
CS 321 Lecture Notes

Orion Sky Lawlor
Department of Computer Science, University of Alaska at Fairbanks

http://lawlor.cs.uaf.edu/ olawlor olawlor@acm.org

1 2005/01/21 Lecture Notes

As this is the first day, this was a short lecture.

The earliest machines, like small embedded ma-
chines today, had no operating system. Without an
operating system, the main program must talk di-
rectly to the hardware, and must do everything itself
without help; but also has complete freedom to run
the machine however it likes.

Operating systems serve a variety of purposes, but
they boil down to two somewhat incompatible goals.
First, operating systems provide huge quantities of
utility routines and libraries to make systems easier
to program. Second, operating systems are designed
to keep the machine running even when programs go
bad.

Note that different operating systems put differ-
ent emphasis on these features. The classic MacOS,
for example, provided amazing quantities of utility
routines, but almost zero security—a classic MacOS
program could do almost anything to the machine,
and the operating system would not interfere. Micro-
kernel implementations, by contrast, are almost pure
security—the OS kernel starts processes and man-
ages how they interact, but all interesting processing
is left to user code.

1.1 Utility

Without an operating system, to talk on the network
you’d have to directly manipulate the network hard-
ware; receive, reassemble, retransmit, and acknowl-
edge individual network packets at the network, IP,
and TCP levels; and perform all the other low-level
processing needed for this task. But with an oper-
ating system, to talk on the network you just call a
simple, standard set of routines such as BSD sock-
ets.

Hardware-related tasks the operating system
makes much easier include:

1. Booting and initializing the machine at startup
(boot process).

2. Talking to all the machine’s hardware (inter-
rupts and hardware drivers).

3. Reading from the user input devices (keyboard,
mouse).

4. Displaying output to the graphics card (GUI and
OpenGL).

5. Allocating and deallocating memory (malloc,
free, mmap).

6. Handling disk storage (virtual memory, file sys-
tem).

Software-related tasks the operating system makes
easier include:

http://lawlor.cs.uaf.edu/~olawlor
http://www.ecst.csuchico.edu/~beej/guide/net/
http://www.ecst.csuchico.edu/~beej/guide/net/


1. Interacting with the machine (shells, GUIs,
window managers).

2. Loading and running programs.

3. Scheduling problems that have lots of indepen-
dent pieces (multiprogramming).

4. Programming the machine (interpreters, com-
pilers, debuggers).

5. Dealing with libraries (dynamic libraries: Win-
dows dll or UNIX .so).

6. Dealing with mathematics (math.h, fft).

7. Dealing with fonts, image handling, and sound
and movie formats.

1.2 Security

The other major task of an operating system is, para-
doxically, to restrict the capabilities of programs.
That is, the OS is designed to limit the damage
a program can cause. On a multi-user machine,
this is clearly necessary—otherwise anybody could
trash anybody else’s files. On a single user ma-
chine, it’s not so clear why this is needed. How-
ever, protection does make developing programs eas-
ier, because a runaway program can’t crash the ma-
chine. Protection also helps restrict certain kinds of
malicious software—for example, memory-resident
viruses, common in the days of MS-DOS, no longer
affect modern operating systems because of memory
protection.

The protection aspect of operating systems applies
to:

1. Disk files. This is the most visible aspect of pro-
tection, and one area where consumer versions
of Windows are less secure than UNIX (but also
easier to use).

2. Memory. Programs are prevented from seeing
or modifying memory belonging to the kernel
or other programs.

3. Hardware. Programs can only access hardware
devices via the operating system. This prevents,
for example, a buggy program from causing
your graphics card to destroy your monitor.

4. Time. Programs are forcibly removed from the
processor at regular intervals. This allows intel-
ligent scheduling, and keeps one runaway pro-
cess from hanging the machine.

Overall, operating system protection adds com-
plexity and slows down processing, but it makes for
a more reliable system. Note that because the op-
erating system can’t completely check the format of
data coming in over the network, there are still a va-
riety of security problems that the operating system
cannot address.

2


	2005/01/21 Lecture Notes
	Utility
	Security


