The second step involves the transformation of the image coordinate pairs into 3D 

world positions.  This step requires calibration data for each of the cameras – specifically 

the calibration data specified in Table 2.1.  Given a pair of image coordinates specifying 

the location of each hand marker and this camera calibration data, we can perform the 

stereo rectification procedure as outlined in Section 2. 

 The three-dimensional hand locations are then passed along to the Data Transport 

module to be sent out to the network.  Then the module repeats the process of grabbing 

images from the buffer, searching for the hand positions, and transforming them into 

three-dimensional world coordinates. 

 

4.3 Data Transport Module 

One of the requirements of this system is to make the determined hand positions 

available to multiple programs at the same time.  This is accomplished with the use of IP 

Multicast packets, which effectively broadcast the data to a specified IP address.  The 

Data Transport module is concerned with taking the located 3D hand positions and 

broadcasting them to the network.  This module will format the hand positions into IP 
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datagrams, which are sent to a multicast IP address, where they are available to multiple 

interested receivers on the network.   

The Data Transport Module will provide the following functionality to the system: 

1. Set up an outgoing multicast connection 

2. Format each incoming marker’s world coordinates into a character string with an 

identifier followed by the coordinates 

3. Send this string to a specific multicast address 

 

4.4 Calibration Routine 

Before doing any stereo rectification, we will need to know information about the 

camera system. Specifically, for each camera we need to determine the intrinsic and 

extrinsic camera parameters outlined in Section 2. 

 The Calibration Routine shall take the following input: initial values for the 

intrinsic camera parameters, a list of calibration plate world coordinates, and a sequence 

of images of the calibration plate.  Using this information, the calibration routine will 

apply the method outlined in Section 2 to determine the intrinsic and extrinsic camera 

parameters.  These parameters will be used in the Data Extraction module to determine 

the world coordinates of the user's hand markers. 

 

4.5 Preferences File 

In order to increase the modifiability of the system, a preferences file will be used 

to specify a few system parameters.  Instead of requiring the user to recompile the system 
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when changing either the color range used to find the hand markers or the network 

address for the hand positions, we can simply modify this file.  

The Preferences File will provide the following information to the system: 

• The color range used to search for the left-hand marker 

• The color range used to search for the right-hand marker 

• The multicast IP address and port that the marker positions are to be sent to 

 This file will be read and parsed by the system on initialization.  The color 

information is passed to the Data Extraction module, and the multicast network 

information is passed to the Data Transport module.   

 

4.6 System Architecture and Workflow 

 The modules defined above, taken together, define the 3DHP system.  A view of 

the system architecture is given in Figure 4.1, along with a list of the functions and 

variables defined within each module.  

The basic workflow of the 3DHP system is outlined below: 

1. The Image Acquisition module initializes the cameras and starts taking and 

storing images in a buffer.  This module continues taking and storing images 

indefinitely. 

2. The Data Extraction Module takes the most recent images from the buffer and 

extracts the image locations of the markers.  The specific colors of the markers to 

look for are taken from the Preferences File.  Using the intrinsic and extrinsic 

camera parameters determined by the Calibration Routine, the 3D world 

coordinates of the markers are determined. 
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3. These world coordinates are passed to the Data Transport Module, which formats 

and send them as a packet to a multicast address.  The multicast address and port 

are specified in the Preferences File. 

 

The Calibration Routine must be run before the system starts.  This routine 

doesn’t need to be run each time the system starts, as long as the calibration information 

is maintained in the proper files.  In addition, before starting the system, the Preferences 

File must be filled with the required information.  The system is started and runs until a 

 
Figure 4.1 – Architectural View of 3DHP System 
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termination signal is given.  Each module receives this termination signal and stops 

processing.  Once all the modules are stopped, the system halts. 

 
 

5. Implementation 
 

With the design of the system in place, the implementation of the system is able to 

begin.  This section addresses the different hardware components of the system, the 

software libraries used, and the various implementations of the system components. 

 

5.1 System Hardware 

The primary hardware devices in the 3DHP system are the cameras.  The specific 

cameras used are a pair of Sumix M71 CMOS cameras with USB 2.0 interface.  The M71 

is a 1.3 megapixel camera with a maximum resolution of 1280 x 1024 pixels.  These 

cameras allow for the individual control of the pixel gain, exposure time, and pixel rate.  

In addition, the output frames can be decimated by a factor of 2, 4, or 8, resulting in 

output resolutions of 640 x 512, 320 x 256, or 160 x 128, respectively. 

The 3DHP system is to be integrated into a pre-existing CAVE environment.  

This environment consists of four individual projection surfaces – three vertical wall 

      
 
                  (a) Powerwall Configuration    (b) Closed Configuration 
 

Figure 5.1 – CAVE Environment 
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displays and a floor display.  The environment can be used in a “powerwall” 

configuration, or the two outer wall displays can be rotated inward, resulting in an 

immersive four-walled room.  These two configurations are illustrated in Figure 5.1.   

