NOTE: THIS VERSION HAS CORRECTIONS MADE ON 8 SEPTEMBER; NOTE MY EARLIER POSTED f(t) WAS OF THE OPPOSITE SIGN, AND I ZOOMED-IN ON THE WRONG INTERVAL GOAL: minimize d(t) = (cos(t) + 5) - (sin(2.1 t) + 2) on 0 <= t <= 2 pi NOTE: d'(t) = f(t) = - sin(t) - 2.1 cos(2.1 t) SO WE SOLVE f(t) = 0 BELOW: FIRST DO SOME GRAPHING. THEN WE APPROXIMATE f(t) BY LINE l(t) WHICH GOES THROUGH (3.5,f(3.5)), (3.8,f(3.8)) AND WE WRITE THE LINE IN FORM l(t) = A + B (t - 3.5) SO THE APPROXIMATE SOLUTION IS t = 3.5 - A / B bueler@bueler-pogo:~$ octave octave:1> t=0:.001:2*pi; octave:2> f=-sin(t)-2.1*cos(2.1*t); octave:3> plot(t,f) octave:4> grid on octave:5> t=3.5:.0001:3.8; octave:6> f=-sin(t)-2.1*cos(2.1*t); octave:7> plot(t,f), grid on octave:8> t1=3.5; A=-sin(t1)-2.1*cos(2.1*t1) A = -0.66334 octave:9> t2=3.8; B=-sin(t2)-2.1*cos(2.1*t2); B = (B - A) / 0.3 B = 5.1305 octave:10> 3.5 - A / B ans = 3.6293 octave:11> format long octave:12> 3.5 - A / B ans = 3.62929459640979