Architecture des Ordinateurs II

Part III: Case Studies IA-32 and Pentium

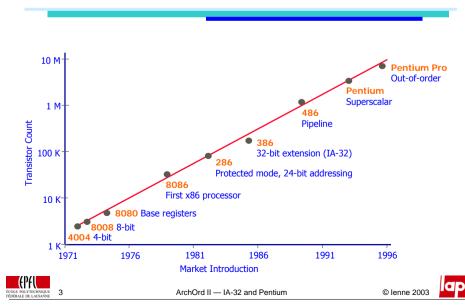
Paolo.lenne@epfl.ch

EPFL - I&C - LAP

Eduardo.Sanchez@epfl.ch

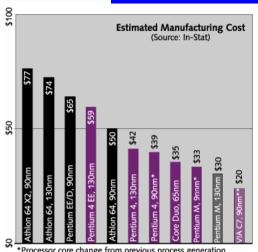
EPFL - I&C - LSL

Intel Processors


Processor	Date	f (MHz)	Trans.	Features	
4004	4/71	0.108	2300	First µP	
8008	4/72	0.108	3500	First 8-bit µP	
8080	4/74	2	6000	Popular 8-bit	
8086	6/78	5-10	29k	First 16-bit µP; 20-bit addressing	
8088	6/79	5-8	29k	Simpler; IBM PC	
80286	2/82	8-12	134k	Protected mode, 24-bit addressing	
80386	10/85	16-33	275k	32-bit (IA-32)	
80486	4/89	25-100	1.2M	Pipelined (5-stage); cache	
Pentium	3/93	60-233	3.1M	Superscalar, dual pipeline	
PentiumPro	3/95	150-200	5.5M	Out-of-order; L2 cache	
Pentium II	5/97	233-400	7.5M	MMX (SIMD instructions)	
Pentium III	3/99	450-1200	9.5-26M	SSE (incl. SIMD-FP); 10-stage pipeline	
Pentium 4	12/00	1300-2200	42M	SSE2 (128-bit); TC; 20-stage pipeline	

