
CS 301 - Assembly Language

Meets MWF 3:30-4:30 PM
(New!) Room 106 Chapman Building
University of Alaska Fairbanks

CS F301-F01 (#73868)
3.0 Credits, Fall 2005
Prerequisite: CS 201 (Programming)

Instructor: Dr. O. Lawlor
ffosl@uaf.edu, 474-7678
Office: 210C Chapman
Hours: 1-2 MWF or by appointment

Required Textbook:
Computer Systems,
Bryant and
O’Hallaron, Prentice
Hall 2003

ADA Compliance: Will work with
Office of Disabilities Services
(203 WHIT, 474-7043) to provide
reasonable accomodation to
students with disabilities.

Course Website (& links to Blackboard):
http://www.cs.uaf.edu/2005/fall/cs301/
UNIX Machines: on nanook.uaf.edu, in
Chapman lab, or Linux CDs available

Course Goals and Requirements

By the end of the course, you will understand how your code actually executes on a real machine: from electrons on a
semiconductor, to registers and binary arithmetic, to machine code and assembly, to C code. This course will focus on the middle
levels of this chain of abstractions--you’ll eventually learn much more about the lower levels (electrons, semiconductors, logic
circuits) in EE 341 & 443, and about the higher levels (compilers and languages) in CS 331. To understand this course, you will
have to be familiar with all the basics of C or C++: variables, loops, arrays, pointers, structures, and subroutines.

Calendar

First day of class: 3:30pm Friday, September 2.
Last day to drop: Friday, September 16.
Midterm: 3:30pm Friday, October 21.

Last day to withdraw: Friday, October 28.
Thanksgiving break (no class): Friday, November 25.
Last day of class: Monday, December 12.
Final Exam: 3:15-5:15 PM Wednesday, December 14.

Student Resources

Google, Rasmuson Library, Academic Advising Center (509 Gruening, 474-6396), Math Lab (Chapman Room 305), English
Writing Center (801 Gruening Bldg, 478-5246).

Grading

Your work will be evaluated on correctness, rationale, and insight, not on successful regurgitation of random trivia. Grades for
each assignment and test may be curved upward by scaling. Each homework and the midterm will then be clamped to the range
[0%,100%]. Your grade is then computed based on four categories of work:

HW: Homeworks and machine problems, to be distributed through the semester.1.
MT: Midterm Exam, to be held 3:30pm Friday, October 21. 2.
FINAL: Final Exam (comprehensive), to be held 3:15-5:15 PM Wednesday, December 14. 3.

The final score is then calculated as:
TOTAL = 40% HW + 30% MT + 30% FINAL

Homeworks are due by midnight at the end of the day they are due.

THE TEN COMMANDMENTS (OF CS 301)

THOU SHALT ASK QUESTIONS IN CLASS WHEN THY PROFESSOR STOPS MAKING SENSE.1.
THOU SHALT LEARN THE GENERAL PRINCIPLES, BY LEARNING THE CURRENT SPECIFIC
IMPLEMENTATIONS.

2.

THOU SHALT COME TO CLASS. EVEN WHEN SLEEPY. BUT THOU SHALT NOT SLEEP IN CLASS.3.
REMEMBER THY BOOK, AND KEEP IT HANDY.4.
THOU SHALT TURN IN THY ASSIGNMENTS BEFORE MIDNIGHT ON THE REQUIRED DAY. THOU SHALT
RECEIVE A ZERO FOR LATE ASSIGNMENTS.

5.

THOU SHALT NOT START WORK ON THY ASSIGNMENTS 20 MINUTES BEFORE THEY ARE DUE.6.
THOU SHALT CITE ALL THY SOURCES. EVEN THOSE FROM THE INTERNET.7.
THOU SHALT NOT COPY THY NEIGHBOR’S ASSIGNMENTS, NOR HIS TESTS. 8.
ALL THY ASSIGNMENTS AND TESTS SHALL BE THY OWN WORK. ANY CHEATING OR PLAGARISM
SHALL INCUR THE WRATH OF THY PROFESSOR.

9.

