
CS 321 Lecture Notes

Orion Sky Lawlor
Department of Computer Science, University of Alaska at Fairbanks

http://lawlor.cs.uaf.edu/ olawlor olawlor@acm.org

1 2005/04/27 Lecture: Cryptogra-
phy for System Security

Crypto is discussed in detail on Page 576 of the Sil-
berschatz textbook.

Cryptographic algorithms all basically take a
piece of regular data called the “plaintext”P , and
encrypt it using an encryption algorithm and encryp-
tion keyE. This results in a piece of “cyphertext”C,
which should not look at all similar toP . With the
decryption keyD, the intended recipient can then run
a decryption algorithm to recover the plaintextP .

That is, the sender turns their messageP into
cypher textC using the encryption keyE.

P=>E C

And the receiver takes the cyphertextC and turns it
into plaintextP using the decryption keyD.

C=>D P

For a “symmetric cypher”,E = D. The old-
est symmetric cypher is Caeser’s cypher, where the
encryption and decryption algorithms both compute
C = (P +13) MOD 26. SoACK becomesNPX.
Caeser’s cyper, or any similar “substitution cypher”
is painfully insecure– if you can work out one let-
ter (e.g., based on formatting, frequency analysis,
or just repetition), you can recognize it anytime that
letter appears again. Useful examples of symmetric

cyphers are the older DES (56-bit key, 64-bits of data
at a time), and the more modern AES (128-bit to 256-
bit key, 128 bits at a time). Both of these are “block
cyphers”, where they take the input one block (64 or
128 bits) at a time, mix it up thoroughly, spit it out,
keep the mixed copy, and move to the next block.
This means changing one bit of the text changes its
block and all subsequent blocks, which makes these
cyphers more robust to certain attacks.

The main weakness of symmetric cyphers is mak-
ing sure both sides have the key, and nobody else
does. To solve this key distribution problem, there
are a variety of “asymmetric cyphers”, whereE! =
D. The most common by far is the RSA Algo-
rithm (Mathematics and Example Code), which boils
down to exponentiation and modulo operations on
very large numbers. In RSA, one can easily generate
(e.g., with “ssh-keygen” on any UNIX machine) a
public keyE and private keyD. Then you can pub-
lishE (or hand it out on demand), keepD secret, and
then people can encrypt messages that only you can
decrypt. This is used for SSL (https), where the en-
cryption keyE is in the “certificate” the server uses
during communication set up; and by SSH, where
the encryption keyE is sent by the server. This is
also used in reverse when publishing software over
the net–here, the encryption keyE is kept private,
at the software manufacturer, and the decryption key
D is published and included in every machine. This
way when a machine receives an update, they can

http://lawlor.cs.uaf.edu/~olawlor
http://pajhome.org.uk/crypt/rsa/rsa.html
http://pajhome.org.uk/crypt/rsa/rsa.html


decrypt it using the decryption key, and know that
only somebody with the encryption key could have
created the message.

Asymmetric cypers are hence quite useful, but
they’re also quite slow. So most of the time we use
the asymmetric cypher to exchange a new (random)
shared key, and then use a fast symmetric cypher for
the bulk of the communication. This is used by both
SSL and SSH.

There’s a final sort of algorithm cryptographers
concern themselves with, which is a hash function.
A hash is just an encryption method where there
isn’t a corresponding decryption method–the hash
has scrambled the data forever. Hashes are used
check passwords by hashing the proported password,
and comparing its hash against the stored hashcode
of the old password. This allows you to check pass-
words without ever actually storing them. Hashing
also allows you to determine if a file has been tam-
pered with, because the hash code will change, but
you’ve got to somehow store the hash codes where
they can’t be tampered with as well!

Encryption is used in computer security for:

• Checking passwords (via their hash code) with-
out ever storing them.

• Detecting changed files (via changed hash
codes).

• Communicating over an insecure channel, such
as sending passwords over a wireless network.

• Protecting data from physical compromise,
such as encrypting a filesystem.

• Verifying the identity of a possibly forged mes-
sage (network packet, file, email).

A small encrypted filesystem can be generated in
Linux 2.6 via:

modprobe cryptoloop
modprobe aes
dd if=/dev/urandom of=my.sto bs=1024K count=1
losetup -e AES128 /dev/loop0 my.sto
mke2fs -m 0 /dev/loop0
mkdir my
mount /dev/loop0 my

Once you’ve build the filesystem, you can re-
peat these steps without the ”dd” and without the
”mke2fs” to remount the data. Of course, it’s easy
to write a script to do this, which should ideally also
turn off swap space (”swapoff -a”) to prevent writing
sensitive data to the swap file, turn off network ser-
vices to prevent remote access, and other paranoia.

2


	2005/04/27 Lecture: Cryptography for System Security