ArchOrd II - IA-32 and Pentium

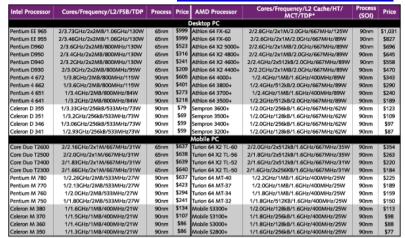
Intel Processors


Source: Microprocessor Report, © Cahners 2006

Jource, Mici	Source: Microprocessor Report, © Canners 2006									
Processor	Alpha	AMD	AMD Dual-core	HP	IBM	IBM	Current			
200000000000000000000000000000000000000	21364 EV-78+	Opteron 254	Opteron 280	PA-8900	Power4+	Power5	, current			
Processor Arch	64-bit	32/64-bit	Dual 32/64-bit	Dual 64-bit	Dual 64-bit	Dual, MT 64-bit				
Clock Rate	1.30GHz	2.8GHz	2.4GHz	1.16GHz	1.7GHz	1.9GHz				
Cache (I/D/L2/L3)	64K/64K/ 1.75M	64K/64K/ 1M	2 x 64K/64K/1M	1.5M/1.5M/ 64M	64K/32K/ 1.5MB	64K/32K/ 1.92MB/36MB	│ High-End			
Issue Rate/Core	4 issue	3 x86 instr	3 x86 instr	4 issue	8 issue	8 issue	ı ingii-End			
Pipeline Stages	7/9 stages	9/11 stages	9/11 stages	7/9 stages	12/17 stages	12/17 stages				
Out of Order	80 instr	72ROPs	72ROPs	56 instr	200 instr	200 instr	Processors			
Rename Regs	48/41	36/36	36/36	56 total	48/40	48/40	Processors			
BHT Entries	4K x 9-bit	4K x 2-bit	4K x 2-bit	8K x 2-bit	3×16K×1-bit	3×16K×1-bit				
							1			
TLB Entries	128/128	280/288	280/288	2 x 240 unified	2x1,024 unified	2x1,024 unified				
Memory B/W	12GB/s	6.4GB/s	6.4GB/s	6.4GB/s	12.8GB/s	12.8GB/s				
Package	FC-LGA-1443	PGA-940	PGA-940	LGA-544	MCM	MCM	1			
IC Process	0.18µm 7M	0.13µm 6M	0.09µm 7M	0.13µm 7M	0.13µm 7m	0.13µm 7m	1			
Die Size	397mm ²	193mm²	199mm²	304mm ²	267mm ² **	389mm ² **	1			
Transistors	135 million	106 million	233 million	300 million	184 million**	276 million**	1			
Est Die Cost	\$180	\$79	\$85	\$96	\$144**	\$200**	1			
Power (Max)	155W	92W(MTP)*	95W(MTP)	103W	100W**	120W*	1			
Availability	3Q04	4Q05	4Q05	3Q03	2Q03	4Q05	1			
Configuration	2-64 way	1-2 way	1-2 way	1-128 way	2-32 way	2-32 way	1			
SPEC Int2000(base)	904	1,817	1,499	N/A	1,077	1,470	1			
SPEC_fp2000(base)	1,279	2,132	1,752	N/A	1,598	2,839	1			
	Intel	Intel	Intel	MIPS	Fujitsu	Sun				
Processor	Itanium 2	XeonMP	Xeon	R16000	SPARC64 V	UltraSPARC VI+				
Processor Arch	64-bit	32/64-bit	32/64-bit	64-bit	64-bit	Dual 64-bit	1			
Clock Rate	1.66GHz	3.66GHz	3.8GHz	700MHz	2.16GHz	1.5GHz	1			
Cache (I/D/L2/L3)	16K/16K/ 256K/9M	12K/8K/ 1M/1M	12K/512K/ 2M	32K/32K	128K/128K/4M	64K/64K/ 2MB/32MB	= IA-32			
Issue Rate/Core	6 issue	3 ROPs	3 ROPs	4 issue	8 issue	8 issue	<u> </u>			
Pipeline Stages	8 stages	22/24 stages	22/24 stages	6 stages	9 stages (int)	14 stages	1			
Out of Order	None	126 ROPs	126 ROPs	48 instr	112 instr	None	1			
Rename Regs	328 total	128 total	128 total	32/32	32/32	None	l <u>—</u>			
BHT Entries	512 x 2-bit	4K x 2-bit	4K x 2-bit	2K x 2-bit	16K x 2-bit	2 x 16 x 2-bit	= IA-64			
TLB Entries	32L1I/32L1D/ 128L2I/128L2D	128I/64D	128I/64D	64 unified	(2,048+32)I/ (2,048+32)D	2 x (512+16)I/ 2 x (1,024+16)D	= 1A-04			
Memory B/W	10.6GB/s	5.3GB/s	6.4GB/s	1.6GB/s	4.3GBs	4.8GB/s	1			
Package	mPGA-700	mPGA-604	mPGA-604	FCBGA-1153	LGA-908	FC-LGA 1368	1			
IC Process	0.13µm 6M	0.09µm 6M	0.09µm 6M	0.11µm 7M	0.09µm 10M	0.09µm 9M	1			
Die Size	432mm²	130mm ² *	145mm ² *	110mm ²	294mm²	336mm ² **	1			
Transistors	592 million	125 million*	175 million*	7.2 million	400 million	295 million**	1			
Est Die Cost	\$165	\$22	\$24	\$60	N/A	\$125**	1			
Power (Max)	130W	140W(TDP)	130W(TDP)	17W	65W	90W*	1			
Availability	3Q05	2Q05	4Q05	1Q03	2Q05	3Q05	1			
Configuration	1-256 way	1-8 way	1-2 way	1-512 way	1-128 way	4-72 way	1			
SPEC_int2000(base)	1,490	1,388	1,810	N/A	1,456	N/A	1			
SPEC_fp2000(base)	2.801	1,314	1,909	N/A	1.808	N/A	1			

Source: vendors, except *In-Stat estimates. Estimated manufacturing cost does not include external cache chips. ** Contains two processors on one die. n/a = not available.

Current IA-32 Processors Manufacturing Cost


*Processor core change from previous process generation **Not mainstream processors, but provided for comparison purposes

ArchOrd II — IA-32 and Pentium

2003

lap

Current IA-32 Processors Prices

*The AMD processors feature an integrated north bridge. As a result, the I/O bus (HT for HyperTransport) and memory bus (MCT) are listed instead of the front side bus (FSB). SXXXX = Sempron.

