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Abstract

This document describes an optimal solution to the problem of irrigation on a rectangular

field where the sprinkler systems water dispersion pattern is elliptical and the length of

the irrigation system is not adequate to cover the entire field.

We have derived a model from the stated empirical data, and constructed two separate

computer simulations of the model, each with model with it’s own approach to the problem.

We have verified the results of our simulations in a third manner using that wonderful

branch of mathematics, the Calculus. We have analyzed our results statistically, and

found an optimal solution. In our optimal solution, we have placed four nozzles unevenly

along our sprinkler system, one at each end and one five meters from each end. This

configuration allowed the farmer to have to only move the sprinkler system once every

seven hours, for twenty-eight hours. The field received the requisite amount of water, and

at no time did the water reaching the field per hour exceed the allotted maximum. Water

distribution was also highly uniform, with only a 5.35% standard deviation from the mean.
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Chapter 1

Introduction

A farmer has a field 30 meters in width by 80 meters in length. The farmer has a series of

pipe segments with which he can construct a pipe system of 20 meters in length. What is

the most efficient method for the farmer to water his field? Specifically, how many nozzles

should the farmer incorporate into his pipe system, and how far apart should the nozzles

be spaced? Also, where should the farmer put the sprinkler system in order to minimize

the number of times the sprinkler system has to be moved to water the field. These are

the questions which we have attempted to answer with our model.
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Chapter 2

The Model

2.1 Assumptions

In constructing our model, we have made several defensible assumptions.

1. Water is a non-viscous, non-turbulent, irrotational, and incompressible fluid.

This assumption is taken for granted in many pieces of literature. The effect of the

properties of water we have left out is negligible in many applications, and leaving

out the calculations of these properties will greatly simplify the derivation of our

model.

2. Pressure loss in a 20 meter length of pipe is negligible.

Before neglecting pressure loss, we first produced a calculation for the pressure loss

in the length of pipe. Initially, we calculated the Reynolds number, given by

Re =
ρvsD

µ

where ρ is density of water, vs is mean fluid velocity, D is diameter of pipe cross

section, and µ is absolute dynamic fluid viscosity. Finding Re = 3.177, we determined

it to be a laminar flow. We then applied our results to the Swamee-Jain Equation,
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in order to determine the friction factor, f , in a full flowing circular pipe:

f =
1.325[

ln
(

e
3.7D

+ 5.74
Re0.9

)]2
where e is average roughness height, and Re is the Reynolds number. This we found

to be the unit-less constant 2.650. Given the previous values, we were then able to

calculate hf , the head loss, given in the D’Arcy-Weisbach formula as:

hf = f ·
(

L

D

)(
v2

s

2g

)

where L is length of pipe, and g is the acceleration force due to gravity. Finally, we

used conversion factors to render the head loss into pressure loss using the following

formula: P = hf · 9.790. Thus, we determined that the pressure loss due to friction

along the pipe’s length was 26.80 kPa, leaving our pipe with over 390 kPa of pressure

to force the water through the nozzles.[6]

3. The Newtonian physical model holds for a droplet of water.

Of course, we know that Newtonian physics does not hold for a droplet of water, nor

for any other particle in the universe. But it does provide a simple and fairly accurate

model for kinematic systems dealing with macro-particles at sub-light speeds.

4. The field is topographically uniform and at the surface, pressure is one atmosphere

(101.325 kPa).

Farmers tend to keep their fields as flat as possible, precisely because it creates an

easier watering situation. According to Evans [2], irrigation systems like on our farm

generally operate on land with less than a 6% slope. Although possible to account

for the many environmental factors globally experienced by farmers (atmospheric

pressures, temperature ranges, and wind velocities for example), such details would

increase the complexity of our model beyond necessity. It is enough to assume

moderate wind speeds, arable land, and note that as the elevation drops from 8850

meters to −400 meters, the atmospheric pressure rises from 31 kPa to 106 kPa. Such
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a difference, though large, is only slightly more than half of the amount of pressure

flowing within our irrigation pipes.

From these basic assumptions we have constructed our model.

2.2 Initial Derivations

Given Fin, the water flux through the inlet, and din, the diameter of the inlet, then vin,

the velocity of water through the inlet, is

vin =
4Fin

πd2
in

.

If n is the number of sprinklers, and k = 1, 2, . . . , n, the continuity equation [3] gives that

Ainvin = A1v1 + A2v2 + · · ·+ Anvk.

That is, the product of the area and the fluid speed at all points along a pipe is constant

for an incompressible fluid. Notice, A1 = A2 = · · · = An. Thus,

Ainvin = As(v1 + v2 + · · ·+ vk).

Because we have assumed the pressure loss along the length of the pipe negligible, we

assume the velocity to be equal across all nozzles. The velocity out of each sprinkler

nozzle then is

vs =
Ainvin

Asn
.

By plugging in the known values for area, we find vin = 1
π

m
s
, and vs = 2500

9nπ
m
s
.

If θ is the angle of the sprinkler nozzles from the horizontal, then we can determine

the maximum vertical velocity vu of the water stream out of a sprinkler head using the

trigonometric identity,

vu = vs sin θ.

Similarly, the horizontal velocity vh is

vh = vs cos θ.
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The maximum time tm that a droplet of water can spend in the air is given by the kinematic

equation of a particle under constant acceleration

tm = 2 · vu

g

where g represents the acceleration of gravity. Then rs, the maximum radius of water

distribution for a sprinkler, and As, the area of the water distribution for a sprinkler, are

given by

rs = vhtm and As = πr2
s .

By combining the terms within vh and tm, we discover rs = v2
s

g
. Then the water flux Fs to

the ground around a sprinkler is given by

Fs =
Fin

nAs
.