This type of environment nicely defines a staging area for users, namely the 10’ x 

10’ floor display.  The cameras used in the 3DHP system are placed in the upper corners 

of the center screen, as illustrated in 

Figure 5.2.  They are then centered on a 

point approximately one meter above the 

center of the floor screen.  This camera 

arrangement maximizes the visibility of a 

user standing on the floor screen.  

Graphical feedback may be displayed on 

the center screen, which will naturally 

orient the user facing the cameras.   

The cameras are connected via a USB 2.0 interface to a Windows XP machine, 

which is used to develop and run the 3DHP system.  This machine is also connected to 

the Internet through a local network in order to send multicast packets. 

The final hardware component used 

in the 3DHP system is the LED hand 

markers.  These markers use the simple 

circuit shown in Figure 5.3.  This circuit 

utilizes a 3V coin battery to power an LED.  

The resistor limits the current flowing into 

 
Figure 5.2 – Camera Locations in CAVE 

Environment 

Figure 5.3 – LED Hand Marker Schematic 



 21 

the LED.  A larger resistor might be used in the circuit for a dimmer LED but longer 

battery life.   

In order to maximize visibility at all angles, the LED in the circuit is fitted inside 

a standard ping-pong ball.  The emitted light is diffused about the entire surface of the 

ping-pong ball, resulting in very slight intensity differences for varying angles. 

The parts list for each LED hand marker is given in Table 5.1. 

 

Constructing the LED hand markers 

involves soldering the circuit together and 

fitting the LED inside the ping-pong ball.  This 

entails drilling a small (5mm) hole inside the 

ping-pong ball and simply sliding the LED 

inside the hole.  A rubber fitting is used to 

secure the LED inside the hole.  This ensures a 

snug fit for the LED without making it 

permanent.  The physical layout of an LED 

hand marker is shown in Figure 5.4. 

 
Figure 5.4 – Physical Layout of LED 

Hand Markers 

Part Quantity Description 
5mm colored LED 1 Emits a colored light 
3V coin battery cell 1 Supplies current to the LED 
Coin cell battery 
holder 

1 Holds the battery cell 

White ping pong ball 1 Diffuses the LED’s light 
10�  Resistor 1 Limits the current flowing into the LED 
Hookup wire N/A Used to make connections between components 

 
Table 5.1 – LED Marker Parts List 
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Two different hand markers are made – one with a red LED and the other with a 

green LED, since they are both readily available and optically differentiable. 

 

5.2 Software Libraries 

The image processing functions of 3DHP are implemented using the HALCON 

library.  HALCON is a commercial library that provides over 1300 machine vision 

functions and operations.  HALCON library functions are used for the image analysis, the 

stereo rectification process, and the camera calibration. 

The main functions used from this library are listed in Table 5.2, along with a 

brief description of its functionality.  Any other library functions used are for creating 

and writing pose information to a file (such as in the Calibration Routine), or initializing 

the different HALCON objects. 

Function Description 
read_pose() Reads camera extrinsic parameters from an external file 
read_cam_par() Reads camera intrinsic parameters from an external file 
gen_image_interleaved() Stores interleaved image stored in memory as HALCON object 
decompose3() Splits multi-channel image into a set of single-channel images 
threshold() Selects pixel values in between a low and high value 
intersection() Finds the common pixels between two objects 
connection() Splits a thresholded image into connected components 
select_shape() Selects components based on shape and/or size 
count_obj() Counts the number of connected components in an object 
area_center() Determines the center (x, y) of an object 
intersect_lines_of_sight() Computes the 3D point of intersection between two lines of sight 

from different cameras 
affine_trans_point_3d() Applies an arbitrary 3D transformation to a 3D point 
find_caltab() Searches an image for the HALCON calibration object 
find_marks_and_pose() Extracts the individual calibration points from an image of the 

HALCON calibration object 
binocular_calibration() Determine the intrinsic and extrinsic camera parameters from a 

group of world and image coordinates 
 

Table 5.2 – HALCON Functions 
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An advanced programming interface (API) comes with the Sumix M71 cameras 

used in the 3DHP system.  This API contains functions for opening and closing the 

cameras, grabbing images, and setting other camera settings such as exposure, gain, and 

frequency.  The API functions and data structures are specified in a C++ header file, with 

a dynamically linked library handling the implementation of the functions. 

The Image Acquisition module is the only 3DHP module that uses the Sumix 

API.  The functions used are given in Table 5.3, along with a brief description of each.  

These functions are used once for each camera, which receives its own device identifier 

from the CxOpenDevice function. 

 

The other software library used in the 3DHP system is the Windows Sockets API 

version 2.0, also known as Winsock.  Winsock provides the interface between the 

Microsoft Windows operating system and the TCP/IP stacks.  The Winsock API provides 

functions for setting up and transmitting data across a network using sockets.  

