
Introduction to OpenGL & GLUT

CS 381 Computer Graphics

Lecture Slides

Tuesday, September 9, 2008

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2008 Glenn G. Chappell

9 Sep 2008 CS 381 Fall 2008 2

Review
Introduction to CG — Synthetic Camera Model

We base our 3-D viewing on a model similar to a
camera.
• A point is chosen (the center of projection).

• Given an object in the scene, draw a line from it, through the
center of projection, to the image.
� The image lies in a plane, like film in a film camera, or the
sensor array in a digital camera.

• Where this line hits the image is where the object appears in
the image.

This model is similar to the way the human visual
system works.

9 Sep 2008 CS 381 Fall 2008 3

Review
Introduction to CG — Modeling & Rendering

Images of 3-D scenes are generated in two steps:

• Modeling

• Rendering

Modeling means producing a precise description of a
scene, generally in terms of graphics primitives.

• Primitives are the pieces from which complex scenes are
constructed. They may be points, lines, polygons, bitmapped
images, various types of curves, etc.

Rendering means producing an image based on the
model.

• Images are produced in a framebuffer.

• A modern framebuffer is a raster: a 2-D array of pixels
(picture elements).

This class focuses on rendering.

9 Sep 2008 CS 381 Fall 2008 4

Review
Introduction to CG — Rendering Pipeline [1/2]

In modern graphics architectures, there is a rendering pipeline.
• What is good about pipeline-style designs?

• Below is a (highly simplified!) illustration of our rendering pipeline.

Vertices enter.
• A vertex might be a corner of a polygon.

Rasterization converts geometry (polygons, etc.) to fragments.
• A fragment is a pixel-before-it-becomes-a-pixel.

Fragments leave.

At the end of the pipeline, values are stored in the framebuffer.

Later in the semester, we will fill in some of the details above.

Vertices
(window coordinates)

Vertex
Operations

Rasterization
Fragment
Operations

Vertices
(object coordinates)

Fragments Fragments

Vertex
enters here

To
framebuffer

9 Sep 2008 CS 381 Fall 2008 5

Review
Introduction to CG — Rendering Pipeline [2/2]

In the 1990’s, many options were added to graphics libraries, allowing
programmers to customize the vertex and fragment operations.
• Far too many options!

In the last few years, graphics hardware became a user-programmable
computer. Now we can write our own programs to do the vertex and
fragment operations.
• Such a program is a shader.

• Shaders run on the graphics hardware, not the main processor!

Two major high-level shading languages:
• Cg (nVidia/Microsoft).

• GLSL (OpenGL ARB).
This is the shading
language we will use.

Rasterization

Fragments Fragments

Vertex
enters here

To
framebuffer

Vertices
(window coordinates)

Vertices
(object coordinates)

Vertex
Operations

Fragment
Operations

9 Sep 2008 CS 381 Fall 2008 6

Introduction to OpenGL & GLUT
API

API = Application Programming Interface.

• An API specifies how a program uses a library.

� What calls/variables/types are available.

� What these do.

• A well-specified API allows implementation details of a library
to be changed without affecting programs that use the
library.

The graphics API we will be using is called OpenGL.

• Sometimes we just say “GL”.

9 Sep 2008 CS 381 Fall 2008 7

Introduction to OpenGL & GLUT
Background — What is OpenGL?

Professional-quality 2-D & 3-D graphics API
• Developed by Silicon Graphics Inc. in 1992.

• Based on Iris GL, the SGI graphics library.

Available in a number of languages.
• We will use the C-language API.

• There is no C++-specific OpenGL API.

System-Independent API
• Same API under Windows, MacOS, various Unix flavors.

• Programmer does not need to know hardware details.

• Can get good performance from varying hardware.

An Open Standard
• A consortium of companies sets the standard.

• Anyone can implement the OpenGL API.

• Review board handles certification of implementations.

9 Sep 2008 CS 381 Fall 2008 8

Introduction to OpenGL & GLUT
Background — What does OpenGL Do?

OpenGL provides a system-independent API for 2-D
and 3-D graphics. It is primarily aimed at:

• Graphics involving free-form 3-D objects made up (at the
lowest level) of polygons, lines, and points.

• Simple hidden-surface removal and transparency-handling
algorithms are built-in.

• Scenes may be lit with various types of lights.

• Polygons may have images painted on them (texturing).

OpenGL does not excel at:

• Text generation (although it does include support for text).

• Page description or high-precision specification of images.

• The kind of graphics involved in a windowing system: window
frames, controls, etc.

9 Sep 2008 CS 381 Fall 2008 9

Introduction to OpenGL & GLUT
Background — Parts of OpenGL

OpenGL Itself

• The interface with the graphics hardware.