The worst case for water accumulation around a particular sprinkler s is given by the

following. Given n sprinklers, we can find the radius rs for each sprinkler as before. We

can also find the distance between each sprinkler ∆S. If we take

m =
⌊ rs

∆S

⌋
(mod n + 1),

then we have the number of sprinklers within one radius of s. Thus, the ground immediately

around s is receiving spray from 2m + 1 sprinklers. Then Fσ, the largest possible amount

of water accumulation for any point along the pipe system, is given by

Fσ = Fs(2m + 1).

2.3 Optimization

2.3.1 Max Flow

Our first condition for determining an acceptable irrigation system was that any given

nozzle must put out the most water it can. Since the radius of spray is proportional to the
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square of the velocity (rs = v2
s

g
) with the area proportional to the radius squared, and the

velocity vs inversely proportional to the number of sprinklers, the maximum spray velocity

would come from the least possible number of sprinklers. Since one is the least nontrivial

number of sprinklers possible in the system, we determined vs and the area to both be

maximized for n = 1, and hence the flow, or product of the area and velocity, would also

be maximal.

2.3.2 Minimum Saturation

Given the condition that the entire field must be sprayed with .02 meters over the course

of 4 days. This translates to an average flow of 5.787×10−8 m
s
· As With just one sprinkler,

we can ideally cover an area of π · (vs

g
)2m2, or about 1.996 × 106m2. In reality, this

number is impossible, because such a velocity would increase the wind velocity relative to

the water, decreasing droplet size, and thus greatly increasing the quantity of water lost

due to evaporation.[5] Also, we already know that the total flow leaving the sprinklers must

equal the amount entering the pipe, which was given as 150 L
min

. According to the Rain

Bird catalog, a high quality high pressure rotary nozzle is capable of releasing 34.8 L
min

,

which is less than a quarter of what would be necessary in this system.[7] Disregarding

such impossibilities for the moment, we find that the rate of saturation would be(
.0025m3

sec

1.996x106m2

)
= 1.25 × 10−9m

s

Note, this rate occurs over the entire area, of which our plot of land only represents .15%.

Therefore, it would be safe to state that

.15% × 1.25 × 10−9
(m

s

)
× 86400

(
sec

day

)
× 4(days) = 6.5 × 10−9

(m

s

)

Since this figure is well below our intended minimum precipitation, there must be more

than one sprinkler head on our irrigation pipe.
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2.3.3 Maximum Saturation

With more than one sprinkler placed along our pipe, we know that any radius greater than

10m will lead to some overlap. We also know, from the kinematic equations, that a radius

of less than 10m will have a velocity vs =
√

10 × 9.81 = 9.90m
s
. Note, from the continuity

equation, the sum of the sprinkler velocities must be proportional to our input velocity:

Aivi

As

= v1 + v2 + ... + vn,

thus 88.419m
s

= v1 + v2 + ... + vn. The greater the variance of nozzle velocities, the more

varied the radii of the circles to which they project water. Smaller circles would pour

greater amounts of water closer to the pipe, while greater circles would saturate larger

areas with less water. Whether this would eliminate all possibility of uniform saturation

or just create potentially more work in number of times the pipe must be moved will

be discussed further. The one case in which no extra work is required to symmetrically

overlap with covered areas, is when the nozzles are equally spaced apart. From a theoretical

standpoint, it seems reasonable to guess that this is the best system. First, because if two

nozzles are closer to one another than to their other neighbors, water should accumulate

to a greater degree in their areas of overlap, and to a lesser degree in areas where they

do not. Secondly, it would certainly entail less consideration on the part of the workers

setting up the pipe. Consequently, it is reasonable to restate the continuity equation in

this simplified form,

vs =
88.419

n

Taking discrete n-values, spacing them evenly along a 20 meter pipe, and determining the

associated radii, we were able deduce that Ao = As −Abt, where Ao is the area of overlap,

As is the area of the circle around a sprinkler, and Abt was the area between the ”top”

and ”bottom” circles. To find the area between circles, we set the center of the pipe as

the Origin of the x-y plane, in order to take advantage of radial symmetries. From there,

we calculated the equations for circles spaced along the origin. For ease of integration,

the pipe ran from y = −10 to y = 10, so the equations for the circles were of the form
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yn =
√

r2 − x2 + b, keeping in mind the negative values. Using calculus, the area between

the ”top” curve and the ”bottom” curve was written as

4

∫ r

0

y1 − yndx = 4

∫ r

0

[√
r2 − x2 + 10 −√

r2 − x2 − 10
]
dx

Canceling the square roots, we end up with a linear function with respect to radius,

Abt = 80r. Thus, the area shared by all the sprinklers is simply Ao = πr2−80r = r(πr−80).

Finally, we must divide the total flow by the overlapped area,
.0025left(m3

sec
right)

Ao
, to determine

the rate of saturation in meters per second.

In Table 2.1, we see that four equally spaced nozzles provides the highest rate of flow

without exceeding the value 2.083 × 10−6. Finding the intersection between the function

f(x) = .0025
r(πr−80)

and f(x) = 2.083× 10−6, we find that only those values beneath x = 4.666

satisfy our requirements. So long as the soil can properly absorb the moisture, higher

influxes of water are preferable to lower ones. Since x is a continuous representation

of the discrete n-values, we can safely choose n = 4 as the optimal number of nozzles.

