CS 321 - Operating Systems

Meets MWF 10:30-11:30 AM	CS F321-F01 (#32845)	Instructor: Dr. O. Lawlor
Room 106 Chapman Building	3.0 Credits, Spring 2005	ffosl@uaf.edu, 474-7678
University of Alaska Fairbanks	Prerequisite: CS 301 (Assembly)	Office: 210C Chapman, 2-4 MWF
Textbook: Operating System Concepts, 7th Edition by Silberschatz Galvin, & Gagne; 2005 Wiley & Sons		Course Website (& links to Blackboard): http://lawlor.cs.uaf.edu/2005/cs321/ UNIX Machines: on nanook.uaf.edu, in Chapman lab, or Linux CDs available

Course Goals and Requirements

By the end of the course, you will be able to design system-level libraries for a variety of tasks; be familiar with the general abilities and interfaces provided by common operating systems; and understand in a deep way the implementation of modern processor execution, memory, and storage. To understand this, you will need to have experience writing programs in some standard systems programming language (C or C++), with at least some idea of how your code relates to assembly language and how it runs on the real machine.

Grading

As shown in the <u>example questions</u>, your work will be evaluated on correctness, rationale, and insight, not on successful regurgitation of random trivia. Grades for each assignment and test may be curved upward, by scaling to a distribution with a median of at least 80%. Each homework and the midterm will then be clamped to the range [0%,100%]. Your grade is then computed based on four categories of work:

- 1. **HW:** Homeworks and machine problems, to be distributed through the semester. The curved and clamped score for neatly typeset homeworks or well-packaged and commented machine problems will be scaled up by 10%.
- 2. **PROJ:** Two short individual or group projects. I'll provide a list of possible topics, let you pick groups and a topic, and provide a staged series of requirements, including (1) project description, (2) informal project design, (3) code, and (4) a short presentation.
- 3. MT: Midterm Exam covering the time section, tentatively held Wednesday, March 9 at the usual class time.
- 4. FINAL: Final Exam covering the space section, to be held Monday, May 9 at 10:15AM.

The final score is then calculated as:

TOTAL = 20% **HW** + 30% **PROJ** + 25% **MT** + 25% **FINAL**

Assignments will be due at the beginning of class. Late work will not be accepted <u>under any circumstances</u>. Exams must be taken as scheduled, except in extreme circumstances. Academic dishonesty (including plagarism or cheating) is unacceptable and will be handled according to University board regulations.

Course Outline and Schedule (Tentative)

irst section: Time Management	Calendar	Monday	Wednesday	Friday
 Event-driven programming [1 lecture] DOS-style polling loop Mac/X (or other GUI) event loop Win32 wndProc 	January			21 First day of class
 Processes (Ch. 3) [1 lecture] Semantics: multiprogramming Creation: UNIX fork, Win32 Hardware Implementation (Ch. 3.1) [1 week] 	Events, Processes, Hardware	24	26 HW0 Due	28 Add Deadline
 Resources: Stack, registers, heap Protected (privileged, supervisor, "ring 0") mode kernel & security 	Signals, Interrupts	31		

• System calls, timers, and other hardware interfaces				
 Signals & interrupts (Ch. 4.4.3 & 13.2.2) [1 week + 1 homework] Hardware interrupts UNIX/Win32 signals/handlers 	February		2 PROJECT1 Topic Due	4 Drop Deadline
 Interrupt safety (reentrancy) Threads (Ch. 4) [1 week] 	Threads	7	9 HW1 Due	11
 Kernel-level: pthreads, win32 User-level: coroutines Concurrent Interaction (Ch. 6 & 7) [2 weeks + 1 homework] 	Concurrency 1	14	16 PROJECT1 Design Due	18
 Motivation: Race conditions 	Concurrency 2	21	23	25
 Locks (pthread lock, win32 mutex), semaphores (win32) Deadlock prevention Not covered: deadlock detection & 	CPU Scheduling	28		
response				
CPU Scheduling (Ch. 5) [1 week] Starvation, poor utilization	March		2 HW2 Due	4
 Prioritization Priority Inversion Job scheduling: Shortest-Job-First 	Review and Midterm	7	9 MIDTERM	11
Second Section: Space Management	Spring Break	14 (BREAK)	16 (BREAK)	18 (BREAK)
 Memory allocation (Ch. 8.3.2) [1 week + 1 homework] Memory heirarchy & cost-capacity-speed tradeoff Low-level memory allocation: sbrk Mid-level memory allocators Virtual memory: uses (Ch. 9) [1 week] DLL/text page sharing, 	Memory Allocation	21 Last day to Withdraw	23 PROJECT1 Code Due	25
	VM Usage	28	30 PROJECT2 Topic Due	
copy-on-writeMemory-mapped files: UNIX				
mmap, mprotect, SYSV IPC; Win32 MapViewOfFile (Ch. 9.7)	April			1
 Software distributed shared memory Virtual memory: implementation (Ch. 8, 9.4) [1 week] 	VM Implementation	4	6 HW3 Due	8
• Page table and TLB (presence,	File System	11	13	15
 permissions, and dirty bits) Demand paging & page replacement strategies Filesystem (Ch. 10 & 11) [1 week] Layouts: File Allocation Table 	Security	18	20 PROJECT2 Design Due	22
(FÅT), inode, b-treeCaching, fragmentation, corruption during crash	Accounting	25	27 HW4 Due	29 (BREAK) Springfest
 Accounting and security [2 weeks] Terminology: Tampering and 	·			
authentication, secrecy and encryption	May			
 Common security holes: buffer overflow, unquoted inputs, excess priviledge 	Semester Project Demos	2 PROJECT Demos	4 PROJECT Demos, PROJECT2 Code Due	6 Review for final exam
	Finals Week	9 FINAL at 10:15AM		
	·			•