Specifically, the Data Transport module of 3DHP uses Winsock to transmit the hand 

Function Description 
CxOpenDevice Opens the camera device 
CxCloseDevice Closes the camera device 
CxSetExposureMs Sets the camera exposure value 
CxSetFrequency Sets the camera sensor frequency 
CxSetGain Sets the camera sensor gain 
CxStartVideo Starts the camera video stream 
CxStopVideo Stops the camera video stream 
CxSetBayerAlg Sets the Bayer convertion algorithm (monochrome, nearest 

neighbor, bilinear, laplacian, or Bayer average) 
CxBayerToRgb Converts the Bayer matrix to a 24-bit RGB color frame 
CxGetFramePointer Returns a pointer to the driver’s frame memory buffer 

 
Table 5.3 – Sumix API Functions 
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positions to a multicast address via UDP datagrams.  The socket setup and transmission is 

done with the help of functions provided by the Winsock API. 

Finally, the Microsoft Windows kernel (kernel32.dll) is used to implement 

multiple execution threads.  The kernel is responsible for forking the different execution 

threads and maintaining thread synchronization. 

 

5.3 Implementation Specifics 

The libraries described above all make use of C/C++ APIs.  Therefore, the 3DHP 

system was implemented using C++.  The different libraries also made use of 

dynamically linked libraries, which necessitated development in a Windows 

environment.  The compiler used for development was Microsoft Visual C++ .NET. 

The main functionality of the system is handled by the three primary system 

modules: the Image Acquisition module, Data Extraction module, and the Data Transport 

module.  These modules are implemented together in a single command line program. 

Two of the modules, the Image Acquisition module and the Data Extraction 

module, have their functionality implemented in two separate program execution threads.  

This allows for the modules to work independently, with images being grabbed and 

processed simultaneously.    

These two modules can work independently thanks to the use of an image buffer.  

New images are stored in the buffer by the Image Acquisition module.  By buffering 

incoming images, images are always available when requested by the Data Extraction 

module.  The image buffer is implemented as a shared memory location that is accessible 

to the two program threads.  In order to make sure that the buffer isn’t being read by the 
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Data Extraction module while it is being written by the Image Acquisition module, a 

mutually exclusive variable (mutex) is used.  Before accessing the shared buffer, the 

mutex is told to block any other threads from using the resource.  After accessing the 

buffer, the mutex is told to stop blocking access.   

The other primary module in the system, the Data Transport module, is 

implemented as a set of functions.  One function sets up the network connection, while 

another is used to send data to the desired network address.  When the Data Extraction 

module finds new hand positions, it simply calls this function, which sends the hand 

positions out to the network. 

The calibration data and preferences file are stored on disk and are accessed at the 

start of the program.  The desired data is stored in variables for use by the individual 

program threads.  Finally, a third execution thread polls the keyboard for input.  If an 

escape character is typed, the other program threads are told to quit and the program 

exits. 

The main program operates with the following sequence: 

1. Read in calibration data and store in global variables 

2. Read system preferences data and store in global variables 

3. Initialize the network connection (part of the Data Transport module) 

4. Start the Image Acquisition thread 

5. Start the Data Extraction thread 

6. Start the keyboard thread 

At this point, the individual modules operate together to grab images, search for 

hand positions, and output these positions to the desired network address.  When the 
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keyboard thread detects an escape character, a global variable, “timeToQuit” is updated.  

The other threads check the status of this variable before starting again with their 

different procedures.  If the variable is set, the individual threads start their different 

shutdown sequences.  The entire program quits after all of the threads are finished with 

their respective shutdown sequences. 

The other component of the system – the calibration routine – is implemented as a 

separate program.  This calibration program takes a set of images with a visible 

calibration plate.  From these shots of the calibration plate, the function determines the 

internal and external camera parameters for the two cameras in the system.  These camera 

parameters are written in files, which are then accessible to the Data Extraction module in 

the 3DHP main program. 

 

5.3.1 Image Acquisition Module Implementation 

The Image Acquisition module is implemented in a straightforward fashion.  Each 

camera is initialized as follows: 

1. Open camera device 

2. Set image resolution to 1280x1024 

3. Set camera frequency to 24 MHz 

4. Set camera exposure to 10 ms 

5. Set camera gain to 100% 

6. Start streaming images 

Once the cameras are initialized, the function enters a loop that exits when the 

function receives the exit signal.  Inside this infinite loop, the cameras are polled for new 
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images, which are saved in the shared memory location.  While saving the new images, 

the appropriate mutexes are locked to prevent the images from being read by the Data 

Extraction Module.  Once the images are moved into their memory locations, the 

mutexes are unlocked. 

 

5.3.2 Data Extraction Module Implementation 

The Data Extraction Module is responsible for searching the incoming images for 

the appropriate hand markers, and then transforming these image coordinates into 3D 

world coordinates.  The first part of this functionality is implemented as the function 

select_object_by_color, which takes an image and color range to search for and returns 

the row and column of the center of the found object.  This method is given below: 

1. The incoming image is split into three grayscale images corresponding to its red, 

green, and blue channels 

2. Each of these channels is thresholded between the input color ranges.  This results 

in a binary image where a pixel is on if the corresponding pixel in the grayscale 

image is within the range. 