Consequently, so long as we have 4 or less sprinklers, we can let the pipe sit at any

location for an arbitrary amount of time without surpassing the .75 cm/hour saturation

limit. Rates beyond this amount can have many deleterious effects on the soils and plants

being hydrated. To name a few, supersaturated soil will expel oxygen, causing to anaerobic

conditions that can lead to root rot; decreased nitrogen uptake severely stunts plant growth;

and water will build up. If lacking a retainer systems will erode the topsoil.[?].

n r A
∣∣ .0025

∆A

∣∣
2 199.24 108860 2.298 × 10−8

3 88.584 17565 1.423 × 10−7

4 49.829 3814.0 6.555 × 10−7

5 31.890 643.75 3.883 × 10−6

6 22.146 230.90 1.083 × 10−5

Table 2.1: Rates of Flow.
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Upon closer inspection of the possible placements of the sprinklers, we find that regard-

less of the placement of the middle nozzles, the area being pumped with water from all

sources will remain unchanged. This means that we can arbitrate the locations of the inner

nozzles to mediate the size of the areas receiving spray from only one source, two sources,

and three sources. Depending on the location of the irrigation system within the field,

specifically the distance from the system to the boundary of the farm plot, we may need

more flow to cover further out. In which case we would locate the middle nozzles equidis-

tant from the midpoint of the pipe and quite near one another. This flow distribution

would minimize the areas of land receiving water from two sources, while increasing the

areas receiving one and three sources by an equal amount. Alternately, placing the pipes

very near the boundary of the land would necessitate a decrease in the amount of water

flowing radially out and prompt placement of the inner nozzles to be nearer the endpoints.

In either case, the fixtures would be need to be equidistant to the midpoint of the pipe for

the sake of uniform flow. Because the area of land receiving differing outpourings of water

changes linearly with the distance between the inner points, calculus alone cannot help in

distinguishing between the solutions. In effect, all possible spacings are equally good, so

long as the farmer places the pipe the proper distance from its previous locations and the

edge of the field.

2.4 Dispersion Profile

In the construction of our model, we at first considered an constant dispersion profile.

That is, we assumed that the flow from the nozzle would disperse itself evenly across the

the entire dispersion area. The dispersion profile is diagrammed in Figure 2.1.

From the very start we realized that this constant dispersion profile was an unrealistic

assumption. The literature backed this. So, in addition to this constant dispersion profile,

we considered another in which the hourly water accumulation decreases linearly with the

distance from the nozzle. From our research, it seems that this is the most sought after

type of dispersion profile as it allows sprinklers to be spaced in such a way that all areas
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Figure 2.1: An constant dispersion profile.

receive an even amount of precipitation. A diagram of the linear dispersion model is shown

in Figure 2.2.
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Figure 2.2: A linear dispersion profile.

When adjusting the dispersion profile, it is important to maintain the volume formed

by the rotation of the profile around the y axis. If the volume of the rotation is not

maintained, the dispersion profile is inaccurate because water has then been introduced

into the system. A simple calculation shows that in the linear dispersion profile, the depth

of water accumulation at the center must be exactly three times that of the constant

dispersion profile. To wit,

πr2
1h1 =

1

3
πr2

2h2.

But, because the maximum radius of the dispersion profile is the same for all dispersion

profiles with a fixed number of nozzles, r1 = r2, thus we have that

3 · h1 = h2.

That is, the center height of our linear dispersion profile is exactly 3 times the height of

our constant dispersion profile.
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Chapter 3

The Simulation

Two separate computer simulations were constructed based on our Newtonian model. A

simulation was written in the C programming language. This simulation provides data on

relative water distribution; i.e, it gives no figures in centimeters of water. It is designed

only for finding a configuration that applies water as uniformly and efficiently. A second

simulation in Python attempted to accurately model the amount of water delivered to

the field per hour, and to measure exactly how much time was required for full water

dispersion onto the field. Both of these simulations include a 10% loss of water delivered

to the ground, to account for possible water loss due to evaporation, plant canopy, weather,

and other such factors with the intent of providing a model of the worst-case scenario.

3.1 A Simulation in C

3.1.1 A Relativistic Approach

This simulation only provides data on relative water distribution; i.e, it gives no figures in

centimeters of water. It is designed only for finding a configuration that applies water as

uniformly and efficiently (fewest pipe positions) as possible. It was decided that finding

a good configuration was more important that finding a specific duration, as a variety of

factors in practice will affect the duration; weather, season, crop, while the factors that



Team #836 13 of 42

affect the position are less likely to change (the exact configuration depends primarily

on the nozzle type). To this end, the simulation calculates the standard deviation as a

percentage; this made it easy to compare different configurations (vs. eyeballing output

images).

This simulation uses a file with positions for nozzles on the pipe, and locations for

the pipe in the field enabling many different configurations to be easily tested. The code

relating to the actual simulation is entirely in the simulate() and spraywater() functions.

The remainder of the code is for reading in the configuration file, and outputting contents

of the field array to a PNG image. The source code of this simulation can be found in

irrigation.c this file is included in Appendix B.

3.1.2 simulate()

The simulate() function determines the positions where a nozzle will be in the field, by

walking the list of pipe positions and then calling spraywater() for every nozzle on the

pipe. Pipes may only be aligned horizontally or vertically; it was deemed unlikely that an

angled configuration would be optimal in a rectangular field. A two dimensional field array

is maintained for holding the amount of water applied to the field; it uses 20 elements per

meter.

3.1.3 spraywater()

The bulk of the work is done in the spraywater() function; this function calculates water

flow (from the number of nozzles), then calculates the velocity and radius that the nozzle

will cover. The spraywater function then iterates over the field array, calculating the

distance of each element from the nozzle and applying some amount of water proportional

to the radius if the element is within the radius.

We used a linear dispersion model, with the highest dispersion next to the nozzle,

decreasing to zero at the maximum radius. This seemed to be the preferred sprinkler type

for irrigation in the literature, and gave us the best results. We also tried reverse linear
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dispersion (zero at the nozzle, highest at the maximum radius - we were able to find one

sprinkler advertised as having this dispersion profile) as well as constant dispersion, but

the results with these models were not nearly as uniform.