• Designed for efficient implementation in hardware. Particular
OpenGL implementations may be partially or totally software.

• C/C++ header: <GL/gl.h> .

The OpenGL Utilities (GLU)

• Additional functions & types for various graphics operations.

• Designed to be implemented in software; calls GL.

• C/C++ header: <GL/glu.h> .

OpenGL Extensions

• Functionality added to base OpenGL.

• OpenGL specifies rules that extensions are to follow.

• We will use shading-language extensions (GLSL).

9 Sep 2008 CS 381 Fall 2008 10

Introduction to OpenGL & GLUT
Background — GLUT

The OpenGL Utility Toolkit (GLUT)

• A utility library written by Mark Kilgard in the 1990s.

• It provides a system-independent interface to I/O including
windows, pop-up menus, the mouse, and the keyboard.

• I do not consider GLUT to be appropriate for professional-
quality work.

• We use it here because it does what we need in a system-
independent way, and it is easy to learn.

9 Sep 2008 CS 381 Fall 2008 11

Introduction to OpenGL & GLUT
The Design of OpenGL — Introduction

OpenGL is an API for rendering raster images of 2-D &
3-D scenes.

• So OpenGL’s work ends when the completed image (or
frame, in an animation context) is in the framebuffer.

We deal with OpenGL via function calls, known as
OpenGL commands.

• No global variables.

• Most OpenGL functions have few parameters.

• But you make lots of function calls.

• No complex data types.

• OpenGL is function-call intensive.

� Think: advantages/disadvantages.

9 Sep 2008 CS 381 Fall 2008 12

Introduction to OpenGL & GLUT
The Design of OpenGL — Attributes & Primitives

OpenGL functions as a state machine.

There are three kinds of functions:
• Those that set state.

• Those that return state.

• Those that draw.

Drawing is done via primitives.

States are used to set attributes of those primitives.

So: all drawn objects are composed of primitives. The
properties of these are attributes, which are
determined by OpenGL states.

9 Sep 2008 CS 381 Fall 2008 13

Introduction to OpenGL & GLUT
The Design of OpenGL — Example Code

To draw a red triangle with vertices (0,0), (1,0), (1,1):

glColor3d(0.9, 0.1, 0.1); // red (setting an attri bute)

glBegin(GL_TRIANGLES); // starting a primitive

glVertex2d(0., 0.); // vertex data

glVertex2d(1., 0.);

glVertex2d(1., 1.);

glEnd(); // ending the primitive

Note the indentation
here. This is not
required (of course),
but I have found it
helpful.

9 Sep 2008 CS 381 Fall 2008 14

Introduction to OpenGL & GLUT
The Design of OpenGL — Naming Conventions [1/2]

OpenGL (C API)

• Functions

� Begin with “gl ”, words capitalized & run together

� Example: glClearColor

� Can include type information. For example, the “2d” in
“glVertex2d ” indicates two parameters of type GLdouble .

• Constants

� Begin with “GL”, all upper-case, “_” between words

� Example: GL_TRIANGLE_STRIP

• Types

� Begin with “GL”, next word not capitalized, all words run
together

� Example: GLdouble

9 Sep 2008 CS 381 Fall 2008 15

Introduction to OpenGL & GLUT
The Design of OpenGL — Naming Conventions [2/2]

Related packages use similar conventions.

• GLU

� Function: gluScaleImage

� Constant: GLU_TESS_ERROR

� Type: GLUtesselatorObj

• GLUT

� Function: glutInitDisplayMode

� Constant: GLUT_MIDDLE_BUTTON

9 Sep 2008 CS 381 Fall 2008 16

Introduction to OpenGL & GLUT
The Design of OpenGL — Types [1/2]

OpenGL defines its own types, which have the same
(minimum) precision on all systems. Some of these:
• GLint : at least 32-bit integer

• GLfloat : at least 32-bit floating-point

• GLdouble : at least 64-bit floating-point

• and others …

So, for example, GLdouble is probably the same as
double , but may not be.

• Converting (say) a GLdouble to a double is fine.

• But be careful when tossing around GLdouble * and
double * . (Why?)

9 Sep 2008 CS 381 Fall 2008 17

Introduction to OpenGL & GLUT
The Design of OpenGL — Types [2/2]

Some OpenGL commands have several forms allowing
for different types.
• For example, glVertex * can take 2, 3, or 4 parameters of

many different types.

� Function glVertex2d takes 2 parameters of type GLdouble .

� Function glVertex3f takes 3 parameters of type GLfloat .

� Function glVertex3fv (“v” for “vector”) takes a single
parameter of type GLfloat * (should be a pointer to an array of
3 GLfloat ’s).

• The command glTranslate * always takes three parameters,

but they may vary in type.