3. The intersection of these three binary images is taken, which results in a binary 

image of all objects in the original image within the desired color range 

4. The number of connected components is calculated (distinct non-touching objects 

in the binary image). 

5. If there is only one object, the center of this object is returned in row, column 

coordinates.  Otherwise, the function returns coordinates of –1, -1. 
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The previous function is run four separate times, twice to find the red and green 

markers in the left camera’s image, and twice to find the red and green markers in the 

right camera’s image.  If the function found an object in both camera images, the 

respective image coordinates are sent to the HALCON function intersect_lines_of_sight.  

This function determines the intersection point from these image coordinates and the 

camera intrinsic and extrinsic parameters.  These resulting 3D coordinates are based on 

the primary camera’s origin, so they are transformed a final time to the world coordinate 

system using the HALCON function affine_trans_point_3d. 

After this final transformation, we are left with either the red or green hand 

marker’s 3D position.  These positions are then passed to the Data Transport module. 

 

5.3.3 Data Transport Module Implementation 

The Data Transport module is implemented as two different functions.  One 

function initializes the multicast datagram socket.  The second function sends a given 

character string to the multicast address. 

The socket initialization only needs to be run once – when the system starts.  The 

preferences file specifies the multicast address, port, and time to live for the outgoing 

packets. 

Once the socket connection is made, we can simply send character strings to the 

destination address.  The strings are formatted in the following style, where xPos refers to 

the x-coordinate of the hand marker and yPos and zPos refer to the y-coordinates and z-

coordinates, respectively. 

“marker0 xPos yPos zPos” 
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The module can print a message to indicate whether or not the message was sent 

or if an error occurred.  The printing of these messages will affect the overall speed of the 

system, so once it is seen that the system is running correctly, these messages can be 

disabled. 

 

5.3.4 Calibration Routine Implementation 

The Calibration Routine is implemented and run in a separate program using 

HALCON’s hDevelop environment.  This environment lets a user run a program created 

with different HALCON functions.  It is mostly used for testing the different functions 

and it allows for the user to display the images and objects he is currently working with.  

In addition, the user can step through functions one at a time, as in a debug mode, which 

is handy for visualizing the results of the camera calibration process, such as whether or 

not the marks were all found. 

 The Calibration Routine requires a set of images of the calibration plate as seen 

through the cameras.  The HALCON library includes a postscript file describing the 

layout of the calibration plate.  A large (1 square meter) printout of this file is made and 

mounted on a piece of foam core.  The calibration plate is positioned at a different angle 

in each image, across as much of the staging area as is possible.  Two of these sample 

calibration images are shown in Figure 5.5 (an image from the left camera and right 

camera respectively), along with marks on the corners that the routine detected (which 

will be discussed later). 

After loading the images into the program (this implementation uses 15 different 

orientations), the find_caltab function is called, which searches the image for the 

calibration plate.  This resulting image is then passed to the find_marks_and_pose 
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function, which determines the image coordinates of the individual calibration marks in 

each image.  If this function finds all of the points, they are passed into a list of all image 

points.  This list, along with a file specifying the layout of the calibration marks and 

initial camera parameters, is sent to the binocular_calibration function, which determines 

the intrinsic and extrinsic camera parameters. 

 

 

6. Results 

6.1 System Performance 

Several tests were carried out in an effort to determine if the 3DHP system met 

certain non-functional requirements.  The most important non-functional requirement for 

this system, as outlined in Section 3.1, is performance.  Two different tests were run to 

quantitatively measure the system’s performance. 

The first performance-related test program was built to find the number of marker 

positions that the system is able to locate every second.  This program receives all 

messages sent to the 3DHP’s specified multicast address and checks to see if the message 

    
 

Figure 5.5 – Sample Calibration Routine Input 
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refers to either the red or green marker.  Two counters, one for each marker, are 

incremented every time a new position is found for its respective marker.  A timer is 

started when the first marker is found, and stopped when the hundredth marker is found.  

The number of marker positions located per second is easily determined by dividing 100 

by this amount of time. 

This test program is run while 

using the system in a typical fashion.  

The markers were both moved around 

the staging area, not simply set in one 

location.  Figure 6.1 outlines the 

number of markers located per second. 

The 3DHP system was then 

modified to effectively leave out the 

Data Extraction Module.  This modified system grabs images in a normal fashion and 

outputs a nondescript value to the Data Transport module, which sends this irrelevant 

information to the multicast address.  A receiving program is set up that calculates the 

number of raw messages received per second.  This is used to measure the raw camera 

rate that can be expected with the current system.  Figure 6.2 shows the number of 

images found in a sample run. 

It can be seen that the Data Extraction module adds a fair bit of overhead to the 

system.  The base rate that we can get by just reading from the cameras is on average 

24.56 frames per second, while the average number of calculated hand marker positions 

is 18.62 per second.  Some more optimization can be made to the system to achieve a 

 
 

Figure 6.1 – Positions Per Second 
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faster framerate, but it should be noted that the system is already running at a fairly 

respective 75.8% of the optimal framerate.  

