
Conformance to ISO Standards for C++
Visual C++ .NET 2003 is the most standards-conforming release of Visual C++ ever. Visual C++ was first launched in 1993, and the ISO C++ standard dates from 1997. Each release of Visual C++ since the standard has become more compliant, and this release achieves roughly 98% compliance. (No single industry accepted standardized test-suite exists to compare or measure C++ compiler implementations. Three popular suites are Dinkumware, Perennial, and Plum Hall. Visual C++ .NET 2003 was tested against all three.)

This high level of compliance enables Visual C++ .NET 2003 to compile popular modern C++ libraries, including LOKI, BOOST, and BLITZ: a feat achieved by few, if any, other compilers.

One of the standard language features that is vital for compiling these libraries is partial template specialization. This sample demonstrates partial template specialization. Try compiling it with other compilers: for example Visual C++ 2002 gives error messages and cannot compile it.

Template Specialization

Templates typically define a class or function using one or more placeholders that represent classes or types. At compile time, instantiations of the templates are generated to match the use of the template in your code. For example, this template function can be used to compare integers, floating point numbers, or instances of any class that defines the > operator:

template<class T>

T biggest(T a, T b)

{

 if (a > b) return a;

 return b;

}

You might use this template like this:

int x = biggest(3,4);

double d = biggest(4.1, -2.3);

// SalesRep instances created elsewhere,

// operator> defined for SalesRep class

SalesRep bestseller = biggest(John, Jane);

The compiler will generate code for biggest(int,int), biggest(double, double), and biggest(SalesRep, SalesRep) and this code will be linked into your executable.

C++ programmers traditionally run into trouble with templates that need to handle strings. Traditional char* strings can’t be compared with > and < (those operators just compare the pointer values, not the strings to which they point) or copied with = the way numbers and objects can. One solution is to write a specialization: an instantiation for a particular type that the compiler will use instead of the more general template. Here is a specialization of biggest() for the char* type:

template<>

const char* biggest(const char* a, const char* b)

{

 if (strcmp(a,b) > 0) return a;

 return b;

}

Visual C++ has been able to handle template specialization for a long time. What’s new in the 2003 release is the ability to handle partial template specialization. This applies to templates that take two placeholder types, rather than just one as biggest() does.

The sample

Collection classes are especially likely to use multiple placeholders. A lookup table might hold values (numbers, Employee instances, dates, char* strings) that are indexed by a key that is an integer, a char* string, or a date. The Pair template is a simple class that works with two placeholders:
template <class A, class B>

class Pair

{

private:

 A index;

 B value;

public:

 Pair(A aa, B bb):index(aa),value(bb) {}

 void display(){cout << index << ' ' << value << endl;}

 bool operator>(const Pair<A,B>& p) { return index>p.index;}

};

Pair doesn’t do much, but you can imagine that similar code would be at the heart of a flexible collection solution. It holds copies of the index and value, displays them, and can compare two Pair instances by comparing only their indexes. It works flawlessly when the index type, A, is an integer or other numeric type, or a class that has implemented operator>. When the index type is char*, the comparisons become meaningless since > compare the numerical address of the character pointer rather than the characters it points to. As well, the initialization of index will not make a copy of the characters, but only of the pointer.
A partial template specialization is a specialization where one of the placeholders has been replaced with a specific type (char* in this case) but the other has not. For Pair, a partial specialization for char* index values looks like this:

template <class B>

class Pair<char*, B>

{

private:

 char* index;

 B value;

public:

 Pair(char* aa, B bb):value(bb) {index = new char[strlen(aa)]; strcpy(index,aa);}

 void display() {cout << index << ' ' << value << endl;}

 bool operator>(const Pair<char*, B>& p) { return (strcmp(index,p.index) > 0);}

};

This code would not have compiled under earlier versions of Visual C++. From Visual C++ .NET 2003 onward, it compiles.

Compiling and running

The main() in this sample creates various Pairs and compares them:
int main(int argc, char* argv[])

{

 Pair<double,int> first(2.2,3);

 first.display();

 Pair<double,int> second(2.1,4);

 second.display();

 if (first > second)

 cout << "first is greater" << endl;

 else

 cout << "first is not greater" << endl;

 Pair<char*,int> third("Hello",4);

 third.display();

 Pair<char*,int> fourth("World",5);

 fourth.display();

 if (third > fourth)

 cout << "third is greater" << endl;

 else

 cout << "third is not greater" << endl;

 return 0;

}

To compile the sample, use this command line:

cl /EHsc conformance.cpp
To run it:

conformance

You should see this output:

2.2 3

2.1 4

first is greater

Hello 4

World 5

third is not greater

The Pair called first is greater because 2.2 is greater than 3. The Pair called third is not greater because “Hello” is not greater than “World”.

Summary

Partial template specialization is a technique that is vital to writing rich and useful collections. It can serve a useful purpose in many C++ programs and is just one of the many new areas of standards conformance in Visual C++ .NET 2003.

More information about Visual C++ ISO C++ standards conformance is available at:

http://msdn.microsoft.com/library/en-us/vclang/html/vclrfVisualCNET2003EnhancedCompilerConformance.asp