� Function glTranslated takes 3 GLdouble ’s.

� Function glTranslatef takes 3 GLfloat ’s.

9 Sep 2008 CS 381 Fall 2008 18

Introduction to OpenGL & GLUT
GLUT Programs — Ideas

The structure of our programs is dictated by GLUT.

So:

Start with an already written program.

• Use the web or your own previous work.

• Give credit where credit is due!

GLUT handles overall flow of control.

You write functions to …

• Initialize OpenGL states and your own variables.

• Draw things.

• Handle events (mouse clicks, window changes, keypresses,
etc.).

• Do something when nothing else happens.

These functions are called by GLUT, not you.

9 Sep 2008 CS 381 Fall 2008 19

Introduction to OpenGL & GLUT
GLUT Programs — Examples

Look at sample2d.cpp & sample3d.cpp .

See sample2d.cpp , sample3d.cpp ,

on the web page.

9 Sep 2008 CS 381 Fall 2008 20

Introduction to OpenGL & GLUT
GLUT Programs — Callbacks

Rules for callbacks (display in particular):

• You never call your callback functions. Only GLUT does that.

• The display function only does drawing (which may include
GL state changes).

• No drawing is done outside the display function (but state
changes may be done).

These rules are for this class.

• Later in life, you may want to break them.

• But think hard first; they’re good rules.

9 Sep 2008 CS 381 Fall 2008 21

Introduction to OpenGL & GLUT
OpenGL Primitives — Overview [1/2]

All rendering operations are composed of primitives.
• These need to be useful to the programmer and doable
efficiently by the library & hardware.

We will now look at those OpenGL primitives that are
handled via the glBegin -glEnd mechanism. There
are ten of these; they consist of ways to draw:
• Points.

• Polylines (collections of line segments).

• Filled polygons.

Other primitive rendering operations are handled
differently in OpenGL.
• Specifically, those involving screen-aligned rectangles:
pixmaps, bitmaps, and screen-aligned rectangular polygons.

OpenGL has no circle/ellipse/curve primitives.

9 Sep 2008 CS 381 Fall 2008 22

Introduction to OpenGL & GLUT
OpenGL Primitives — Overview [2/2]

The ten glBegin -style OpenGL Primitives
• Points (1 primitive)

� GL_POINTS

• Polylines (3 primitives)
� GL_LINES

� GL_LINE_STRIP

� GL_LINE_LOOP

• Filled Polygons (6 primitives)
� Triangles

• GL_TRIANGLES

• GL_TRIANGLE_STRIP

• GL_TRIANGLE_FAN

� Quadrilaterals
• GL_QUADS

• GL_QUAD_STRIP

� General Polygons
• GL_POLYGON

9 Sep 2008 CS 381 Fall 2008 23

A primitive is given a number of vertices (specified with
glVertex…). Now we look at what the primitives do

with the vertices they are given.

• Numbers indicate vertex ordering.

• Blue objects mark what is actually rendered.

Points
• GL_POINTS

Introduction to OpenGL & GLUT
OpenGL Primitives — Points

1

5
24

3
6

9 Sep 2008 CS 381 Fall 2008 24

Polylines
• GL_LINES

• GL_LINE_STRIP

• GL_LINE_LOOP

Introduction to OpenGL & GLUT
OpenGL Primitives — Polylines

1

5
24

3
6

6

6

1

5
24

3

1

5
24

3

9 Sep 2008 CS 381 Fall 2008 25

Polygons: Triangles
• GL_TRIANGLES

� Clockwise or
counterclockwise
does not matter (yet).

• GL_TRIANGLE_STRIP

• GL_TRIANGLE_FAN

Introduction to OpenGL & GLUT
OpenGL Primitives — Polygons: Triangles

1

5

2 4

3

6

6

1

5

2

4
3

1

5

2 4

3

6

9 Sep 2008 CS 381 Fall 2008 26

Polygons: Quadrilaterals
• GL_QUADS

� Clockwise or
counterclockwise
does not matter (yet).

• GL_QUAD_STRIP

� Note differences in
vertex ordering!

Polygons: General
• GL_POLYGON

Introduction to OpenGL & GLUT
OpenGL Primitives — Polygons: Quads, General

1

5

2 3

4

7

6

1

5

2

4
3

2

8

6

1

5

4

3

8

7

6

9 Sep 2008 CS 381 Fall 2008 27

Introduction to OpenGL & GLUT
OpenGL Primitives — Restrictions

When drawing points, lines, and triangles, vertices can
be in any positions you like.

Individual quadrilaterals and general polygons must be:

• Planar (this is easy in 2-D).

• Simple (no crossings, holes).

• Convex (bulging outward; no concavities).

Know the ten primitives! Know the associated vertex
orderings!