A final test relating to system performance is concerned with measuring the 

percentage of markers located in a scene.  The 3DHP system is modified to output 

messages based on whether or not it is able to locate a marker in the scene.  When the 

system fails to locate a red marker in the frame, it outputs the message, “RedMarker 0.”  

Conversely, if the red marker is found in the frame, it outputs the message, “RedMarker 

1.”  In a similar fashion, the system sends messages pertaining to whether or not the 

green marker is found in the current frame. 

A program is then built to receive these messages being sent to the multicast 

address.  The messages are parsed and one of four counters is updated based on an 

incoming message: two for located red and green markers and two for red and green 

markers that were not located. 

Five runs of approximately two minutes were carried out, where the markers were 

moved around the staging area such as they would under normal use of the system.  Table 

6.1 shows the results of these tests.   

 
 

Figure 6.2 – Base Camera Framerate 
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 It can be seen that the system was able to locate 99.34% of all red markers and 

99.29% of the green markers, which is very reasonable.   

 

6.2 System Accuracy 

Accuracy is the second most important non-functional requirement for this 

system.  The accuracy of the 3DHP system is measured with the help of the existing 

tracking system in the Discovery lab.  The current system utilizes an array of ultrasound 

speakers that emit a sonic chirp.  These chirps are detected by several microphones in a 

handheld wand, which are used to triangulate the location of the wand in 3D space.  The 

system was professionally installed and calibrated to be accurate within fractions of a 

millimeter. 

The 3DHP hand markers are simply taped to this wand.  A program is created to 

poll the wand at a regular interval and send its location to a network address.  The 3DHP 

system is run alongside this program, and the hand marker positions are relayed to the 

standard network address.  A receiver program grabs both sets of hand positions and logs 

them in a text file. 

This method is carried out for both the red and green hand markers, and the 

results are plotted in Figure 6.3.  It can be seen that the hand markers correspond to the 

locations of the wand with slight differences between the two systems.  The hand markers 

Total frames with located red marker 5625 
Total frames without located red marker 40 
Total frames with located green marker 5574 
Total frames without located green marker 37 
Percentage of red markers found 99.34% 
Percentage of green markers found 99.29% 
 

Table 6.1 – Percentage of markers located 
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are taped onto the wand, which could help explain the slight constant difference between 

the two systems.  When the 3DHP markers are moved out from the system origin, the 

discrepancies become more pronounced.  This could be attributed to the distortion 

introduced by the camera’s wide-angle lens.  The differences never amount to much more 

than a few inches, however, which is quite negligible when compared to the dimensions 

of the stage, which is a 10 foot square.  Also, the plots don’t show any distinct outliers, 

which means that we are accurately detecting the desired markers, instead of picking up 

random objects in the scene.  This is very important to the accuracy of the system, as 

random jumps in the data stream would limit the types of uses of the system. 

 

 

 
 

Figure 6.3 – Measured Differences Between 3DHP Markers and Calibrated 
Tracker for (a) x-axis, (b) y-axis, and (c) z-axis. 
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6.3 Modifiability 

One of the non-functional requirements for the 3DHP system was modifiability.  

This was addressed by splitting the system functionality into separate modules.  By 

emphasizing separate modules, changes can be made to different aspects of the system 

without affecting the other pieces.  The two main system modules, Image Acquisition and 

Data Extraction, are implemented in different functions that utilize a shared memory 

location for passing images.  Modifications can be made to the Data Extraction module 

without needing to change the way the Image Acquisition module is implemented.  If we 

come up with a different method for finding hand positions, we won’t have to even touch 

the current implementation of the Image Acquisition module.   

Similarly, if we decide to use a different set of cameras in the system, we only 

need to be concerned with storing the incoming images from these cameras in the proper 

memory location.  The individual initialization and polling of the cameras is not visible to 

the Data Extraction module. 

 

6.4 Interoperability 

 The system was designed to operate alongside the existing tracking system in the 

Discovery lab.  The cameras were mounted above the center screen in a way that they do 

not interfere with the displays.  In addition, since they are mounted above the center 

screen, the opening and closing of the left and right screens are not affected by the 

cameras and conversely do not move the cameras from their calibrated positions.  

Therefore, the system can be used in any of the display modes shown in Figure 5.1.  
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 Since the system uses multicast packets to output found hand positions, multiple 

systems can use the 3DHP hand positions simultaneously.  Applications using the current 

wand tracking system can access tracking data from its interface while simultaneously 

grabbing 3DHP hand positions from the network.  

 
6.5 Configurability 

 The design of the system made use of both a calibration routine and a preferences 

file, both of which enhance the configurability of this system.  The calibration routine can 

be run independently of the rest of the system, and only needs to be run when camera 

calibration is desired.  Therefore, if the cameras are never moved from their initial poses, 

the calibration information should stay current and doesn’t need to be amended when 

used in the 3DHP system.  However, it is entirely possible to move the cameras to 

another location – the calibration routine would just have to be run again to determine the 

new pose of the cameras. 

