
Introducing Quantum Computing

Christopher Granade

October 9, 2007

1 Qubits.

For the purposes of quantum computing, it's very often easiest to only work
with potentials which allow only have two �good states� for the Hamiltonian (a
fancy way of saying the energy of a system). We'll call these |0〉 and |1〉. Fancy
names, huh? A particle in such a potential is said to encode a single qubit.

1.1 Superposition and measurements.

One of the axioms of QM is that if |0〉 and |1〉 are states for some particle,
then for a pair of complex numbers a and b, a |0〉 + b |1〉 is also a state as long
as a2 + b2 = 1. This is what's commonly known as superposition, and is one
of the most confusing things in all of QM. Part of the confusion comes from
statements like �it's in both places at once!� Well, yes, if you're careful about
what �is� means here. As soon as you look at the particle, you measure it, which
means to project it onto a basis.

If you've had linear algebra, then you'll recognize the words �project� and
�basis.� For any measurement (every way of looking at a particle), there's a set
of �good states� that give discrete values. For instance, if |ψ〉 = a |φ1〉 + b |φ2〉,
and if |φ1〉 and |φ2〉 are the good states that give P1 and P2 when you perform

some measurement Φ on it, then you'll get P1 with probability |a|2 and you'll

get P2 the other |b|2 of the time. So, yes, the particle is �in both places at once,�
but you only ever see it in one at a time. After you see it, the state is �xed to
whatever state gave you your measurement. If you saw P1, then |ψ〉 becomes
|φ1〉. This is what's known as the waveform collapse, and also is the subject of
a great many horrible sci-� plots.

1.2 Vector notation.

A convenient way to write the state of a qubit is to use a 2 by 1 vector: |ψ〉 =[
a
b

]
= a |0〉+ b |1〉. This allows us to write down gates (we'll come to this later)

as matrix transformations of qubit vectors, much like how matrices can be used
in computer graphics to scale, rotate and translate geometric objects.

1

1.3 Multiple qubits.

When we have two or more qubits, we write the state of the entire system like
|φ〉 |ψ〉. It looks like we multiplied the states, but it's really something called
the tensor product. We don't need to worry about that aside from knowing
that when we put the states next to each other like that, it means a system of
multiple qubits with each in their own states. Sometimes, though, we get even
lazier and write |φψ〉. That's really the same thing as |φ〉 |ψ〉.

2 Quantum gates.

We can do things to a quantum state without actually looking at the state. To
use a classical analogy (which is always dangerous � don't do it unsupervised),
if we have a not gate in the middle of a huge circuit, we don't actually have
to look at the voltage on the wire coming out. We only care about the �nal
answer coming out of our circuit. in the same way, subject to a lot of caveats,
we can change things about a qubit or system of qubits without performing a
measurement.

The processes which change qubits this way are called quantum gates. As
mentioned before, these gates can all be written as matrix transformations of
qubit vectors, much as rotation and translation matrices transform points in
computer graphics. In fact, there exist gates to �rotate� the phase of a state,
and to shift a state between |0〉 and |1〉 using a rotation matrix.

2.1 Single qubit gates.

Just as with classical circuits, there are gates that modify single qubits. As
opposed to classical systems, in which only two interesting single-bit gates are
de�ned (not and identity), in quantum circuits, the extra degrees of freedom
o�ered by superposition allows for more interesting gates to be de�ned. Among
these are the Pauli spin gates:

X =
[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
X is often called the quantum not gate, for reasons that become obvious when
applying it to |0〉 and |1〉:

X |0〉 =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉

X |1〉 =
[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉

The Z gate is often called the phase �ip gate, as:

Z

(
|0〉+ |1〉√

2

)
=
|0〉 − |1〉√

2

2

Y does not get as much attention for its own part. Other single-qubit gates

include the Hadamard gate H = 1√
2

[
1 1
1 −1

]
, the phase gate S =

[
1 0
0 i

]
and

the π/8 gate T =
[
1 0
0 eiπ/4

]
.

