
CS 321 Lecture Notes

Orion Sky Lawlor
Department of Computer Science, University of Alaska at Fairbanks

http://lawlor.cs.uaf.edu/ olawlor olawlor@acm.org

1 2005/02/02 Lecture Notes

1.1 x86 Assembly Language

The Linux standard compiler GCC and assembler
GAS use the UNIX or “AT&T” assembly conven-
tion: the destination is listed last. Thus under GCC,

mov %eax,%ebx

would copy the value in register eax into the register
ebx. Register names are always prefixed by a percent
sign in the UNIX convention, and in gcc inline as-
sembly are prefixed by two percent signs. The GNU
tool “objdump -d ” is very useful to disassemble any
binary file (.o object file, static or dynamic library,
executable, or even Windows .exe!).

Microsoft Visual C++ and NASM, by contrast, use
the Intel assembly convention: the destination regis-
ter is listed first. Thus under NASM or Visual C++,

mov eax,ebx

would copy the value in ebx into eax!

1.2 x86 Subroutine Calls

A typical x86 call sequence is:

1. Caller pushes arguments onto the stack, starting
from the rightmost argument. This means the
first (leftmost) argument is sitting on the top of
the stack.

2. Caller executes theCALL instruction, which
pushes the caller’s program counter and jumps
to the given subroutine. This normally looks
like:

call 804838c <foo>

3. A subroutine usually begins by setting up a
“frame pointer”, which is a register (always
ebp) that points into the stack and is used to ac-
cess arguments and local variables. This data
could also be accessed relative to the stack
pointer, but because the stack pointer keeps
changing (e.g., as arguments are pushed on and
popped off), it’s a bit less confusing to ac-
cess everything relative to the frame pointer.
The compiler doesn’t get confused, and hence
can be instructed not to bother with the frame
pointer—the gcc argument for this is “–fomit-
frame-pointer”, and this normally speeds things
up a tad.

The assembly code you normally see at the start
of any routine to set up the frame pointer is:

push %ebp
mov %esp,%ebp
sub $0x8,%esp

The “push” saves the old frame pointer; the
“mov” sets up the frame pointer ebp; and the

http://lawlor.cs.uaf.edu/~olawlor
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/Assembly-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/Assembly-HOWTO.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/_core_assembler_.28.inline.29_.topics.asp

“sub” makes some room on the stack (here,
eight bytes) for the routine’s local variables.
Note that the stack grows down, so “sub” re-
ally does make room on the stack (for a regular
array, which grows up, you’d use “add”!).

4. The subroutine then does whatever it needs to
do. It access its arguments at positive offsets
from ebp, and accesses local variables at nega-
tive offsets.

5. Before it finishes, a subroutine restores the
frame pointer using theLEAVE instruction.
This restores esp from ebp, and pops the old
ebp. This is hence the opposite of the frame
pointer setup at the start of the subroutine. The
subroutine

6. The subroutine returns by executing theRETin-
struction, which pops the old program counter
from the stack and starts executing there. Note
that this is corresponds to theCALL, which
pushed the old program counter before entering
the routine. This normally returns control back
to the calling routine (unless the stack has been
corrupted!).

7. In C, the calling routine has to pop its arguments
back off the stack. It usually does this by just
adding a constant to the stack pointer, like this:

add $0x10,%esp

2

	2005/02/02 Lecture Notes
	x86 Assembly Language
	x86 Subroutine Calls