 The preferences file allows us to make simple changes to the system without 

needing to recompile it entirely.  The different color ranges to search for or the multicast 

address and port to send the positions to can be changed by simply modifying this file. 

 
6.6 DAVE 
 

The Digital Audio Visual Environment, otherwise known as DAVE, was created 

as a proof-of-concept for the 3DHP system – an effort to build a standalone application 

around the 3D input device.  DAVE allows users to manipulate audio samples using 

standard graphical elements.  These elements are manipulated using the 3DHP hand 
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markers, as opposed to the traditional mouse and keyboard, allowing spectators to 

visually see the interactions. 

 

6.6.1 DAVE Design 

The functionality in DAVE is broken into two individual components – a 

graphical interface and a sound-processing module.  The graphical interface uses hand 

positions from the 3DHP system to manipulate simple graphical elements on the screen.  

The various properties of these elements are used to control various properties of 

different looping sounds in the sound-processing module. 

DAVE’s graphical interface is based upon three distinct interface elements.  The 

main element in the interface is a draggable box.  These boxes are simply two-

dimensional squares that can be picked up and dragged around the screen.  In addition to 

the sample boxes, there are two-

dimensional “containers,” which are 

simply regions of the screen.  The 

sample boxes can be dragged and 

dropped onto these container areas.  

The visual interface also makes use 

of several buttons, which can be 

turned on and off.  Figure 6.4 shows 

DAVE’s graphical interface and the 

different elements.  The boxes and 

buttons can be identified as the squares and circles in the screen, respectively.  The 

 
 

Figure 6.4 – DAVE Graphical Interface 
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containers are represented by the gray circles in the middle of the screen along with the 

darker gray background areas of the screen. 

These types of graphical elements would normally be interacted with using a 

computer mouse.  A user would be able to click on a draggable box, move it around the 

screen, and then let go to drop it in a specific location.  Similarly, a mouse click would 

traditionally be used to turn a button on and off. 

In order to use the 3DHP system as an input device for DAVE, we can imitate a 

simple mouse with the three-dimensional hand positions.  The x and y hand coordinates 

can simply be mapped into x and y screen coordinates.  The third dimension can be used 

to emulate a mouse click by setting a certain threshold on the z-axis.  A hand marker 

crossing this threshold can be construed as a mouse button being held down.  Likewise, 

the hand marker crossing back across the threshold can be seen as the mouse button being 

let back up.  Therefore, a simple mouse click would be performed by moving a hand 

marker across a threshold, such as the plane defined by z = 0.5m, and then moving the 

hand marker back out of this threshold area.   

It may seem a bit redundant to use the 3DHP hand coordinates as an input device 

for DAVE, since it basically emulates a simple mouse.  The main benefit to using the 

3DHP system is that it gives two hand positions simultaneously.  This allows us to work 

with both hands at the same time; we can drag a box around with one hand while turning 

a button on or off with the other.  DAVE can also be controlled with a standard mouse, 

giving three different cursors that can interact with the various elements. 

An additional benefit of using the 3DHP system as an input device comes from 

DAVE’s usage in performances and demonstrations.  Instead of simply moving his 
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mouse cursor, a performer will be dragging boxes around with his hands on one of the 

Discovery lab’s 10-foot screens.  This ability to actually watch what the performer is 

doing should better maintain interest for spectators.   

DAVE takes cues from these graphical elements to manipulate different sounds in 

real-time with its sound-processing module.  This module consists of several sound 

processing “units”, each with a different looping sample.  These samples are passed 

through their own chain of effects with modifiable parameters.   

Each sound sample in the sound-processing module is passed through the 

following effects: 

• Volume: The volume of the looping sound sample may be increased or 

decreased. 

• Speed: The speed at which the sample is played back at can be modified, even 

allowing the sample to be played in reverse. 

• Pitch: The pitch of the sample can be scaled up or down a number of octaves. 

• Reverb: A simple reverberation effect can be applied to the sample. 

• Delay: The sound sample can be delayed a set number of milliseconds and 

sent into a feedback loop 

• Feedback: A percentage of the delayed sample can be fed back into the 

system. 

Each of the buttons in the graphical interface is assigned to one of these effects.  

When a button is pressed, its corresponding effect parameters can be modified.  When 

released, no changes to the effect parameters are made.   The 3DHP system is used to 

adjust these effect parameters.  When an effect button is pressed, its parameters are 
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changed based on the height of one of the 3DHP markers.  When the user moves his hand 

up (increase in y-position), the effect is increased (increase in parameter values).  

Similarly, when the hand is lowered 

(decrease in y-position), the effect is 

decreased. 