3.1.4 writeimage()

The writeimage() also calculates statistics, as the array is outputted to an image. It

calculates the maximum and minimum values and their ratio, as well as the average and

standard deviation. The standard deviation uses the usual formula, first calculating the

average, then iterating over the array a second time to calculate the variance.

3.2 A Python Simulation

The Python simulation attempted to accurately model the quantifiable variables in our

model. It measured the amount of water precipitated to all parts of the field per hour,

and also the total time required to ensure that all parts of the field would receive the

appropriate amount of water.

This simulation functioned by providing a class for all components in our model. A class

was created to model the field, the sprinkler system, and for each sprinkler. A fourth class

drives the simulation. The source code of this simulation can be found in irrigation sim.py

and irrigation tools.py. Both of these files are included in Appendix A.

3.2.1 The Field Class

The Field class has four attributes: max hourly water describes the maximum allowable

water accumulation in one hour for any portion of the field, width and height describe the

height and width of the field, sectors is an array containing the total water accumulation

for points on the field, and resolution describes the number of points held in the array

sectors for each unit of field dimension.
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The Field class contains only one method important to the simulation. This is the

apply water method. The apply water method receives an instance of a Sprinkler class

object, and from it deduces how much water will fall were on the field in one hour. This

method is the primary driver of the Python simulation.

3.2.2 The SprinklerSystem Class

The SprinklerSystem class is initialized with n, the number of sprinklers in the system,

and theta the angle of the sprinkler nozzles. The SprinklerSystem class has five attributes,

inflow is the water flux into the system, x and y describes the sprinkler system position

on the field, phi describes the the angle of the sprinkler system in the plane of the field,

sprinklers is a python list containing all of the SprinklerSystem’s child sprinklers.

The SprinklerSystem Class class has two methods of importance. The method run sprinklers

is a Python construct known as a generator. It yields sprinkler objects iteratively so that

not all sprinkler objects must be returned at once. Instead the are returned as needed by

the caller. The method move simply updates the SprinklerSystem’s position and all of the

child sprinkler’s positions as well.

3.2.3 The Sprinkler Class

The Sprinkler class is the core of the simulation. The class is initialized with the nozzle

flow of the sprinkler and the sprinkler’s angle over the field. The Sprinkler class has several

attributes: distance from root describes the sprinklers distance from the sprinkler system

root point, x, y, and phi give the root point of the sprinkler system, nozzle diameter is the

nozzle diameter given in the problem description, nozzle flow is the water flow through

the sprinkler. From the nozzle flow and nozzle diameter the following parameters are

computed and saved as attributes: nozzle velocity is the water velocity out of the nozzle,

dispersion radius is the maximum range of a the water jet, dispersion area is the area

computed from the sprinkler’s dispersion radius.

The Sprinkler class contains several important methods. The most important being
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the dispersion profile method. This method returns the hourly water accumulation as a

function of the distance from the sprinkler nozzle. We have implemented this method

in the two distinct ways described in the earlier section describing the derivation of our

model. The Sprinkler class also has move as a method. This method simply updates the

sprinklers reference to the root point of the sprinkler system. The coords method returns

the actual field coordinates of the sprinkler nozzle in a tuple.

3.2.4 The Simulation Class

The Simulation class drives the simulation. The Simulation creates two instances of the

Field class, one for hourly water accumulation and one for the total water accumulation,

and also creates one SprinklerSystem class.

The Simulation class’s primary method is run simulation. This method contains a list

of sprinkler system positions. Each position in the list corresponds to one hour of time.

The run simulation method iterates through each position, first setting the sprinkler to

the position, and then iterating through each sprinkler in the sprinkler system, applying

water to a temporary field class. The temporary field is checked for the maximum water

application for the hour, and the water application for the hour is added to the total water

accumulation for the field. After all the sprinkler system positions have been completed,

the minimum accumulation on a sector is deteremined as well as the maximum, and the

simulation is terminated.
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Chapter 4

Results

We have reached the conclusion that 4 nozzles is the optimal number.

4.1 Simulation in C

With the C-Simulation, we tried a variety of nozzle configurations and sprinkler system

positions, optimizing each by hand to attain the lowest standard deviation possible. The

results were not quite what we expected, in particular that a uniform nozzle placement

was not always ideal. The uniformity of water dispersion was quite a bit better than we

expected, and is quite dependent on using a linear distribution model; we tried a few with

constant distributions and reverse linear distributions, and the dispersion uniformity was

always significantly worse. Below are some of our best results; most of these would never

Figure 4.1: Four nozzles, four positions, 5.36% standard deviation.
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Figure 4.2: Four nozzles, five positions, 7.87% standard deviation.

Figure 4.3: Five nozzles, six positions, 5.86% standard deviation.

be used in practice (and some have too many nozzles to be practical; it turned out to be

necessary to use no more than 4 nozzles to cover enough area and not oversaturate the

field) but they show patterns that might be useful in larger fields.

Figure 4.1 depicts the nozzle arrangement with the smallest standard deviation of water

accumulation with a useable number of nozzles.1 Curiously, the ideal placement on the

pipe didn’t have the nozzles equally spaced. This would also be a very efficient arrangement

(in water useage) if nozzles can be found that will spray in half circles, and the fact that

the positions are on the edge of the field ought to make it easier to move the pipe around

in practice.

Figure 4.2 depicts the other general configuration we tried. As you can see, with four

nozzles it is less optimal in every way than the first configuration. However, if water is

scarce and nozzles that spray in half circles cannot be used, this might be preferable to

1In all of these figures darker color indicates greater accumulation of water.



