Assignment #10

DUE Wednesday 5 December, 2007

Note: "HANDOUT" refers to the copied pages 84–99 of Chapter 4 of Brown and Churchill, *Fourier Series and Boundary Value Problems*. The exercises are on pages 95–97 of the HANDOUT.

"Dirichlet's Theorem", as I refer to it in class and below, is the Corollary on page 92. Note that you will use it in answering exercises 3, 5, and 6(a) in the HANDOUT.

Exercise 1. Exercise **3** on HANDOUT. The Fourier series in question is

$$f(x) \sim \frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$$

But, and this is important to understanding the question, you do not need to *know* the Fourier series to answer this question! (That is, you do not need to know the coefficients in the Fourier series.)

- **Exercise 2**. Exercise **5** on HANDOUT.
- **Exercise 3**. Exercise 6(a) on HANDOUT.
- **Exercise 4**. Exercise **9** on HANDOUT.
- **Exercise 5**. Exercise **10** on HANDOUT.

Exercise 6. Let's remember why we are interested in Fourier series. Consider this heat in a rod problem, with a rod of length π :

PDE	$u_t = u_{xx},$
BCs	$u_x(0,t) = 0,$
	$u_x(\pi,t) = 0,$
IC	$u(x,0) = \phi(x),$

(a) Apply separation of variables in the usual way. As a result, you will write a formula for the solution u(x, t) as a Fourier cosine series, with integral formulas for the coefficients. (*There is no reason to go into all the gory details here. We have seen them before many*

times. But write down enough to remind yourself, and to demonstrate to me, how the story goes!)

(b) Now assume

$$\phi(x) = \begin{cases} -1, & 0 \le x < \pi/2, \\ 0, & x = \pi/2, \\ 1, & \pi/2 < x \le \pi. \end{cases}$$

Find the Fourier cosine series for u(x, t) and for u(x, 0) in particular. Sketch plots of the t = 0, small t, large t, and steady state cases.

(c) Apply Dirichlet's Theorem to the even periodic extension of $\phi(x)$ to show that your solution u(x, t) actually converges to $\phi(x)$ when t = 0.

(d) On the other hand, in what ways do partial sums of the Fourier cosine series for $\phi(x) = u(x, 0)$ look different from $\phi(x)$? Explain why the partial sums of the series for u(x, t), for small t > 0, are excellent approximations of $\phi(x)$.

Exercise 7. In this problem, assume f(x) is defined on $[-\pi, \pi]$, is an *even* function, and is *differentiable* with a continuous derivative.

(a) I showed in class that because f(x) is even it has a cosine series (using "Fourier's choice" for an orthogonal set):

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx.$$

Show that the coefficients a_n can be found by integrating over half the interval:

$$a_n = \frac{2}{\pi} \int_0^\pi f(x) \cos nx \, dx.$$

(b) Argue that f'(x) is odd. (You can, and probably should, do this without reference to Fourier series ideas. Imagine yourself as a calculus student again ...)

(c) Do integration by parts on the integral

$$\int_0^\pi f(x)\cos nx\,dx$$

to find a formula for the coefficients a_n by integrating a product of f'(x) and something.

(d) Argue that if f'(x) has a convergent Fourier sine series then the Fourier cosine series for f(x) converges faster than the Fourier series for general f(x). (*This is an instance of the general rule that if a function is more "regular", meaning it is smooth because you can differentiate it, then its Fourier series is better behaved.*)