How these effect changes 

apply to the different samples is 

determined by which container a 

sample resides in.  There are three 

distinct container areas in the GUI – 

“inactive/locked,” “active/locked,” and 

“active/unlocked.”  The DAVE 

interface is tinted red, yellow, and green to outline the locations of these containers in 

Figure 6.5.  Samples placed in the  “Inactive/Locked” regions (red tint) will not be played 

(inactive).  In addition, any attempted changes to their effect parameters will be ignored 

(locked).  Samples in the “Active/Locked” region (yellow tint) will continuously play 

(active), but no changes to their effect parameters will be made (locked).  Finally, 

samples placed in the “Active/Locked” region (green tint), will play (active) and their 

effect parameters can be modified (unlocked). 

 

6.6.2 DAVE Implementation 

 DAVE was implemented in the summer of 2005, with the assistance of ARSC 

student employee Quinton Harris and ARSC summer intern Sean Waite.  The 

 
Figure 6.5 – DAVE Regions 
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implementation of the two elements (graphical interface and sound processing module) 

was carried out concurrently. 

 The graphical interface was implemented in C++ on an Apple G5 Mac Pro.  The 

program was built using GLUT (OpenGL Utility Toolkit), a library of OpenGL utilities.  

In addition to GLUT, the graphical interface utilizes the Berkeley sockets API to receive 

the 3DHP multicast packets.  Finally, the OpenSoundControl protocol is chosen for 

sending messages from the graphical interface to the sound-processing module. 

 OpenSoundControl (OSC) is a communication protocol developed by the UC 

Berkeley Center for New Music and Audio Technology (CNMAT).  This flexible 

protocol sends messages over a network as UDP packets.  The specific implementation 

used for the graphical interface is oscpack, a set of C++ functions for formatting and 

sending OSC packets. 

 Several types of messages are sent from the graphical interface to the sound-

processing module.  Messages are sent when effect buttons are toggled and when sample 

boxes are dropped into containers.  These message types and example OSC messages are 

given in Table 6.2.  

Message Type Example Meaning 
Effect-message /effectButton/volumeButton 0 “volumeButton” has been turned off 
 /effectButton/pitchButton 1 “pitchButton” has been turned on 
Sample-message /sample/sample0 0 0 “sample0” has been dropped into the 

“Inactive/Locked” region 
 /sample/sample1 1 0 “sample1” has been dropped into the 

“Active/Locked” region 
 /sample/sample2 1 1 “sample2” has been dropped into the 

“Active/Unlocked” region 
 

Table 6.2 – Messages sent from graphical interface to sound-processing module 
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 The sound-processing module was developed using the graphical audio 

development environment Max/MSP.  This development environment consists of various 

objects that can be connected together in a processing chain called a patch.  In addition, 

these patches can be viewed as objects in another patches, giving the application designer 

a visual representation of object-oriented programming.  The Max/MSP implementation 

of DAVE’s sound processing module is built primarily using the set of standard objects 

included with the base Max/MSP application.  These objects include buffers for storing 

the sound samples, sample playback objects, FFT objects for scaling a sample’s pitch, 

delay objects for synthesizing a reverb and feedback loop, and even a networking object 

for receiving the 3DHP multicast packets.  In addition to the standard objects, the sound-

processing module makes use of an external Max/MSP object for receiving the OSC 

messages from the graphical interface, provided by CNMAT. 

 The sound-processing module makes use of several individual sample-processing 

patches.  Each of these sample-patches sends a looping sound sample through the chain 

of effects described previously.  Each patch can be locked or unlocked, meaning the 

changes to the effect parameters will be ignored or applied, respectively.  In addition, the 

playback of the sample can be started or stopped. 

 The main patch of the sound processing module is responsible for three things: 

forwarding sample-messages to the sample-patches, updating the effect parameters based 

on the 3DHP markers, and forwarding these effect parameters to the sample-patches.    

 The sample-messages tell the sample-patches whether the current sample is 

supposed to be playing and whether or not to ignore effect parameter changes.  This 

information is simply forwarded to the appropriate sample-patches. 
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 The different effect parameters are changed whenever their respective effect 

buttons are pressed.  When an effect button is pressed, its corresponding effect parameter 

value will be scaled according to the y-position of the 3DHP marker0.  The range of y-

position values for marker0 is clipped to a range of 0.5 meters to 1.5 meters – a useable 

arm height range for the average user.  The location of the marker in this range is then 

mapped to a range of effect parameter values.  Table 6.3 outlines the range of values that 

the effect parameters can be scaled. 

  

For example, if the Volume button is pressed and marker0’s y-position is at 0.5 

meters or lower, the volume parameter will be assigned 0.0.  If marker0 is raised to a y-

position of 1.5 meters or higher, the volume parameter will be assigned 1.0.  If marker0’s 

y-position is somewhere in the range of 0.5m – 1.5m, the volume parameter will be 

scaled linearly from 0.0 – 1.0. 