Team #836 19 of 42

Figure 4.4: Six nozzles, six positions, 8.91% standard deviation.

Figure 4.5: Eight nozzles, twelve positions, 5.85% standard deviation.

save water.

In Figure 4.3, we begin to see how as the number of nozzles goes up, the coverage

decreases and the number of positions must increase. The coverage is quite uniform, but

in practice there will likely be no reason to use this configuration over the first. Figure 4.4

illustrates a continuation of the trends in the five nozzle configuration. Six nozzles are not

optimal for this field size, and the standard deviation is higher. While the configuration

Figure 4.6: Ten nozzles, twenty positions, 4.6% standard deviation.
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in Figure 4.5 would be useless on a 80m x 30m field, it does show what a configuration

on a larger field would look like. Figure 4.6 shows the densest configuration we tried. As

you can see, there seems to be an optimal spacing in large fields dependant only on the

sprinkler radius.

4.2 Python Simulation

With the Python simulation, the optimal nozzle configurations and sprinkler system po-

sitions found by the C simulation were verified. Additionally, it was found that the field

could completely be watered to a two cm depth in approximately twenty-eight hours. The

simulation showed that the unevenly spaced four nozzle configuration could apply at most

0.25 cm of water per hour. However, due to the large dispersion radius of the sprinklers,

the needed two centimeter accumulation was dispersed in just seven hours.

Figure 4.7 shows the unevenly spaced four nozzle configuration after seven hours of

water application. The same field is seen again after fourteen hours in Figure 4.8, after

twenty-one hours in Figure 4.9, and after twenty-eight hours in Figure 4.10. It was nec-

essary that the sprinkler system spend at least 7 hours in each of the four position shown

in order for full a full two centimeter application of water. However, only four moves of

the sprinkler system are required for this configuration of nozzles and sprinkler system

positions. In this four nozzle, four sprinkler system position configuration, the most water

dispersed to any portion of the field was 2.95 centimeters, the least dispersion was 2.07

centimeters, and the average 2.68 centimeters with a standard deviation of 6%. These

results indicate that the farmer should be able to have his field entirely watered in two

fourteen-hour days.
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Figure 4.7: Unevenly spaced four nozzle configuration after seven hours.

Figure 4.8: Unevenly spaced four nozzle configuration after fourteen hours.

Figure 4.9: Unevenly spaced four nozzle configuration after twenty-one hours.

Figure 4.10: Unevenly spaced four nozzle configuration after twenty-eight hours.
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Chapter 5

Review

5.1 Strengths

Our model is based on the solid foundation of Newtonian physics, which while not being a

perfect model for the universe has provided a solid and long-standing foundation for many

of the achievements of the past few centuries.

Another strength of our model is that it gives an expected variation in water distribu-

tion, which may be useful if there are crops that have a relatively tight tolerance for water

requirements.

Both of our computer simulations can be run very quickly and provide an easy mech-

anism to vary the input parameters. This can be used to test a high volume of nozzle

configurations and sprinkler system positions in order to definitively nail down a good

solution for any field shape or size.

5.2 Weaknesses

We believe our model to be of significant practical use, but ultimately it rests on a few

assumptions which could use more practical testing. Primarily the specific nozzle type will

have an impact on the dispersion radius and water dispersion profile, but we currently have
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no data on how or even how much. The dispersion radius will also depend on how much a

stream of water is affected by air friction; this would be extremely difficult to model due

to its chaotic nature, but a small amount of empirical testing could either validate our

assumptions or provide new ones. The linear dispersion model is better supported by the

literature; it is regarded as being ideal for irrigation purposes by current manufacturers,

and in practice the actual water dispersion profiles should be close to our linear model.

Any variation may decrease uniformity, but the variation would have to be extreme to

signifantly alter our figures. It is also unlikely that any variation in dispersion profile and

not dispersion radius would change the optimal placement for nozzles and the pipe.
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Chapter 6

Future Work

While our model has provided some insight into the problem of the farmer and the field,

there are a several of additional factors that we would like to investigate. The first being

variations in field size. We would also like to explore the effects of non-uniform terrain

on the irrigation system; farmland tends to be flat or gently sloping in one direction,

but we only consider flat terrain. Also, it would be interesting to investigate the effect

of weather on the sprinkler system, though this would certainly require emperical data.

Prevailing wind would likely have a similar effect as terrain slope, but wind, humidity and

temperature would likely all have effects on the amount of water required. It may also

help to incorporate specifics of different nozzle designs into our model; perhaps some nozzle

configurations would be better suited for different purposes.

We would like to some day write an evolutionary algorithm to determine the optimum

positioning of the sprinklers on the field. Such an algorithm would provide automated

generation of highly optimized solutions to the irrigation problem.
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Appendix A

Simulation in Python

A.1 irrigation sim.py

Python simulation code.

#

# irrigation_sim.py - irrigation simulator

#

# Standard Library

from math import *

# Additional Packages

from Numeric import *

from MLab import *

import pylab

import Image

# User-defined Packages

import irrigation_tools as tools

class Sprinkler:

distance_from_root = 0.0 # distance from the root point.