ÉCOLE POLYTECHNIQUE PÉDÉRALE DE LAUSANNE

ArchOrd II — IA-32 and Pentium

© lenne 2003

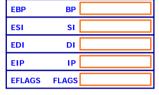
Outline

- ☐ Historical limitations of IA-32
- ■How some Pentium designs have worked around the main limitations
 - PentiumPro: Achieving superscalar out-oforder execution on a CISC
 - Pentium4: Achieving 2GHz clock frequency

Legacy IA-32 Features

- Very small number of registers, partly dedicated or specialised
- Natively 16-bit, extended to 32 in successive steps requiring backward compatibility (e.g., 3 modes for address generation)
- ☐ Highly variable instruction length and encoding (1 to 17 bytes in original IA-32, prefixes, postfixes, etc.)
- □ CISC instruction set

Registers (I)


Very small number of general purpose registers (approx. 4 integer plus 8 FP—not shown, versus 32+32 typ. RISC)

Segment Registers

EAX AX АН AL Accumulator ECX СХ СН Count reg: string, loop EDX DX DH Data reg: multiply, divide EBX вн BL вх Base addr reg ESP SP Stack pointer EBP BP Base ptr (base stack reg) Index reg, string src ptr

General Registers + PC + Flags

Index reg, string dest ptr Instruction ptr (PC) Condition codes

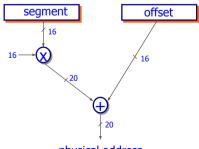
→ 8086

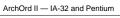
80386

ArchOrd II - IA-32 and Pentium

Registers (II)

- ☐ Small number of registers makes spilling more frequent
- □ Advanced compiler techniques (e.g., loop unrolling, Lesson 10) increase register pressure
- ☐ Partial specialization of the registers makes effective compiler scheduling difficult

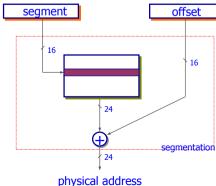

ArchOrd II - IA-32 and Pentium


Memory Addressing (I)

■ Real Mode (8086)

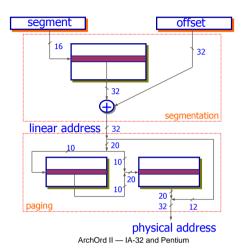
logical address

physical address



Memory Addressing (II)

□ Protected Mode (80286)


logical address

ArchOrd II - IA-32 and Pentium

Memory Addressing (III)

□ Protected Mode (80386, 80486, and Pentium)

003

Addressing Modes (I)

- Absolute
- Register indirect → [reg]
 - ❖ 16-bit registers: BX, SI, DI
 - ❖ 32-bit registers: EAX, ECX, EDX, EBX, ESI, EDI
- □ Displacement → [reg + displacement]
 - ❖ 16-bit registers: BP, BX, SI, DI
 - ❖ 32-bit registers: EAX, ECX, EDX, EBX, ESI, EDI
 - ❖ Displacement on 8, 16, or 32 bits
- □Indexed → [base reg + reg]
 - ❖ 16-bit registers: BX+SI, BX+DI, BP+SI, BP+DI

ArchOrd II - IA-32 and Pentium

@ Janna 2003

Addressing Modes (II)

- ■Indexed with displacement
 - → [base reg + reg + displacement]
 - Same registers as in mode indexed
- □Scaled indexed \rightarrow [base reg + 2^{scale} x reg]
 - ❖Only in 32-bit mode
 - ❖ Scale is 0, 1, 2, or 3
 - Index register can be any of the basic registers (except ESP)
 - ❖ Base register can be any of the basic registers
- Scaled indexed with displacement
 - \rightarrow [base req + 2^{scale} x req + displacement]

Address Segment

- ☐ For every indirect addressing (e.g., [reg]) the appropriate segment would be needed
- Default:
 - References to instructions (IP) use CS (code segment register)
 - References to stack (BP or SP) use SS (stack segment register)
 - All other references use DS (data segment register)
- ■A one-byte instruction prefix can modify the default

Instructions—IA-32 is not the same architecture since the mid-80's

- □ Classic CISC set derived from extended accumulator architecture
- ☐ Improved orthogonality in the 32-bit extensions (80386)
- Added FP capabilities previously on a coprocessor (80486)
- □ Added MultiMedia Extensions MMX as SIMD (singleinstruction multiple-data) integer instructions (Pentium II)
- Added Streaming SIMD Extension SSE, most notably consisting of SIMD FP instructions (Pentium III)
- Added SSE2, essentially extension of MMX+SSE to 128 bits (Pentium 4)

ArchOrd II — IA-32 and Pentium

© lenne 2003

Operand Types

□ **Not** a Load/Store architecture

Source 1 = Destination	Source 2		
Register	Register		
Register	Immediate		
Register	Memory		
Memory	Register		
Memory	Immediate		