Effect 
Parameter 

Low value High value 

Volume 0.0: No volume for sample 1.0: Sample is played back at full 
volume 

Speed -2.0: Sample is played back at two 
times the original speed, in reverse 

2.0: Sample is played back at two 
times the original speed 

Pitch -1.0: Sample’s pitch is scaled one 
octave down 

1.0: Sample’s pitch is scaled one 
octave up 

Reverb 0.0: No reverb assigned to the 
sample 

1.0: Full amount of reverb effect is 
assigned to the sample 

Delay 0.0: No amount of delayed signal 
is fed back into the audio stream 

2000.0: 2,000 milliseconds of the 
original signal is fed back into the 
audio stream 

Feedback 0.0: None of the fed back signal is 
sent to the audio stream 

0.9: 90% of the fed back signal is sent 
to the audio stream 

 
Table 6.3 – Effect parameter value ranges 



 44 

The different effect parameters are forwarded to the sample-patches 

simultaneously.  Each of the effect parameters will then be either ignored by the sample-

patch or applied to the desired effect, depending on whether the sample-patch is locked or 

unlocked.  

 
6.6.3 DAVE Results 

 Three distinct applications are used in DAVE: the 3DHP system as an input 

device, the graphical interface, and the sound-processing module.  They all combine to 

create a different way to interact with a user interface and the resulting audio.  From the 

manipulation of boxes by moving hand markers in the air, to the resulting manipulation 

of the outgoing audio by these hand movements, DAVE serves as an interesting and 

immersive audio-visual experience. 

 
 

7. Conclusion 
 
 The goal of this project was to create a new 3D input device for the Discovery 

lab.  A method for turning a pair of image coordinates into a single 3D world coordinate 

was determined, along with methods for calibrating the cameras in the system.  The 

project requirements were outlined, which led to a complete system design and 

architecture.  The system was then implemented, including both the software modules 

and the various hardware components. 

 The system was then tested to see how well it followed the various non-functional 

requirements that were previously outlined.  The system performs satisfactorily, both 

with the total output 3D positions per second (~18.62 per second, Figure 6.1) and the 

percentage of markers determined in a scene (~99.32%, Table 6.1).   The system is also 
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quite accurate, closely following the precisely calibrated positions from the existing 

tracking system in the Discovery lab (Figure 6.3). 

 An entirely new application, DAVE, was specifically created for use with the 

3DHP system.  DAVE allows a user to manipulate graphical objects and a resulting 

sound by moving the 3DHP markers in the air – a much different form of interacting with 

a musical application.  The added benefit of two hand markers allows users to be able to 

control DAVE more precisely; the user is able to turn off an effect with one hand when 

he has the proper amount desired using his other hand.  Most importantly, DAVE shows 

that the 3DHP system can be used as an additional input device for applications, which 

was the original goal of the project. 
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Appendix A – Code Listing 

The following code was written for the 3DHP system: 

• 3DHP.cpp – The main program containing the implementations of the Image 

Acquisition, Data Extraction, and Data Transport modules.  This file contains the 

following functions: 

o main() – thread initialization and main program loop 

o keyboardInput() – thread that checks for keyboard input 

o imageAcquisition() – Image Acquisition module function thread 

o dataExtraction() – Data Extraction module function thread 

o dataTransport() – Data Transport module function 

o parseFile() – Opens and parses the preferences file 

o initializeCameras() – camera initialization 

o initializeNetworking() – networking initialization 

o selectObject() – called by Data Extraction module to select an object 

based on a specified color range 

• preferences.txt – Preferences file containing multicast address, multicast port, 

multicast packet TTL, left marker color range, right marker color range 

 

In addition to the main 3DHP.cpp program file, the following files were created for 

the camera calibration: 

• cameraCalibration.dev – The Calibration routine, written for use in HALCON’s 

hDevelop development environment.  Reads or creates the following files. 

• CamParametersL.dat – camera intrinsic parameters for the left camera 

• CamParametersR.dat – camera intrinsic parameters for the right camera 

• caltab.descr – calibration plate mark locations 

• caltab.ps – calibration plate postscript file (for printing plate) 

• relPose.dat – relative pose information between left and right cameras 

• pose_CCS_to_WCS.dat – pose information for camera coordinate system 
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For the DAVE system, the following files were created for the graphical interface: 

• main.cpp – the main processing thread and GLUT wrapper 

• DaveApp.cpp/DaveApp.h – the application specifics 

• MVC.cpp/MVC.h – class for model/view/control programming style 

• BluiOSC.cpp/BluiOSC.h – OpenSoundControl wrapper 

• Cursor.cpp/Cursor.h – class for handling 3DHP cursors 

• Clickable.cpp/Clickable.h – Clickable object class 

• Button.cpp/Button.h – Button object class 

• EffectButton.cpp/EffectButton.h – Specific effect button class 

• Draggable.cpp/Draggable.h – Draggable object class 

• networking.h – Specific networking functions 

• drawing.h – Drawing functions 

 

For DAVE’s sound-processing module, the following Max/MSP patches were 

created: 

• DAVESoundProcessing.mxb – The main sound-processing patch, which makes 

use of the following subpatches. 

• DAVESample.mxb – The sound-processing patch for each individual sound 

sample 

• DAVEChooseSamples.mxb – patch for assigning sound files to the samples 

• OSCMessages.mxb – receives and parses the OSC messages from the graphical 

interface 

 


