Math 310 Numerical Analysis (Bueler)

Worksheet: fast and accurate exp

The goal of this exercise is to build a MATLAB function myexp which only uses addition, multiplication, and division, *but not the power function* x^y , to compute the exponential function $e^x = \exp(x)$ accurately, say to 15 digits. We do not want to use the power function because x^y is actually evaluated on a computer or calculator by using the more basic exponential and logarithm functions: $x^y = \exp(y \ln x)$.

(a) If *a* is a positive integer then $\exp(a) = e^a$ can be computed by multiplication alone. This assumes that we have stored way the 15-digit value of $e^1 = \exp(1)$:

e1 = 2.71828182845905;

If *a* is *any* integer then $\exp(a) = e^a$ can be computed by at most one division plus additional multiplications. Write a MATLAB code fragment which computes $\exp(a)$ by these means. (*Hint*: Consider $\exp(5) = e^5$ and $\exp(-7) = 1/e^7$, for examples.)

(b) If |x| > 709 then $\exp(|x|) > 10^{307}$. Let's say that we just report underflow (i.e. $\exp(x) = 0$) if x < -709 and that we report overflow (i.e. $\exp(x) = \text{Inf}$) if x > 709. Futhermore, assume we can extract the integer and fractional parts of x so that x = a + b where a is an integer and $b \in [0, 1)$; say¹

$$[a,b] = parts(x);$$

Write a MATLAB code fragment which takes x and uses these ideas to reduce the problem to computing $\exp(b)$ for $b \in [0, 1)$.

(c) Now we need to accurately compute $\exp(b)$ for $b \in [0, 1]$. Polynomial interpolation can do this accurately as long as we have some method of evaluating \exp at the interpolation points. Let us suppose that this is possible; for this purpose only we might use the Taylor series of $\exp(x)$. Furthermore, as explained in class and on page 193, we would be wise to use the Chebyshev points x_0, x_1, \ldots, x_n in [0, 1] because then

$$\max_{x \in [0,1]} |(x - x_0)(x - x_1) \dots (x - x_n)| \le 2^{-2n+1}.$$

(There is an extra power 2^{-n} here because the interval is [0, 1] not [-1, 1].) Find the degree n so that the error in this interpolation² is less than 10^{-15} :

$$\max_{x \in [0,1]} |\exp(x) - p(x)| \le 10^{-15}.$$

(d) Assume we have an *n* degree polynomial from the last part,

$$p(x) = c_1 + c_2 x^1 + \dots + c_{n+1} x^n$$

and that its coefficients are *already* stored in an n + 1 row vector c. Combine the above parts and write a MATLAB code.

```
function z = myexp(x)
% MYEXP Compute exp(x) to 15 digit accuracy by using only
% elementary operations (+,*,/). Uses Chebyshev polynomial
% interpolation. Example to compare:
% >> myexp(56.7891), exp(56.7891)
```