# position vector of the root point.

x = 0.0

y = 0.0

phi = 0.0
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arc = [1] # water a half circle

# arc = [1,-1]

# arc = [-1]

# constants

nozzle_diameter = 0.6 # cm

percent_water = 0.9 # percentage of water retained

# derived values

nozzle_flow = 0.0

nozzle_velocity = 0.0

dispersion_radius = 0.0

dispersion_area = 0.0

def __init__(self, nozzle_flow, theta):

self.nozzle_flow = nozzle_flow * tools.in_conv["liters_per_minute"]

self.nozzle_velocity = tools.velocity(self.nozzle_flow,

self.nozzle_diameter,

in_units=["cubic_meters_per_second", "centimeters"])

self.dispersion_radius = tools.radius(self.nozzle_velocity, theta)

self.dispersion_area = tools.area(self.dispersion_radius)

# water depth as a function of distance from the nozzle.

@tools.units

def dispersion_profile(self, distance_from_nozzle):

return 3.0*(-distance_from_nozzle/self.dispersion_radius + \

self.percent_water)*(self.nozzle_flow/self.dispersion_area)

@tools.units

def dispersion(self, dc):

return self.dispersion_profile(dc)

def move(self, x, y, phi):

self.x = x

self.y = y

self.phi = phi

def coords(self):

return (self.x + self.distance_from_root * cos(self.phi),

self.y + self.distance_from_root * sin(self.phi))

class SprinklerSystem:



Team #836 28 of 42

inflow = 150.0 # liters per minute

x = 0.0 # coords of pipe end

y = 0.0

phi = pi/2 # angle of the pipe

def __init__(self, sprinkler_positions, theta):

self.sprinklers = []

n = len(sprinkler_positions)

for ii in range(n):

s = Sprinkler(self.inflow/float(n), theta)

s.distance_from_root = sprinkler_positions[ii]

s.x = self.x

s.y = self.y

s.phi = self.phi

self.sprinklers.append(s)

def run_sprinklers(self):

for sprinkler in self.sprinklers:

yield sprinkler

def move(self,x,y,phi):

self.x = x

self.y = y

self.phi = phi

for sprinkler in self.sprinklers:

sprinkler.move(x,y,phi)

class Field:

max_hourly_water = 0.75 # cm

width = 80.0

height = 30.0

sectors = array([])

def __init__(self, resolution, max_hourly_water):

self.resolution = resolution

self.max_hourly_water = max_hourly_water

self.sectors = zeros((self.resolution*self.height,

self.resolution*self.width), Float)
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def apply_water(self, sprinkler):

# adjusting coordinates to array indexes

x, y = sprinkler.coords()

ix = self.resolution * x

iy = self.resolution * y

ir = self.resolution * sprinkler.dispersion_radius

for dx in range(int(ix-ir), int(ix+ir)):

for dy in range(int(iy-ir), int(iy+ir)):

if 0 <= dx and dx <= self.sectors.shape[1]-1 \

and 0 <= dy and dy <= self.sectors.shape[0]-1:

dc = sqrt(float(dx-ix)**2 + float(dy-iy)**2)

if dc <= ir:

try:

self.sectors[int(dy)][int(dx)] = \

self.sectors[int(dy)][int(dx)] + \

sprinkler.dispersion(dc/self.resolution,

out_units="centimeters_per_hour")

except IndexError:

raise str((dy,dx))

def clear(self):

self.sectors = zeros(self.sectors.shape, Float)

def render_field(self, sprinkler_coords, path = "irrigation.png"):

print "Drawing Image..."

sectors = self.sectors * 100.0

for x,y in sprinkler_coords:

x = int(x * self.resolution)

y = int(y * self.resolution)

for ix in range(x-10, x+10):

for iy in range(y-10, y+10):

if 0 <= iy and iy <= sectors.shape[0]-1 and \

0 <= ix and ix <= sectors.shape[1]-1:

try:

sectors[iy][ix] = 0.0

except:

raise str(((iy,ix), sectors.shape))

im = Image.new("RGB",

(int(self.width*self.resolution), int(self.height*self.resolution)))

img_array = zeros((self.width*self.resolution**2*self.height, 3), ’l’)

img_array[:,0] = ravel(sectors).astype("l")



Team #836 30 of 42

img_array[:,1] = ravel(sectors).astype("l")

img_array[:,2] = ravel(sectors).astype("l")

im.putdata(tools.tupleize(img_array.tolist()))

im.save(path)

class Simulation:

resolution = 10.0 # number of array elements per square meter

max_hourly_water = 0.750 # cm

def __init__(self, sprinkler_positions, theta):

self.f = Field(self.resolution, self.max_hourly_water)

self.hourly = Field(self.resolution, self.max_hourly_water)

self.s = SprinklerSystem(sprinkler_positions, theta)

def run_simulation(self):

# positions = [(0, 5.0, pi/2),

# ( 0, 5.0, pi/2),

# ( 0, 5.0, pi/2),

# ( 0, 5.0, pi/2),

# (20, 5.0, pi/2),

# (20, 5.0, pi/2),

# (20, 5.0, pi/2),

# (20, 5.0, pi/2),

# (40, 5.0, pi/2),

# (40, 5.0, pi/2),

# (40, 5.0, pi/2),

# (40, 5.0, pi/2),

# (60, 5.0, pi/2),

# (60, 5.0, pi/2),

# (60, 5.0, pi/2),

# (60, 5.0, pi/2),

# (80, 5.0, pi/2),

# (80, 5.0, pi/2),

# (80, 5.0, pi/2),

# (80, 5.0, pi/2)]

positions = [( 1.0, 5.0, 0.0),

( 1.0, 5.0, 0.0),

( 5.0, 5.0, 0.0),

(30.0, 5.0, 0.0),
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(30.0, 5.0, 0.0),

(55.0, 5.0, 0.0),

(59.0, 5.0, 0.0),

(59.0, 5.0, 0.0),

(59.0, 25.0, 0.0),

(59.0, 25.0, 0.0),

(55.0, 25.0, 0.0),

(30.0, 25.0, 0.0),

(30.0, 25.0, 0.0),

( 5.0, 25.0, 0.0),

( 1.0, 25.0, 0.0),

( 1.0, 25.0, 0.0)]

print "Starting simulation."

