
CS 451 Spring 2007, Glenn G. Chappell Notes on Transforming NFAs to DFAs

Here are some notes on material from section 2.3.

• The Extended Transition Function of an NFA

As with a DFA, we can define the extended transition function of an NFA. If the transition
function is δ, we usually denote the extended transition function by δ̂. The basis is that

δ̂(q, a) := {q}.

For the induction step, let S be δ̂(q, x). Then

δ̂(p, xa) :=
⋃
p∈S

δ(p, a).

• The Subset Construction

In order to show that DFAs and NFAs have the same computational power, we gave
the subset construction, which, given an NFA, constructs a DFA that accepts the same
language.

• The alphabet of the new DFA is the same as that of the NFA.

• If Q is the set of states of the given NFA, then the set Q′ of states of the new DFA
is P(Q), the power set of Q, that is, the set of all subsets of Q. In another words,
a state of the new DFA is a set of states of the NFA.

• If q0 is the start state of the NFA, then {q0} is the start state of the new DFA.

• A state in the new DFA is accepting if it contains an accepting state of the NFA.

• If δ is the transition function of the NFA, then we define the transition function δ′

of the new DFA as follows. Where S is a subset of Q and a is a symbol:

δ′(S, a) :=
⋃
p∈S

δ(p, a).

1



• Proving that the Subset Construction Works

The point of the subset construction is to make a DFA that accepts the same language
as a given NFA. The main thing to be proven is that the extended transition functions
of the two automata are the same. We do this by induction. For the induction step, we
need to show that, for each state q in Q, each string x, and each symbol a,

if δ̂′({q}, x) = δ̂(q, x), then δ̂′({q}, xa) = δ̂(q, xa).

To do this, we use the above definitions, along with the definition of the extended transi-
tion function of a DFA.

• Equivalence of DFAs and NFAs

Now, we can show that DFAs and NFAs have the same computational power.

2