☐ Immediate values can be on 8, 16, or 32 bits

ArchOrd II - IA-32 and Pentium

© lenne 2003

Instruction Examples

JE addr if equal(CC) then IP \leftarrow addr (IP-128 \leq addr < IP+128)

JMP addr IP \leftarrow addr

CALL addr,seg SP \leftarrow SP-2; Mem[SS:SP] \leftarrow IP+5

 $SP \leftarrow SP-2; Mem[SS:SP] \leftarrow CS$

 $\mathsf{IP} \leftarrow \mathsf{addr}; \, \mathsf{CS} \leftarrow \mathsf{seg}$

MOVW BX, [DI+45] BX \leftarrow Mem[DS:DI+45]

PUSH SI $SP \leftarrow SP-2$

 $Mem[SS:SP] \leftarrow SI$

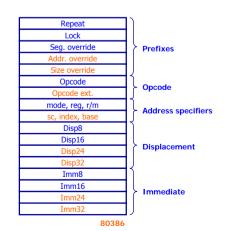

POP DI $DI \leftarrow Mem[SS:SP]$

 $\mathsf{SP} \leftarrow \mathsf{SP+2}$

ADD AX,#6765 AX ← AX+6765

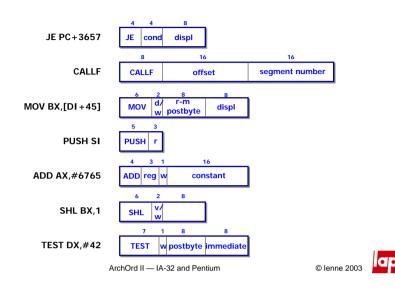
TEST DX,#42 set CC flags with (DX and 42) MOVSB Mem[ES:DI] \leftarrow Mem[DS:SI]

 $DI \leftarrow DI+1$ $SI \leftarrow SI+1$



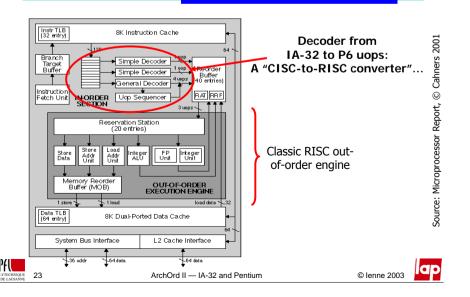
© lenne 2003

Instruction Encoding


- One instruction coded on 1 to 17 bytes in original IA-32
- Several types of modifiers/prefixes
- Two combinations of constants of variable length
 - Immediate and Displacement
 - ❖ 8, 16, and 32-bit
- Opcode "lost" and only moderately orthogonal

Examples of Instruction Encoding

1995: PentiumPro (P6) A Superscalar IA-32 CISC?


- ☐ How to adapt the superscalar ideas to fit such an irregular architecture?
 - Complexity of decoding is huge
 - ❖Parallel decoding of instructions is tough due to an encoding strongly variable in lenght
 - ❖Instructions mix memory operations with computations
 - Too few registers

ArchOrd II - IA-32 and Pentium

PentiumPro Microarchitecture: **Out-of-order CISC Execution**

PentiumPro In-Order Section

- Converts every IA-32 instruction into one or more internal RISC-like 118-bit instructions (micro-operations or uops); on average 1 instruction = 1.5-2.0 uops
- ☐ Three decoders and a sequencer work in parallel to perform the conversion
 - Two highest priority simple decoders intercept register-register operations (1 instr. \rightarrow 1 uop)
 - ❖ A low priority general decoder handles all other basic operations (1 instr. \rightarrow 4 uops)
 - ❖ A sequencer is used by the general decoder for very complex operations (1 instr \rightarrow several groups of 4 uops)
- □ Reorder Buffer (ROB) implements renaming and commits uops in program order to the Real Register File (RRF)

PentiumPro Out-of-order Section

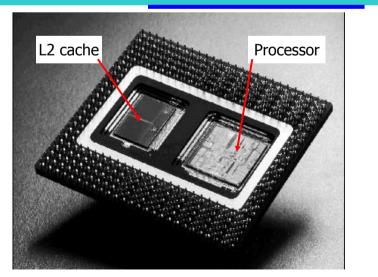
- □ Superscalar very similar to the general model studied in previous lessons
- □ Up to 20 uops wait in the Reservation Stations until the operands are all available
- □ A maximum of 5 uops can be issued per cycle: a generic calculation (int or FP), a simple integer (no shift, mul, nor div), a load, a store address, and a store data
- ■A Memory Reorder Buffer (MOB) reorders memory accesses and waits for D-cache availability