for hours in range(len(positions)):

print "Hour: %i, position: %s" % (hours, str(positions[hours]))

self.hourly.clear()

self.s.move(*positions[hours])

print " Running sprinklers."

sprinkler_coords = []

for sprink in self.s.run_sprinklers():

print " ", sprink.coords()

sprinkler_coords.append(sprink.coords())

self.hourly.apply_water(sprink)

print "Maximum hourly accumulation on a sector: %f" % max(max(self.hourly

if max(self.hourly.sectors) > self.max_hourly_water:

print "Too much water per hour on some sectors..."

self.f.sectors = self.f.sectors + self.hourly.sectors

self.f.render_field(sprinkler_coords, "irrigation_%i.png" % hours)

print "Most accumulation on a sector: %f" % max(max(self.f.sectors))

print "Least accumulation on a sector: %f" % min(min(self.f.sectors))

if __name__ == "__main__":

s = Simulation([0, 4, 16, 20], pi/4)

s.run_simulation()

A.2 irrigation tools.py

Tools for the python simulation.
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G = 9.81 # m/s^2

import types

from math import *

from matplotlib.patches import Circle, Rectangle, Polygon

from matplotlib.transforms import Value

from matplotlib.backends.backend_agg import RendererAgg

# all conversions to meters and seconds

in_conv = {"liters_per_minute": 1.66666666666e-5, # cubic meters per second

"cubic_meters_per_second": 1.0,

"centimeters": 1.0e-2, # meters

"square_meters": 1.0, # leave alone

"radians": 1.0,

}

# all conversions from meters and seconds

out_conv = {"meters_per_second": 1.0,

"centimeters_per_second": 1.0e2, # from meters per second

"centimeters_per_hour": 1.0e2 * 60.0 * 60.0 # from meters per second

}

def units(f):

def wrapper(*args, **kwds):

if kwds.has_key("in_units"):

result = f(*[in_conv[c] * a for c, a in zip(kwds["in_units"],args)])

else:

result = f(*args)

if kwds.has_key("out_units"):

result = out_conv[kwds["out_units"]] * result

return result

return wrapper

@units

def velocity(flowrate, diameter):

"""Velocity as a function of flowrate and tube diameter."""

# flowrate is in liters per minute (10^3 cm^3 / minute)

# diameter in centimeters

# returns meters per second

return (4 * flowrate)/(pi * (diameter)**2)
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@units

def radius(velocity, theta):

"""Radius as a function of velocity and angle."""

# velocity in meters per second

# theta (angle from horizontal, radians)

# returns meters

v_u = velocity * cos(theta)

tm = 2 * v_u / G

return velocity * sin(theta) * tm

@units

def area(radius):

return pi * radius**2

@units

def depth(sprinkler_flow, area):

return sprinkler_flow/area

@units

def find_m(n, radius):

ds = 20.0/n

m = 2 * floor(radius/ds) + 1

if m >= n:

return n

else:

return m

def tupleize(alist):

return list([tuple(item) for item in alist])

def print_params(n, theta):

# generates a parameter table

f_in = 150.0 # L/min

d_in = 0.6 # cm

print " # _flow_ n_vel radius ___area___ _depth_ _day_ _4days_ m _m*d_"

for ii in range(1, n+1):

F = f_in/ii

V = velocity(F, d_in, in_units=["liters_per_minute", "centimeters"])

R = radius(V, theta)

A = area(R)

D = depth(F, A,

in_units=["liters_per_minute", "square_meters"],
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out_units="centimeters_per_hour")

M = find_m(ii, R)

print "%2i %6.2f %5.2f %6.2f %10.2f %5.5f %5.2f %7.3f %2i %4.3f" \

% (ii, F, V, R, A, D, 24*D, 4*24*D, M, M*D)
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Appendix B

Simulation in C

B.1 irrigation.c

C simulation code.

/*

* Irrigation.c - irrigation simulator

*/

#define _GNU_SOURCE

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <ctype.h>

#include <math.h>

#include <string.h>

#include <stdio.h>

#include <stdint.h>

#include <stddef.h>

#include <stdlib.h>

#include <Ilib.h>

const double pi = 3.14159265358979323846433832975;

struct lines {

char *line;

struct lines *next;

};
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struct positions {

int duration;

int vertical;

float x;

float y;

struct positions *next;

} positions;

uint32_t field[1600][600];

double theta = 3.14159265358979323846433832795/4;

int nozzles;

float nozzlepositions[30];

void parserules(char *stuff);

struct lines *parselines(char *stuff);

void simulate();

void spraywater(float x, float y, int duration);

void writeimage();

int main(int argc, char **argv)

{

int i, j;

if (argc < 2) {

printf("Please enter a rules file\n");

exit(-1);

}

parserules(argv[1]);

for (i = 0; i < 1600; i++)

for (j = 0; j < 600; j++)

field[i][j] = 0;

simulate();

writeimage();

return 0;
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}

void writeimage()

{

long long avg = 0;

double variance = 0;

int i, j, l = 255, m = 0, sum = 960000;

IColor c;

IGC g = ICreateGC();

//IImage out = ICreateImage(1600, 600, IOPTION_GREYSCALE);

IImage out = ICreateImage(1600, 600, 0);

for (i = 0; i < 1600; i++)

for (j = 0; j < 600; j++) {

if (field[i][j] > 255) {

field[i][j] = 255;

sum--;

} else {

avg += field[i][j];

if (field[i][j] > m)

m = field[i][j];

}

if (field[i][j] < l)

l = field[i][j];

c = IAllocColor(255 - field[i][j], 255 - field[i][j], 255 - field[i][j]);