2.2 Multiple qubit gates.

When we're working with multiple qubits, we can write them down as a single
vector:

|0〉 |0〉 =


1
0
0
0

 |0〉 |1〉 =


0
1
0
0



|1〉 |0〉 =


0
0
1
0

 |1〉 |1〉 =


0
0
0
1


This allows us to write down gates of multiple qubits as matrix transformations
of these vectors. Of all the multiple qubit gates, however, we will only look at
one: the cnot, or Controlled-not gate:

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The cnot gate acts as follows on our basic qubits:

|00〉 → |00〉 |01〉 → |01〉
|10〉 → |11〉 |11〉 → |10〉

It can be shown that all other multiple qubit gates, for any arbitrary number
of qubits, can be written as the composition of single qubit gates and of cnot.
Another way of saying this is that cnot, along with single qubit gates, are
universal for quantum computing. There's still a lot of other gates that get
used, however, in the same way that we discuss more classical gates than just
nand.

2.3 Gates we wish we could build.

In classical computing, we so often use a very simple gate that we hardly even
recognize we're using it at all: the fanout gate. fanout copies an input signal

3

to several output wires, and can be used to split a bit into multiple copies.
Sadly, no such gate can ever exist for a qubit via a useful if depressing result
called the Quantum No-Cloning Theorem. In general, all quantum gates must
be reversible. The mathematical formalism for this requires that the matrices
representing gates be unitary. What exactly this means is beyond the scope of
this lecture, but it is important to realize that there are quite a few ways in
which quantum computers are harder to work with. Operations that we take
for granted in classical computing don't always exist for qubits.

It's actually not too hard to see that the classical fanin gate should also
be beyond the reach of quantum computers for the same or similar rationales;
once we use a classical fanin gate to throw away bits, the bits are gone. Such
a gate clearly isn't reversible, and so we can't make one for qubits. A technical
argument can be made as well, but would be beyond the scope of this lecture.

3 Entanglement.

Entanglement is where a lot of the real power of quantum computers comes
from. To talk about entanglement, it's easiest to write down a set of states that
are entangled and then talk about what it means. These states are a famous
set called the Bell states:

|β00〉 =
|00〉+ |11〉√

2

|β01〉 =
|00〉 − |11〉√

2

|β10〉 =
|10〉+ |01〉√

2

|β11〉 =
|01〉 − |10〉√

2

These states have the property that measuring one of the qubits changes the
state of the other. For example, if you measure the �rst of two qubits in the
|β00〉 state and obtain |0〉, then you know immediately that the second qubit is
also a |0〉.

4 Why Do We Care?

In this section, I'll discuss a few of the reasons why we care about quantum
computing. Mostly, I'll just skim the surface, and mention what an algorithm
can do without any details as to how. Of course, I won't be mentioning anywhere
near all of the awesome things that quantum computers can do. For more of
these, read Quantum Computation and Quantum Information, by Michael A.
Nielsen and Issac L. Chuang (amazon, b&n).

4

http://www.amazon.com/Quantum-Computation-Information-Michael-Nielsen/dp/0521635039/ref=sr_11_1/102-8299850-6905765?ie=UTF8&qid=1191709621&sr=11-1
http://search.barnesandnoble.com/booksearch/isbninquiry.asp?ISBN=0521635039

4.1 Superdense Coding.

Perhaps the easiest application of quantum computing to understand is the
application of superdense coding. Using superdense coding, Alice and Bob can
exchange two classical bits by sending a single qubit. If Alice and Bob each
have one qubit from an entangled pair in the |β00〉 state (which can be done
without direct communication if they both receive one from a third party), then
Alice can apply one of four di�erent single-qubit gates to her half of the pair,
depending on which pair of classical bits she wants to send. She then sends her
qubit to Bob, who measures the pair, who can then �nd out which of the four
Bell states the pair was in. This works because, depending on which gate Alice
chooses, changing her qubit has a measurable e�ect on the pair:

I |β00〉 = |β00〉
Z |β00〉 = |β01〉
X |β00〉 = |β10〉
iY |β00〉 = |β11〉

4.2 Shor's Algorithm.

Of all the algorithms invented for quantum computers, few are as plain scary as
Peter Shor's algorithm for factoring integers (published as arxiv:quant-ph/9508027).
As opposed to classical algorithms for factorization, of which the best takes

O

(
exp

[
3

√
64
9 lg n · (lg lg n)2

])
time to factor an integer n, Shor's algorithm

can factor numbers in O
(
[lg n]3

)
time and O (lg n) space1.

Shor's Algorithm works by reducing the problem of factorization to the prob-
lem of period �nding (this step may be done classically), and then applying
the Quantum Fourier Transformation (QFT) to �nd the period of the reduced
problem instance. The details of this reduction are better suited to a course on
number theory, but what is essential to understand is that Shor's Algorithm is
a speci�c example of a general class of quantum algorithms based on the QFT.

Since factorization is essential to most modern cryptosystems, the power of
Shor's Algorithm to factor numbers in polynomial time (as a function of the
number of bits lg n) is why I said that the algorithm scares quite a number of
people. Of course, no one has yet factored a number larger than 15 using a
quantum computer, so we do have a bit of time in which to upgrade to elliptical
curve based cryptosystems.

4.3 Grover's Algorithm.

The last algorithm to be mentioned is a general search algorithm called Grover's
Algorithm after its inventor. By general, what we mean is an algorithm that

1For more details on the time and space complexity of classical factorization algorithms,

please refer to Wikipedia's treatment of the subject.

5

http://www.arxiv.org/abs/quant-ph/9508027
http://en.wikipedia.org/wiki/Integer_factorization#Current_state_of_the_art

searches a list for an item speci�ed by some other circuit (that we call an oracle)
that tells the algorithm when the item has been found. Thus, by changing the
oracle, we can make the search �nd whatever kind of item we want. What's
truly amazing, however about the algorithm, is that it takes O (

√
n) queries to

the oracle to �nd the special item, where n is the number of items in the list.
Classically, the idea of performing a search on unsorted data in less operations
than the a linear function of the list size would be patently insane, as one would
expect that the computer must at least look at each item. Yet, this is precisely
what Grover's Algorithm lets you do for lists encoded with qubits. Superposition
allows the quantum computer to, in some limited fashion, to look at multiple
items together.

5 A Parting Note: Complexity Classes.

The algorithms that I've laid out here don't quite make the case that quantum
computers are ridiculously useful; even with Shor's Algorithm, if the constant
multiple of the order is large enough, then the sub-exponential classical algo-
rithms are still more attractive. Thus, we turn to the study of complexity theory,
which is largely dedicated to answering the question of what a given computa-
tional model can do at all, and what it can do quickly. I won't talk about it any

more here, other than to make two points: we still don't know P
?= NP, and the

class of things that can be done quickly with quantum computers (BQP) is not
known to be di�erent from the class of things that can be done quickly with
classical computers (P). For those interested, Complexity Zoo or its spin-o�,
Petting Zoo, are excellent resources hosted by Caltech's Qwiki. For a list of
problems and their complexity classes, Qwiki's Complexity Garden is a good
place to start.

6

http://qwiki.caltech.edu/wiki/Complexity_Zoo
http://qwiki.caltech.edu/wiki/Petting_Zoo
http://qwiki.caltech.edu/wiki/Main_Page
http://qwiki.caltech.edu/wiki/Complexity_Garden

	Qubits.
	Superposition and measurements.
	Vector notation.
	Multiple qubits.

	Quantum gates.
	Single qubit gates.
	Multiple qubit gates.
	Gates we wish we could build.

	Entanglement.
	Why Do We Care?
	Superdense Coding.
	Shor's Algorithm.
	Grover's Algorithm.

	A Parting Note: Complexity Classes.