THOU SHALT REGULARLY CHECK BLACKBOARD. I MAY POST ASSIGNMENTS THERE AT ANY TIME,
FOR I AM THY PROFESSOR.

10.

At my discretion, I may allow late assignments without penalty when due to circumstances beyond your control. Major
assignments that are slightly late may be accepted at a 50% grade penalty (e.g., on-time grade: 80%; late grade: 40%). Even
substantial reuse of other people’s work is fine (and not plagarism) if it is clearly cited; you’ll be graded on what you’ve added to
others’ work. Group work on substantial assignments (not homeworks, not tests) is acceptable if you clearly label who did what
work; but I do expect a two-person group project to represent twice as much work as a one-person project. Department policy does
not allow tests to be taken early; but in extraordinary circumstances may be taken late. All classes and exams will be in Chapman
104. Please do take the time to do quality work--your checkbook and/or happy spouse will eventually thank you!

Course Outline (Tentative)

Data representation (Chapter 2.1)

Memory, files as big arrays of bytes
Integer representation as bits, bytes

Big endian
Little endian

Binary, decimal, hex, octal, and base conversion

Operations

Bitwise operations (Chapter 2.1)
AND, OR, XOR
"SIMD Within A Register" (SWAR):
Cohen-Sutherland clipping
Left & right shifting; finite integer
range.
Extract integer into bits, reassemble
from bits.

Arithmetic operations (Chapter 2.2 & 2.3)
Addition: unsigned. Overflow.
Wraparound. Range.
Subtraction: two’s complement addition;
signed numbers
Multiplication & acceleration via bit
shifts
Division & acceleration via bit shifts
Modulus, implementation, acceleration
via bit masks
Relative speed of each operation on
various machines
Multiple-precision implementations of
numerical operations

Instruction encoding (Chapter 3.1-4)

Tiny example encoding: use of all above features in
a tiny emulator

Concept of registers: stash stuff here
Register hardware
implementation
Register uses: program
counter, address, data, etc.

Concept of memory: big bunch o’ bytes
Opcodes: do this now

Hardware implementation of above encoding
(preview of EE 341)
Real examples

PPC (clean 4-byte register-based RISC)
Java (clean 1-byte stack-based unboxed)
CIL (1 or 2-byte stack-based boxed)
x86 (hideous variable-length CISC)

Assembly & disassembly (Chapter 3.15)

opcode mnemonics, naming a register, immediate
values
Inline (__asm) assembly syntaxes; standalone (.S)
assembly syntaxes

Operand order dyslexia
Labels, macros, etc.

Win32, gcc x86 inline assembly
AT&T .S files

Memory

Structures (Chapter 3.9)
In-memory layout
Alignment & padding
sizeof, offsetof

Array indexing (Chapter 3.8)
1D, 2D, 3D, nD
For structs

Global variables

Subroutines (Chapter 3.7)

Stack allocation: push & pop
Program Counter push & pop: call & return
Parameter passing, pass by reference
Calling conventions
Subroutine linkage and naming

Heap memory

Allocation & free (Chapter 10.9)
Garbage collection (Chapter 10.10)

Performance and Optimization (Chapters 4, 5, and 9)

General optimization checklist
Timing and profiling
Algorithmic Optimization
Invariant hoisting, constant propagation
Memory Performance

Caching
Levels & performance of cache
Program transformations to improve
memory performance

Concurrency
Hardware and Software Pipelining
Cost of branches

Advanced control flow

Function pointers, implementation
C++ virtual method _vtable implementation
Dynamic linking (Chapter 7)

Floating point (Chapter 2.4, 3.14, and beyond)

Instructions
IEEE floating-point representation

Sign, exponent, mantissa
normalization
Fun bitwise hacks (fast absolute value,
log-base-2, float-to-int, etc.)
denormalized numbers, NaNs, and
performance penalty

Operations
Addition

Interfaces
PPC sensibility
x86 stack horror

4-vector of floating point numbers
x86 SSE & <mmintrin.h> intrinsics
PPC AltiVec
Graphics card ARB_fragment_program