//c = IAllocColor(0, 0, 255 - field[i][j]);

ISetForeground(g, c);

IDrawPoint(out, g, i, j);

}

printf("Greatest acculumation: %i\nSmallest accumulation: %i\n", m, l);

float rat = (float) m / l;

double a2 = (double) avg / sum;

printf("Ratio: %f, Average: %f\n", rat, a2);

for (i = 0; i < 1600; i++)

for (j = 0; j < 600; j++)

if (field[i][j] < 255)

variance += (a2 - field[i][j]) * (a2 - field[i][j]);

double v2 = variance / sum;
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printf("Standard deviation: %f, percent %f%%\n", sqrt(v2), ((sqrt(v2) / a2) * 100)

FILE *fp = fopen("irrigation.png", "w");

IWriteImageFile(fp, out, IFORMAT_PNG, 0);

}

void simulate()

{

int i, n = 0;

struct positions *p;

p = positions.next;

while (p) {

for (i = 0; i < nozzles; i++) {

if (p->vertical)

spraywater(p->x, p->y + nozzlepositions[i], p->duration);

else

spraywater(p->x + nozzlepositions[i], p->y, p->duration);

}

p = p->next;

}

}

void parserules(char *stuff)

{

int i;

struct stat statbuf;

char *file, *p;

struct lines *lines;

struct positions *q = &positions;

i = open(stuff, O_RDONLY);

if (i < 0) {

printf("Can’t open rules file\n");

exit(-1);

}

fstat(i, &statbuf);

file = malloc(statbuf.st_size + 1);
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read(i, file, statbuf.st_size);

close(i);

i = 0;

lines = parselines(file);

while (lines) {

if (strncmp(lines->line, "nozzle", 6) == 0) {

lines->line += 6;

for (nozzles = 0; ; nozzles++) {

nozzlepositions[nozzles] = strtof(lines->line, &p);

if (lines->line == p)

break;

lines->line = p;

}

} else if (strncmp(lines->line, "position", 8) == 0) {

lines->line += 8;

q = q->next = malloc(sizeof(struct positions));

q->duration = strtol(lines->line, &p, 10);

lines->line = p;

while (isblank(*lines->line))

lines->line++;

q->vertical = 0;

if (*lines->line == ’v’ || *lines->line == ’V’)

q->vertical = 1;

lines->line++;

q->x = strtof(lines->line, &p);

q->y = strtof(p, NULL);

}

i++;

lines = lines->next;

}

q->next = NULL;

}

struct lines *parselines(char *stuff)

{

struct lines l, *p = &l;
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while (1) {

p = p->next = malloc(sizeof(struct lines));

p->line = stuff;

stuff = strchr(stuff, ’\n’);

if (!stuff)

break;

*stuff = ’\0’;

++stuff;

}

p->next = NULL;

return l.next;

}

void spraywater(float x, float y, int duration)

{

// decimeters, seconds

int i, j, ix, iy, a, b;

ix = x * 20;

iy = y * 20;

double flow = 2.5 * 1000 / nozzles;

double velocity = (4 * flow)/(pi * .36 * 100);

double vu = velocity * cos(theta);

double tm = 2 * vu / 9.81;

double radius = velocity * sin(theta) * tm;

radius *= 20;

radius *= .9;

double r2 = radius * radius;

for (i = 0; i < 1600; i++)

for (j = 0; j < 600; j++) {

a = i - ix;

b = j - iy;

if (a * a + b * b < r2) {

if (a * a + b * b < 120)

field[i][j] = 256;

field[i][j] += (((radius - sqrt(a * a + b * b))) ) * flow *40/ r2;

//field[i][j] += (((sqrt(a * a + b * b))) ) * flow *10/ r2;
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}

}

}

B.2 irrigationrules

Configuration file for the C simulation.

nozzle 0 5 15 20 # 5.4% SD

position 120 h 3.5 0

position 120 h 56.5 0

position 120 h 3.5 30

position 120 h 56.5 30

nozzle 0 5 15 20 # 7.9% SD

position 120 v 0 5

position 120 v 14 5

position 120 v 40 5

position 120 v 66 5

position 120 v 80 5

nozzle 0 5 10 15 20 # 5.9% SD

position 120 h -2 1

position 120 h -2 29

position 120 h 30 1

position 120 h 30 29

position 120 h 62 29

position 120 h 62 1

nozzle 0 4 8 12 16 20 # 9.2% SD

position 120 h 0 4

position 120 h 0 26

position 120 h 30 4

position 120 h 30 26

position 120 h 60 4

position 120 h 60 26

nozzle 0 2.9 5.8 8.7 11.6 14.5 17.4 20 # 5.9% SD

position 120 h -3 3

position 120 h -3 15

position 120 h -3 27

position 120 h 19 3
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position 120 h 19 15

position 120 h 19 27

position 120 h 41 3

position 120 h 41 15

position 120 h 41 27

position 120 h 63 3

position 120 h 63 15

position 120 h 63 27

nozzle 0 2 4 6 8 10 12 14 16 18 20 # 4.6% SD

position 120 h -3 1.5

position 120 h -3 8.3

position 120 h -3 15

position 120 h -3 21.7

position 120 h -3 28.5

position 120 h 19 1.5

position 120 h 19 8.3

position 120 h 19 15

position 120 h 19 21.7

position 120 h 19 28.5

position 120 h 41 1.5

position 120 h 41 8.3

position 120 h 41 15

position 120 h 41 21.7

position 120 h 41 28.5

position 120 h 63 1.5

position 120 h 63 8.3

position 120 h 63 15

position 120 h 63 21.7

position 120 h 63 28.5