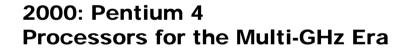


ArchOrd II - IA-32 and Pentium

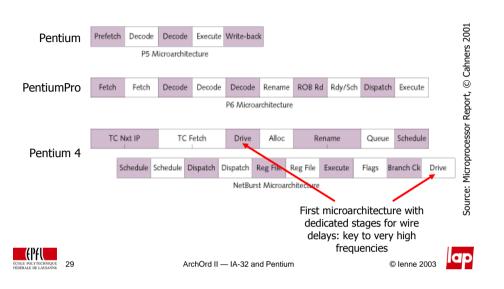
lenne 2003

PentiumPro Die 300mm² 0.5µm 4ML BiCMOS


Source: Microprocessor


ArchOrd II — IA-32 and Pentium

PentiumPro Package



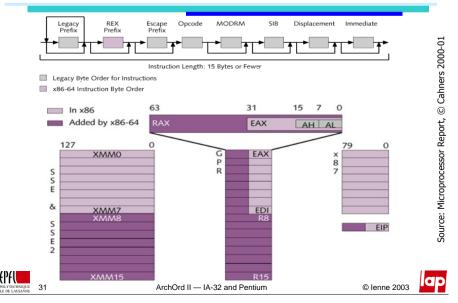
ÉCOLE POLYTECHNIQUE PÉDÉRALE DE LAUSANNE

- ☐ Isn't Pentium dead in favour of IA-64 and Itanium? Clearly not...
- ☐ How to modify Pentium III to achieve way less than 1ns of cycle time?
 - ❖ Pipeline expansion? (Pentium III: 10 stages)
 - Wire propagation time becomes very tangible compared to computation
 - uop decoding very heavy

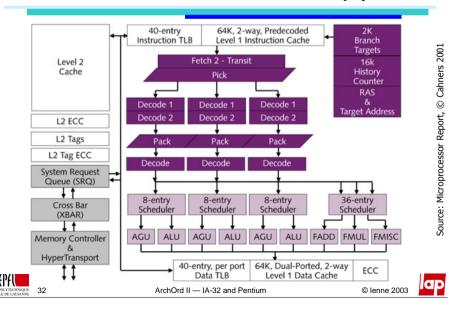
Evolution of Pentium Pipeline: From 5 to 20 Stages

Some Pentium 4 Characteristics

- Trace caches to memorize approx. 12,000 recent uops—sort of L0 cache to avoid IA-32 instruction decoding from the main loop
- ☐ Approx. 126 uops can be in-flight at one time (3 times more than Pentium III)
- Data speculation to execute a potentially dependent load before a store: if the dependence was real, the load is squashed and replayed
- □ P4 ALUs can perform simple operations in half clockcycle, to sustain throughput
 - Two dependent operations can be scheduled in the same cycle



ArchOrd II - IA-32 and Pentium


© lenne 2003

AMD Hammer x86-64: Extension of IA-32 to 64 bits (I)

AMD Hammer x86-64: Extension of IA-32 to 64 bits (II)

Conclusions

- ☐ IA-32 is the oldest important ISA around
- ☐ It is not absolutely fixed but constantly evolving with many new add-ons (MMX, SSE, SSE2, CMOV, etc.)
- ☐ Intel has managed to continue pushing the performance by adapting to its CISC nature the techniques developed to speed-up newer RISC processors
 - Similar work has been done by some competitors—notably by AMD with Athlon, for a few months the fastest IA-32 processor on the market
- ☐ Is IA-32 really dying? Is it evolving toward 64 bits?!...

© lenne 2003

References and Where to Learn More

☐ References:

- ❖ COD, Sections 3.12, 4.9, 5.7, 6.9, and 7.6
- Where to learn more:
 - Stallings, Computer Organization & Architecture, 5th ed., 2000, Section 13.3
 - D. Alpert and D. Avnon, Architecture of the Pentium Microprocessor, IEEE Micro, June 1993
 - L. Gwennap, Intel's P6 Uses Decoupled Superscalar Design, Microprocessor Report, 16th February 1995
 - P. Glaskowsky, Pentium 4 (Partially) Previewed, Microprocessor Report, 28th August 2000
 - S. Leibson, AMD Drops 64-bit Hammer on x86, Microprocessor Report, 4th September 2000

All papers available at http://lap.epfl.ch/courses/archord2/

ArchOrd II - IA-32 and Pentium

© lenne 2003

